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Let fm(a,b, c,d) denote the maximum size of a family F of subsets of an m-element set for which there is no pair
of subsets A, B € F with

|ANB|>a, |ANB|>b, |ANB|>¢, and |ANB|>d.

By symmetry we can assume a > d and b > ¢. We show that f,,,(a, b, ¢, d) is ©(m*T°~!) if either b > cora,b > 1.
We also show that f,,(0,b,b,0) is ©(m?) and fm(a,0,0,d) is ©(m®). This can be viewed as a result concerning
forbidden configurations and is further evidence for a conjecture of Anstee and Sali. Our key tool is a strong stability
version of the Complete Intersection Theorem of Ahlswede and Khachatrian, which is of independent interest.
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Let f,(a,b,c,d) denote the maximum size of a family F of subsets of an m-element set for which
there is no pair of subsets A, B € F with

|ANB|>a, |ANB|>b, |[ANB|>c, and |ANB|>d.

By symmetry we can assume a > d and b > c.

Theorem 1 Suppose a > dand b > c. Then f,(a,b,c,d) is ©(m**t°~1) ifeither b > cora,b > 1. Also
fm(a,0,0,d) is ©(m?) and f,,,(0,b,b,0) is O(mP).

Some motivation for studying this function comes from the forbidden configuration problem for matri-
ces popularised by the first author. We can identify a family A = {Ay,---, A, } of subsets of [m] with
anm X n (0,1)-matrix A determined by incidence, i.e. A;;is 1if i € A;, otherwise 0. Such a matrix is
simple, by which we mean it has no repeated columns. Let F' be a (0, 1)-matrix (not necessarily simple).
We define forb(m, F) to be the largest n for which there is a simple m x n (0, 1)-matrix A that does not
contain an F’ configuration, i.e. a submatrix which is a row and column permutation of F'. If we interpret
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A, F as incidence matrices of systems A, F (the latter possibly having sets with multiplicity) then A has
an F' configuration exactly when A has F as a trace,i.e. F C {AN X : A € A} for some X C [m)].

The first forbidden configuration result was obtained independently by Sauer [6], Perles, Shelah [7],
Vapnik and Chervonenkis [8]. When F is the k x 2¥ (0, 1)-matrix with all possible distinct columns they
showed that forb(m, F') = Zi:ol (). For a general k-row matrix F, Fiiredi obtained an O(m*) upper
bound on forb(m, F'), but it seems hard to determine the order of magnitude of forb(m, F') for each F.
This was achieved when F' has 2 rows by Anstee, Griggs and Sali [2] and for 3 rows by Anstee and Sali
[3], but is open in general.

It is not hard to see that if F' consists of a single column with s 0’s and ¢ 1’s then forb(m, F) is
@(mmax{s’lﬂtfl}). In this paper we solve the problem when F' has two columns. Let Fj,.q be the
(a+ b+ c+d) x2(0,1)-matrix which has a rows of [11], b rows of [10], ¢ rows of [01], d rows of [00].
Then forb(m, Fupea) = fm(a, b, ¢, d) as defined above.

In [3] a conjecture was made for the asymptotic behaviour of forb(m, F') as a function of m and F. In
particular, a restricted set of constructions of simple matrices were described in [3] that were conjectured
to predict the asymptotics of forb(m, F'). These were used in this paper to predict the asymptotics in
Theorem 1 as well as to provide construction. This is further evidence for the conjecture in [3].

Our key tool is a strong stability version of the Complete Intersection Theorem of Ahlswede and
Khachatrian [1], which is of independent interest. Strong stability results have been employed with suc-
cess by the second author, for example in [4],[5]. First we recall some notation. Let numbers k, 71,72 be
given and suppose G and H are disjoint sets with |G| = k — ry + 2. We define Z" .. on the pair (H,G)
to be the family consisting of all sets of size k in G U H that intersect G in at least k — 1 = |G| — 72
points. Note that any two sets in Ifl ., have atleast |G| —2ry = k —7; —rg points in common, i.e. IfNZ
is (k — r)-intersecting, where r = r1 + 5.

We also define ]:7]51,7"2 on the pair (H, G) to be the family consisting of all sets of size k in G U H that
intersect G in exactly k — ry = |G| — 2 points. Clearly this is a subsystem of Z¥ . and |ZF , \FF .|
is of a lower order of magnitude than |Z} .| and |7 . |. In particular, if the systems are defined on the
ground set [m] with k = ©(m) then |ZF, | | and |F} ,, | are ©(m"), whereas [Z} , \FF | < m"2
The Complete Intersection Theorem, conjectured by Frankl, and proved by Ahlswede and Khachatrian
[1], is that any k-uniform, (k—r)-intersecting family of maximum size on a given ground set is isomorphic
to I,’f;pm, for some 0 < p < r, which depends on the size of the ground set. We prove the following
result.

Theorem 2 Suppose A is a k-uniform (k — r)-intersecting set system on [m] of size at least (5r)%"m" 1.

Then A C I,’?_p,pfor some 0 < p <r.

We use this theorem in our proofs of the upper bounds in Theorem 1 in cases where A is a k-uniform
(k — r)-intersecting set system satisfying some additional properties. If |.4| is small, we can ignore it for
the purposes of upper bounds. If |.A] is large enough to matter for the upper bounds, we can use the fact
that A C Iff,p’p to deduce structure in A4 (e.g. the partition G, H above) which we can exploit in our
proofs.
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