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Decomposable graphs and
definitions with no quantifier alternation
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Let D(G) be the minimum quantifier depth of a first order sentence ® that defines a graph G up to isomorphism in
terms of the adjacency and the equality relations. Let Do (G) be a variant of D(G) where we do not allow quantifier
alternations in ®. Using large graphs decomposable in complement-connected components by a short sequence of
serial and parallel decompositions, we show examples of G on n vertices with Do(G) < 2log* n + O(1). On the
other hand, we prove a lower bound Do(G) > log* n — log* log" n — O(1) for all G. Here log* n is equal to the
minimum number of iterations of the binary logarithm needed to bring n below 1.
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1 Introduction

Given a finite graph G, how succinctly can we describe it using first order logic and the laconic language
consisting of the adjacency and the equality relations? A first order sentence ® defines G if ® is true
precisely on graphs isomorphic to G. All natural succinctness measures of ® are of interest: the length
L(®) (a standard encoding of ® is supposed), the quantifier depth D(®) which is the maximum number
of nested quantifiers in ®, and the width W (®) which is the number of variables used in ® (different
occurrences of the same variable are not counted). All the three characteristics inherently arise in the
analysis of the computational problem of checking if a ® is true on a given graph [3]. They give us a small
hierarchy of descriptive complexity measures for graphs: L(G) (resp. D(G), W(Q)) is the minimum
L(®) (resp. D(®), W(®)) of a ® defining G. These graph invariants will be referred to as the logical
length, depth, and width of G. We have W (G) < D(G) < L(G). The former number is of relevance
for graph isomorphism testing, see [2]. W (G) and D(G) admit a purely combinatorial characterization
in terms of the Ehrenfeucht game, see [2, 8].

We here address the logical depth of a graph. We focus on the following general question: How do
restrictions on logic affect the descriptive complexity of a graph? Call a first order sentence ® to be
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a-alternation if it contains negations only in front of relation symbols and every sequence of nested quan-
tifiers in ® has at most a quantifier alternations. Let D,(G) denote a variant of D(G) for a-alternation
defining sentences, so D(G) < D,11(G) < D4(G). The logic of 0-alternation sentences is most restric-
tive and provably weaker than the unbounded first order logic. Whereas the problem of deciding if a first
order sentence is satisfiable by some graph is unsolvable, it becomes solvable if restricted to O-alternation
sentences (the latter due to Ramsey’s logical work [7] founding the combinatorial Ramsey theory).

It is not hard to observe that Do(G) < n + 1 where n denotes the number of vertices in G. This
bound is in general best possible as D(K,,) = n + 1. Nevertheless, it admits a non-obvious improvement
under a rather small restriction on the automorphism group of G. If the latter does not contain any
transposition of two vertices, then D1 (G) < (n + 5)/2, see [6]. No sublinear improvement is possible
because of the sequence of asymmetric graphs with W(G) = Q(n) constructed in [2]. In [4] we prove
that D(G) = log, n — O(log, log, n) and Do(G) < (24 o(1)) log, n for almost all G.

After obtaining these worst-case and average-case results, we undertake a “best-case” analysis in [5].
We define the succinctness function ¢(n) = min {D(G) : G has order n} and show that its values may
be superrecursively small if compared to n: f(g(n)) > n for no recursive f. A weaker but still surprising
succinctness result is also obtained for the fragment of first order logic with no quantifier alternation. Let
go(n) = min {Dy(G) : G has order n}.

Theorem 1 go(n) < 2log™ n + O(1) for infinitely many n.

In [5] this theorem is proved by considering G in a certain class of asymmetric trees and estimating
Dy(G) in terms of the radius of a tree. We here reprove this result by showing the same definability
phenomenon in a different class of graphs. We consider G in a class of graphs with small complement-
connected induced subgraphs and estimate Dy (G) in terms of the number of the serial and parallel de-
compositions [1] decomposing G in the complement-connected components.

