Fast separation in a graph with an excluded minor ${ }^{\dagger}$

Bruce Reed ${ }^{1}$ and David R. Wood ${ }^{2}$
${ }^{1}$ School of Computer Science, McGill University, Montréal, Canada (breed@cs.mcgill.ca)
${ }^{2}$ Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Barcelona, Spain (david.wood@upc.edu)

Let G be an n-vertex m-edge graph with weighted vertices. A pair of vertex sets $A, B \subseteq V(G)$ is a $\frac{2}{3}$-separation of order $|A \cap B|$ if $A \cup B=V(G)$, there is no edge between $A \backslash B$ and $B \backslash A$, and both $A \backslash B$ and $B \backslash A$ have weight at most $\frac{2}{3}$ the total weight of G. Let $\ell \in \mathbb{Z}^{+}$be fixed. Alon, Seymour and Thomas [J. Amer. Math. Soc. 1990] presented an algorithm that in $\mathcal{O}\left(n^{1 / 2} m\right)$ time, either outputs a K_{ℓ}-minor of G, or a separation of G of order $\mathcal{O}\left(n^{1 / 2}\right)$. Whether there is a $\mathcal{O}(n+m)$ time algorithm for this theorem was left as open problem. In this paper, we obtain a $\mathcal{O}(n+m)$ time algorithm at the expense of $\mathcal{O}\left(n^{2 / 3}\right)$ separator. Moreover, our algorithm exhibits a tradeoff between running time and the order of the separator. In particular, for any given $\epsilon \in\left[0, \frac{1}{2}\right]$, our algorithm either outputs a K_{ℓ}-minor of G, or a separation of G with order $\mathcal{O}\left(n^{(2-\epsilon) / 3}\right)$ in $\mathcal{O}\left(n^{1+\epsilon}+m\right)$ time.

Keywords: graph algorithm, separator, minor

1 Introduction

We consider graphs G that are simple, finite, and undirected. Let $V(G)$ and $E(G)$ denote the vertex and edge sets of G. Let $|G|:=|V(G)|$ and $\|G\|:=|E(G)|$. A separation of G is a pair $\{A, B\}$ of vertex sets $A, B \subseteq V(G)$ such that $A \cup B=V(G)$, and there is no edge with one endpoint in $A \backslash B$ and the other endpoint in $B \backslash A$. The order of $\{A, B\}$ is $|A \cap B|$. The set $A \cap B$ is called a separator of G. A weighting of G is a function $w: V(G) \rightarrow \mathbb{R}^{+}$. Let $w(S):=\sum_{v \in S} w(v)$ for all $S \subseteq V(G)$, and $w(G):=w(V(G))$. We say (G, w) is a weighted graph. A separation $\{A, B\}$ of a weighted graph (G, w) is an α-separation if $w(A \backslash B) \leq \alpha \cdot w(G)$ and $w(B \backslash A) \leq \alpha \cdot w(G)$.

A 'separator theorem' is of the format: for some $0<\alpha<1$ and $0<\epsilon \leq 1$, every graph G from a certain family has an α-separation of order $\mathcal{O}\left(|G|^{1-\epsilon}\right)$. Applications of separator theorems are numerous, and include VLSI circuit layout, approximation algorithms using the divide-and-conquer paradigm, solving sparse systems of linear equations, pebbling games, and graph drawing. See the recent monograph by Rosenberg and Heath [9] for more details.

A seminal theorem due to Lipton and Tarjan [5] states that every weighted planar graph G has a $\frac{2}{3}$ separation of order $\mathcal{O}\left(|G|^{1 / 2}\right)$ that can be computed in $\mathcal{O}(|G|+\|G\|)$ time. This result was generalised

[^0]for graphs with an excluded minor by Alon et al. [1] (see [2, 3, 7] for related results). A graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges, in which case we say that G has an H-minor. The Kuratowski-Wagner Theorem states that a graph is planar if and only if it has no K_{5}-minor and no $K_{3,3}$-minor. An H-model in G is a set of disjoint connected subgraphs $\left\{X_{v}: v \in V(H)\right\}$ indexed by the vertices of H, such that for every edge $v w \in E(H)$, there is an edge $x y \in E(G)$ with $x \in X_{v}$ and $y \in X_{w}$. Clearly G has an H-minor if and only if G has an H-model. We choose to work with H-models rather than H-minors.