We also present a new result complementing Theorem 1.

Theorem 2 go(n) > log™ n — log* log" n — O(1) for all n.

As a consequence, ¢o(n) < f(g(n)) for no recursive f, which also shows a superrecursive gap between
the graph invariants D(G) and Dy(G).

2 Definitions

We use the following notation: V (G) is the vertex set of a graph G; diam G is the diameter of G; G is the
complement of G; G LI H is the disjoint union of graphs G and H; G C H means that G is isomorphic to
an induced subgraph of H (we will say that G is embeddable in H); G C H means that G is isomorphic
to the union of some of the connected components of H.

We call G complement-connected if both G and G are connected. An inclusion-maximal complement-
connected induced subgraph of G will be called a complement-connected component of G or, for brevity,
cocomponent of G. Cocomponents have no common vertices and partition V(G).

The decomposition of G, denoted by Dec G, is the set of all connected components of G (this is a set
of graphs, not just isomorphism types). Furthermore, given ¢ > 0, we define the depth i decomposition of
G by Deco G = Dec G and Decit1 G = Upe pee, ¢ Dec F. Note that P; = {V(F) : F € Dec; G}isa
partition of V(G) and that P, refines P;. The depth i environment of a vertex v € V(G), denoted by
Env;(v), is the F' in Dec; G containing v.
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We define the rank of a graph G, denoted by rk G, inductively as follows: (1) If G is complement-
connected, then 7k G = 0. (2) If G is connected but not complement-connected, then 7k G = vk G. (3)
If G is disconnected, then 7 G = 1 + max {rk F' : F' € Dec G}. In other terms, 7k G is the smallest k
such that P11 = Py, or such that Py, consists of V (F') for all cocomponents F' of G.

In the Ehrenfeucht game on two disjoint graphs G and H two players, Spoiler and Duplicator, alternat-
ingly select vertices of the graphs, one vertex per move. Spoiler starts and is always free to move in any
of G and H; Then Duplicator must choose a vertex in the other graph. Let z; € V(G) and y; € V(H)
denote the vertices selected by the players in the ¢-th round. Duplicator wins the k-round game if the
component-wise correspondence between 1, ...,z and y1, . ..,y is a partial isomorphism from G to
H; Otherwise the winner is Spoiler. In the 0-alternation game Spoiler plays all the game in the same
graph he selects in the first round.

Assume G % H. Let D(G, H) (resp. Dy(G, H)) denote the minimum D(®P) over (resp. 0-alternation)
first order sentences ® that are true on one of the graphs and false on the other. The Ehrenfeucht the-
orem relates D(G, H) and the length of the Ehrenfeucht game on G and H. We will use the fol-
lowing version of the theorem: Dy (G, H) is equal to the minimum k such that Spoiler has a winning
strategy in the k-round O-alternation Ehrenfeucht game on G and H. It is also useful to know that
Dy(G) =max{Dy(G,H) : H % G}.

We define the tower-function by Tower (0) = 1 and Tower (i) = 210Wer (i=1) for each subsequent i.

3 Upper bound: Proof of Theorem 1

Lemma 1 Consider the Ehrenfeucht game on graphs G and H. Let x,2' € V(Q), y,y € V(H) and
assume that the pairs x,y and ¥’y are selected by the players in the same rounds. Furthermore, assume
that Envi(z) # Env;(2"), Envi(y) = Envi(y'), and diam Env;(y) < 2 for every i < l. Then Spoiler
can win in at most | + 1 rounds (1 rounds if G is connected), playing all the time in H.

Proof: We proceed by induction on [. The base case is [ = 0 if G is disconnected and [ = 1 if G is
connected. If y and 3’ are adjacent in Env,(y), Duplicator has already lost. Otherwise, Spoiler uses the
fact that diam Env,(y) = 2 and selects 3" adjacent in Env;(y) to both y and y'. Duplicator cannot do so
with any 2’ because x and 2’ are in different components of G'if [ = 0 or G if [ = 1.

Assume that > 1. Let 0 < m < [ be the minimum number such that ' ¢ Fnv,,(x). If m < [, Spoiler
wins in the next m 4+ 1 < [ moves by induction. If m = [, Spoiler uses the same trick as in the base case
and forces Duplicator to make a move z” outside Env;_1(z). By the induction hypothesis, Spoiler needs
[ extra moves to win. a

As long as Duplicator avoids meeting the conditions of Lemma 1 (in particular, selects ' € Env;(x)
whenever Spoiler selects iy’ € Env;(y)), we will say that she bewares of the environment threat.

Let rk G = k. We call G uniform if Dec,_1 G contains no complement-connected graph, that is, every
cocomponent appears in Decy G and no earlier. We call G inclusion-free if the following two conditions
are true for every i < k: (1) For any K € Dec; G, K contains no isomorphic connected components. (2)
If two elements K and M of Dec; G are non-isomorphic, then neither K = M nor M C K.

Lemma 2 (Main Lemma) Let G be a uniform inclusion-free graph. Suppose that every cocomponent of
G has exactly c vertices. Then Do(G) <21k G+ c+ 1.
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Proof: Let vk G = k. Fix a graph H 2 G. We will design a strategy allowing Spoiler to win the 0-
alternation Ehrenfeucht game on G and H in at most 2k + ¢ + 1 moves. Since Do (G) = Do(G), without
loss of generality we will assume that G is connected. Since the case of £k = 0 is trivial, we will also
assume that £ > 1.

Case 1: H has a cocomponent C non-embeddable in any cocomponent of G. If C has no more than
c vertices, Spoiler selects all C. Otherwise he selects ¢ + 1 vertices spanning a complement-connected
subgraph in C (it is not hard to show that this is always possible). If Duplicator’s response A is within
a cocomponent of G, then C' % A by the assumption. Otherwise A is not complement-connected and
Duplicator loses anyway.

In the sequel we will assume that Duplicator bewares of the environment threat during all game.

Case 2: G C H orthere arel < k and A € Dec; G properly embeddable in some B € Dec; H, and
not Case 1. Spoiler playsin H. If G C H,set A =G, B = H,and! = 0. Let Hy be a copy of A in
B. At the first move Spoiler selects an arbitrary yo € V(B) \ V(Hp). Denote Duplicator’s response in G
by xg and set Gy = Env;(zp). From now on Spoiler plays in Hy. Since we are not in Case 1, B is not a
cocomponent of H and hence diam B < 2. Since Duplicator is supposed to beware of the environment
threat, from now on she is forced to play in Gg.

Subcase 2.1: Gy # Hy. Assume that [ < k (the case of [ = k will be covered by the last phase of
the strategy). Since G and Hj are non-isomorphic copies of elements of Dec; G and G is inclusion-free,
Spoiler is able to make his next choice y; in some Hy, € Dec Hy absent in Dec G. Denote Duplicator’s
response in G by x; and set G; = Env;yi(x1). Note that G; and H; are non-isomorphic copies of
elements of Dec;11 G. Playing in the same fashion in the subsequent k¥ — [ — 1 rounds, Spoiler finally
achieves the players’ moves in some non-isomorphic Gj,_; € Decy. G and Hj,_;, the latter being a copy of
an element of Decy, G. Both the graphs have c vertices. Now Spoiler selects the ¢ — 1 remaining vertices
of Hj_; and wins whatever Duplicator’s response is.

Subcase 2.2: Gy = Hy. Though the graphs are isomorphic, the crucial fact is that Gy, unlike Hy,
contains a selected vertex. By the definition of an inclusion-free graph, every automorphism of A =
Gy = Hj takes each cocomponent onto itself. Therefore every isomorphism between Gy and Hy matches
cocomponents of these graphs in the same way. Let Y be the counterpart of Envy(zo) in Hy with respect
to this matching. In the second round Spoiler selects an arbitrary y; in Y. Denote Duplicator’s answer by
x1. If 21 € Envg(xp), Spoiler selects all Y and wins. Otherwise there is m < rk A such that Env,,(z1)
in Gy and Env,,(y1) in Hy are non-isomorphic. This allows Spoiler to apply the strategy of Subcase 2.1.