Theorem 1 (Alon et al. [1]) There is an algorithm with running time $\mathcal{O}\left((\ell \cdot|G|)^{1 / 2} \cdot(|G|+\|G\|)\right)$ that, given $\ell \in \mathbb{Z}^{+}$and a weighted graph (G, w), either outputs:
(a) a K_{ℓ}-model of G, or
(b) a $\frac{2}{3}$-separation of (G, w) of order at most $\ell^{3 / 2} \cdot|G|^{1 / 2}$.

Suppose that ℓ is fixed. It follows from a result of Mader [6] (see Theorem 3) that Theorem 1 can be implemented in $\mathcal{O}\left(|G|^{3 / 2}+\|G\|\right)$ time. Alon et al. [1] left as an open problem whether linear time is possible. The main result of this paper is the following partial answer to this question. We obtain a linear running time at the expense of a slightly larger separator (and a larger dependence on ℓ). Moreover, our algorithm exhibits a tradeoff between running time (ranging from $\mathcal{O}(n)$ to $\mathcal{O}\left(n^{3 / 2}\right)$) and the order of the separator (ranging from $\mathcal{O}\left(n^{2 / 3}\right)$ to $\mathcal{O}\left(n^{1 / 2}\right)$).
Theorem 2 There is an algorithm with running time $\mathcal{O}\left(2^{\left(3 \ell^{2}+7 \ell-3\right) / 2} \cdot|G|^{1+\epsilon}+\ell \cdot\|G\|\right)$ that, given $\epsilon \in\left[0, \frac{1}{2}\right], \ell \in \mathbb{Z}^{+}$, and a weighted graph (G, w), either outputs:
(a) a $K_{\ell \text {-model of } G \text {, or }}$
(b) a $\frac{2}{3}$-separation of (G, w) of order at most $2^{\left(\ell^{2}+3 \ell+1\right) / 2} \cdot|G|^{(2-\epsilon) / 3}$.

Note that for applications to divide-and-conquer algorithms a separation of order $\mathcal{O}\left(|G|^{1-\epsilon}\right)$, for some constant $\epsilon>0$, is all that is needed.

The idea behind the proof of Theorem 2 is simple. We now outline the proof for fixed ℓ and with $\epsilon=0$. Suppose that in $\mathcal{O}(|G|+\|G\|)$ time, we can find a partition of $V(G)$ into $|G|^{2 / 3}$ connected subgraphs $\left\{S_{1}, S_{2}, \ldots, S_{|G|^{2 / 3}}\right\}$, each containing $\mathcal{O}\left(|G|^{1 / 3}\right)$ vertices. Let H be the weighted graph obtained from G by contracting each S_{i} to a vertex v_{i} with weight $w\left(v_{i}\right)=w\left(S_{i}\right)$. Then apply Theorem 1 to H to either obtain a K_{ℓ}-model in H which defines a K_{ℓ}-model in G, or a $\frac{2}{3}$-separation $\{A, B\}$ of H with order $\mathcal{O}\left(|H|^{1 / 2}\right)=\mathcal{O}\left(|G|^{1 / 3}\right)$, in which case $\left\{\bigcup\left\{S_{i}: v_{i} \in A\right\}, \bigcup\left\{S_{i}: v_{i} \in B\right\}\right\}$ a is a $\frac{2}{3}$-separation of G with order $\mathcal{O}\left(|G|^{2 / 3}\right)$. The running time is $\mathcal{O}\left(|H|^{3 / 2}+\|H\|\right) \subseteq \mathcal{O}(|G|+\|G\|)$. The proof of Theorem 2 is actually a little different from this outline. In particular, the subgraphs S_{i} will not necessarily be connected, but we will still be able to convert the output from Theorem 1 applied to H to the desired output for G. By relaxing the connectivity condition, we are able to prove that an appropriate partition exists.

We will use the following notation for a graph G. For $x \in V(G)$, let $N(x):=\{y \in V(G): x y \in$ $E(G)\}$. For a subgraph X of G, let $N(X):=\bigcup\{N(x) \backslash X: x \in X\}$. Where there is no confusion, a set of vertices $S \subseteq V(G)$ will also refer to the subgraph of G induced by S.

2 Mader's Theorem

This section contains a number of easily proved results-see the full version of the paper for details. We start with an algorithmic version of a theorem of Mader [6] (cf. [8]).

Theorem 3 Given a graph G with $\|G\| \geq 2^{\ell-3} \cdot|G|\left(\right.$ for some $\left.\ell \in \mathbb{Z}^{+}\right)$, a K_{ℓ}-model of G can be computed in $\mathcal{O}(\ell(|G|+\|G\|))$ time.

Note that if we ignore the running time, Theorem 3 is far from best possible. Kostochka [4] and Thomason [10] independently proved that if $\|G\| \in \Omega(\ell \sqrt{\log \ell} \cdot|G|)$ then G has a K_{ℓ}-model. Theorem 3 implies the following slightly faster version of Theorem 1 (for fixed ℓ)
Theorem 4 There is an algorithm with running time $\mathcal{O}\left(2^{2 \ell} \cdot|G|^{3 / 2}+\ell \cdot\|G\|\right)$ that, given $\ell \in \mathbb{Z}^{+}$and a weighted graph (G, w), either outputs:
(a) a K_{ℓ}-model of G, or
(b) a $\frac{2}{3}$-separation of (G, w) of order at most $\ell^{3 / 2} \cdot|G|^{1 / 2}$.

A k-clique of G is a (not necessarily maximal) set of k pairwise adjacent vertices of G. If every subgraph of G has a vertex of degree at most d, then G is d-degenerate. For example, Theorem 3 implies that a graph with no K_{ℓ}-minor is $2^{\ell-2}$-degenerate. It is easily proved that a d-degenerate graph G with no k-clique has less than $d^{k-1} \cdot|G|$ cliques. Hence a graph G with no K_{ℓ}-minor has less than $2^{(\ell-2)(\ell-1)} \cdot|G|$ cliques. For an algorithm, we have the following result.
Lemma 1 Given a graph G with no k-clique and at least $2^{(\ell-2)(k-1)} \cdot|G|$ cliques (for some $\ell \in \mathbb{Z}^{+}$), a $K_{\ell \text {-minor }}$ of G can be computed in $\mathcal{O}(\ell(|G|+\|G\|))$ time.

3 Proof of Theorem 2

Let G be a graph. Let \mathcal{A} be a partition of $V(G)$. Let H be the graph obtained from G by collapsing each part $S \in \mathcal{A}$ to a single vertex v, and replacing parallel edges by a single edge. Denote $H_{v}:=S$. We say $\left\{H_{v}: v \in V(H)\right\}$ is an H-partition of G. Furthermore, $\left\{H_{v}: v \in V(H)\right\}$ is a connected H-partition of G if $v w \in E(H)$ if and only if there is an edge of G between every component of H_{v} and every component of H_{w}. We prove the following lemma.
Lemma 2 There is an algorithm with running time $\mathcal{O}\left(2^{2 \ell} \cdot|G|+\|G\|\right)$ that, given $\ell, k \in \mathbb{Z}^{+}$and a graph G, outputs a connected H-partition of G such that either:
(a) H has a K_{ℓ}-model (which is also output), or
(b) $|H| \leq 2^{\ell^{2}+\ell-1} \cdot|G| \cdot k^{-1}$, and $\left|H_{x}\right|<2 k$ for all $x \in V(H)$.