Case 3: Neither Case 1 nor Case 2. Spoiler plays in Gy = G. His first move x is arbitrary. Denote
Duplicator’s response in H by yg and set Hy = Envg(yp). Since we are not in Case 2, Go ¢ Hp. As Gg
is inclusion-free, G has a connected component G; with no isomorphic copy in Hy. Spoiler selects 2
arbitrarily in G;. Let Duplicator respond with y; somewhere in Hy and denote Hy; = Envi(y;). Thus
G1 % H, and G; ¢ Hi, the latter again because we are not in Case 2. In the next round Spoiler again
selects a vertex in a component G5 of G absent in H;. Continuing in the same fashion, Spoiler finally
forces playing the game on some G,, € Dec,, Gy and H,,, € Dec,, Hy with G,,, ¢ H,, under one of
the two terminal conditions: (1) m < k and H,, (or its complement) is a cocomponent of H. (2) m = k.
In the first case note that, as we are not in Case 1, H,, is embeddable in some cocomponent of G (or
its complement) and hence has at most ¢ vertices. Therefore it suffices for Spoiler to select altogether
¢+ 1 vertices in GG,,, to win (recall the assumption that Duplicator bewares of the environment threat and
hence cannot move outside H,,). In the second case GG, is a cocomponent of G and hence has c vertices.
Spoiler selects all G,,. Since Duplicator’s response must be complement-connected, she is forced to play
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within a cocomponent of H,,, and hence loses.

Length of the game. The above strategy allows Spoiler to win in at most £+ ¢ moves under the condition
that Duplicator bewares of the environment threat. If Duplicator ignores this threat, Spoiler needs k + 1
additional moves according to Lemma 1. a

Let Ry consist of all complement-connected graphs of order 5. Assume that R;_; is already specified.
Fix F; to be the family of all ||R;_1|/2]-element subsets of R;_;. Define R; to be the set of the comple-
ments of | |, ¢ G forall Sin F;. Note that R; consists of inclusion-free uniform graphs of rank 7 whose
cocomponents all have 5 vertices. All graphs in R; have the same order; Denote it by N;. Let M; = |R;|.
By the construction,

M = <|_Mi/2J) N \ WE)QM and Ny = [M;/2| Ni > M.

A simple estimation shows that N; > Tower (i — O(1)). To complete the proof of Theorem 1, choose G;
in R;. Using Main Lemma, we obtain qo(V;) < Do(G;) < 2i + 6 < 2log™ N; + O(1).

4 Lower bound: Proof-sketch of Theorem 2
Let L, (G) denote the minimum length of an a-alternation sentence defining G.
Lemma 3 L,(G) < Tower (D,(G) +log" D,(G) + O(1)).

An analog of this lemma for L(G) and D(G) appears in [5] but its proof does not work under restrictions
on the alternation number. The proof of Lemma 3 will appear in the full version.

Given n, denote & = go(n) and fix a graph G on n vertices such that Do(G) = k. By Lemma 3,
G is definable by a O-alternation ® of length at most Tower (k + log™ k + O(1)). Using the standard
reduction, we convert ¢ to an equivalent prenex 3*V*-sentence ¥ (i.e. existential quantifiers in ¥ all
precede universal quantifiers). Since the reduction does not increase the total number of quantifiers,
D(¥) < L(®). It is well known and easy to prove that, if a prenex 3*V*-sentence W is true on some
structure, then it is true on some structure of order at most D(¥). Since the ¥ is true only on G, we have
n < D(¥) < L(®) < Tower (k + log™ k + O(1)), which proves the theorem.
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