Proof of Theorem 2 assuming Lemma 2: Apply Lemma 2 with $k=\left\lfloor|G|^{(1-2 \epsilon) / 3}\right\rfloor$. First suppose that Lemma 2 outputs a K_{ℓ}-model $\left\{S_{1}, S_{2}, \ldots, S_{\ell}\right\}$ of H. Thus each S_{i} is a connected subgraph of H. Choose a connected component Z_{v} of H_{v} for each $v \in V(H)$. Let $T_{i}:=\bigcup\left\{Z_{v}: v \in S_{i}\right\}$. Then $\left\{T_{1}, T_{2}, \ldots, T_{\ell}\right\}$ is a K_{ℓ}-model of G.

Otherwise $|H| \leq 2^{\ell^{2}+\ell-1} \cdot|G|^{2(1+\epsilon) / 3}$, and $\left|H_{x}\right|<2|G|^{(1-2 \epsilon) / 3}$ for all $x \in V(H)$. Let $w(v):=w\left(H_{v}\right)$ for all $v \in V(H)$. Apply Theorem 4 to (H, w). The running time is
$\mathcal{O}\left(2^{2 \ell} \cdot|H|^{3 / 2}+\ell \cdot\|H\|\right) \subseteq \mathcal{O}\left(2^{2 \ell} \cdot\left(2^{\ell^{2}+\ell-1} \cdot|G|^{2(1+\epsilon) / 3}\right)^{3 / 2}+\ell \cdot\|G\|\right) \subseteq \mathcal{O}\left(2^{\left(3 \ell^{2}+7 \ell-3\right) / 2} \cdot|G|^{1+\epsilon}+\ell \cdot\|G\|\right)$.
We either obtain a K_{ℓ}-model of H, or a $\frac{2}{3}$-separation of H with order at most $\ell^{3 / 2} \cdot|H|^{1 / 2}$. In the first case, G has a K_{ℓ}-model as proved above.

Now suppose that we obtain a $\frac{2}{3}$-separation $\{A, B\}$ of (H, w) with order

$$
|A \cap B| \leq \ell^{3 / 2} \cdot|H|^{1 / 2} \leq \ell^{3 / 2} \cdot\left(2^{\ell^{2}+\ell-1}|G|^{2(1+\epsilon) / 3}\right)^{1 / 2} \leq 2^{\left(\ell^{2}+3 \ell-1\right) / 2} \cdot|G|^{(1+\epsilon) / 3}
$$

Let $X:=\bigcup\left\{H_{v}: v \in A\right\}$ and $Y:=\bigcup\left\{H_{v}: v \in B\right\}$. Then $\{X, Y\}$ is a separation of G with order
$|X \cap Y|=\left|\bigcup\left\{H_{v}: v \in A \cap B\right\}\right| \leq 2^{\left(\ell^{2}+3 \ell-1\right) / 2} \cdot|G|^{(1+\epsilon) / 3} \cdot 2|G|^{(1-2 \epsilon) / 3} \leq 2^{\left(\ell^{2}+3 \ell+1\right) / 2} \cdot|G|^{(2-\epsilon) / 3}$.
We have $w(X \backslash Y)=w(A \backslash B) \leq \frac{2}{3} w(H)=\frac{2}{3} w(G)$. Similarly $w(B \backslash A) \leq \frac{2}{3} w(G)$.

Proof of Lemma 2:

Step 1: Using a breadth-first search algorithm, compute a maximal set \mathcal{A} of connected subgraphs of G such that $|S|=k$ for all $S \in \mathcal{A}$. Let \mathcal{B} be the set of connected components of $G \backslash \bigcup\{S \in \mathcal{A}\}$. Then $\mathcal{A} \cup \mathcal{B}$ is a partition of $V(G)$, and there is no edge of G between distinct $T_{1}, T_{2} \in \mathcal{B}$. Note that $|T|<k$ for all $T \in \mathcal{B}$, as otherwise T would contain a connected subgraph X with $|X|=k$, which could be added to \mathcal{A}.

Step 2: Let H be the graph obtained from G by contracting each set $S \in \mathcal{A} \cup \mathcal{B}$ into a single vertex v with $H_{v}:=S$, and replacing parallel edges by a single edge. Since each $S \in \mathcal{A} \cup \mathcal{B}$ is connected in G, $\left\{H_{v}: v \in V(H)\right\}$ is a connected H-partition of G. Let $A:=\left\{v \in V(H): H_{v} \in \mathcal{A}\right\}$ and $B:=\{v \in$ $\left.V(H): H_{v} \in \mathcal{B}\right\}$. A vertex v of H is big if $\left|H_{v}\right| \geq k$. A vertex v of H is small if $\left|H_{v}\right|<k$. Observe that every vertex in A is big, B is an independent set of H, and every vertex in B is small. Partition $B=C \cup D \cup E$, where $C:=\left\{v \in B: \operatorname{deg}_{H}(v) \geq 2^{\ell-2}\right\}, D:=\left\{v \in B: \ell-1 \leq \operatorname{deg}_{H}(v)<2^{\ell-2}\right\}$, and $E:=\left\{v \in B: \operatorname{deg}_{H}(v) \leq \ell-2\right\}$.

Step 3: Suppose that $|C| \geq|A|$. Then the subgraph $C \cup A$ of H has at least $2^{\ell-2} \cdot|C|$ edges and at most $2|C|$ vertices. By Theorem 3, a K_{ℓ}-model of $C \cup A$ can be computed in $\mathcal{O}(\ell \cdot|G|)$ time. We now assume that $|C|<|A|$.

Step 4: For each vertex $v \in D \cup E$, if there is a pair $x, y \in A$ of distinct neighbours of v, such that $\{x, y\}$ has not been assigned any vertex in $D \cup E$, then assign v to $\{x, y\}$. This step can be implemented in $\mathcal{O}\left(2^{2 \ell} \cdot|G|\right)$ time, since each vertex in $D \cup E$ has degree at most $2^{\ell-2}$.

Suppose that there is a vertex $v \in D$ that is not assigned. Let the neighbourhood of v be $\left\{x_{1}, x_{2}, \ldots, x_{d}\right\}$. Then $d \geq \ell-1$. Thus for all $1 \leq i<j \leq d$, there is a distinct vertex $v_{i, j}$ that is assigned to the pair $\left\{x_{i}, x_{j}\right\}$, and $v_{i, j}$ is adjacent to both x_{i} and x_{j}. In the graph obtained from H by contracting each edge $x_{i} v_{i, j}$, the subgraph $\left\{x_{1}, x_{2}, \ldots, x_{d}, v\right\}$ is a clique on at least ℓ vertices. Thus H has a K_{ℓ}-model. We now assume that every vertex in D is assigned.

Let E^{*} be the set of assigned vertices in E. Consider the graph obtained from $A \cup D \cup E^{*}$ by contracting the edge $v x$ for each $v \in D \cup E^{*}$ assigned to the pair $\{x, y\}$. This graph has $|A|$ vertices and at least $|D|+\left|E^{*}\right|$ edges. Thus if $|D|+\left|E^{*}\right| \geq 2^{\ell-3} \cdot|A|$, then by Theorem $3, H$ has a K_{ℓ}-model that can be computed in $\mathcal{O}(\ell \cdot|G|)$ time. We now assume that $|D|+\left|E^{*}\right|<2^{\ell-3} \cdot|A|$.

Step 5: Partition $E \backslash E^{*}=\bigcup\left\{P_{1}, P_{2}, \ldots, P_{s}\right\}$ such that for all $u, v \in E \backslash E^{*}$, we have $N(u)=N(v)$ if and only if both $u, v \in P_{i}$ for some $1 \leq i \leq s$. For all $1 \leq i \leq s$, partition $P_{i}=\bigcup\left(P_{i, 1}, P_{i, 2}, \ldots, P_{i, t_{i}}\right)$ such that for all $1 \leq j \leq t_{i}-1, k \leq\left|\bigcup\left\{H_{v}: v \in P_{i, j}\right\}\right|<2 k$, and $\left|\bigcup\left\{H_{v}: v \in P_{i, t_{i}}\right\}\right|<k$. This is possible since $\left|H_{v}\right|<k$ for all $v \in P_{i}$. Collapse each set $P_{i, j}$ into a single vertex $p_{i, j}$ in H, whose associated subgraph in G is $H_{p_{i, j}}:=\bigcup\left\{H_{v}: v \in P_{i, j}\right\}$. Since the vertices in $P_{i, j}$ have the same neighbourhood, $\left\{H_{v}: v \in V(H)\right\}$ remains a connected partition of G. Let $E_{\text {big }}=\left\{p_{i, j}: 1 \leq i \leq s, 1 \leq\right.$ $\left.j \leq t_{i}-1\right\}$ and $E_{\text {small }}=\left\{p_{i, t_{i}}: 1 \leq i \leq s\right\}$. Then every vertex in $E_{\text {big }}$ is big and every vertex in $E_{\text {small }}$ is small.

Suppose that $\left|E_{\text {small }}\right| \geq 2^{\ell^{2}} \cdot|A|$. Let X be the graph obtained from A by adding a clique on $N(v)$ for each vertex $v \in E_{\text {small }}$. Since distinct vertices in $E_{\text {small }}$ have distinct neighbourhoods, this process adds at least $\left|E_{\text {small }}\right| \geq 2^{\ell^{2}} \cdot|A|$ cliques. Thus by Lemma 1, a K_{ℓ}-model of X can be computed in $\mathcal{O}(|G|)$ time. For every edge $x_{i} x_{j}$ in this K_{ℓ}-model that is in X but not in A, we have $x_{i}, x_{j} \in N(v)$ for some $v \in E_{\text {small }}$. Since v is not assigned, there is a vertex $u \in D \cup E^{*}$ assigned to $\left\{x_{i}, x_{j}\right\}$, and u is adjacent to both x_{i} and x_{j}. Since u is not in the K_{ℓ}-model, we can include u in the connected subgraph of the K_{ℓ}-model that contains x_{i} or x_{j}, and we obtain a K_{ℓ}-model in $A \cup D \cup E^{*}$ (in particular, without the edge $x_{i} x_{j}$). Now assume that $\left|E_{\text {small }}\right|<2^{\ell^{2}} \cdot|A|$.

Step 6: We have now partitioned $V(H)$ into sets $A \cup E_{\text {big }}$ of big vertices, and sets $C \cup D \cup E^{*} \cup E_{\text {small }}$ of small vertices. We have proved that $|C|<|A|,|D|+\left|E^{*}\right|<2^{\ell-3} \cdot|A|$, and $\left|E_{\text {small }}\right|<2^{\ell^{2}} \cdot|A|$. Thus the number of small vertices is less than $\left(1+2^{\ell-3}+2^{\ell^{2}}+1\right) \cdot|A| \leq 2^{\ell^{2}+\ell-2} \cdot|A|$. By definition, the number of big vertices in H is at most $|G| \cdot k^{-1}$. In particular, $|A| \leq|G| \cdot k^{-1}$. Thus $|H| \leq 2^{\ell^{2}+\ell-1} \cdot|G| \cdot k^{-1}$. Moreover, every $\left|H_{v}\right|<2 k$ for every vertex $v \in V(H)$.

References

[1] Noga Alon, Paul Seymour, and Robin Thomas. A separator theorem for nonplanar graphs. J. Amer. Math. Soc., 3(4):801-808, 1990.
[2] Eric D. Demaine and MohammadTaghi Hajiaghayi. Graphs excluding a fixed minor have grids as large as treewidth, with combinatorial and algorithmic applications through bidimensionality. In Proc. 16th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA '05). ACM, 2005.
[3] Martin Grohe. Local tree-width, excluded minors, and approximation algorithms. Combinatorica, 23(4):613-632, 2003.
[4] Alexandr V. Kostochka. Lower bound of the Hadwiger number of graphs by their average degree. Combinatorica, 4(4):307-316, 1984.
[5] Richard J. Lipton and Robert E. Tarjan. A separator theorem for planar graphs. SIAM J. Appl. Math., 36(2):177-189, 1979.
[6] Wolfgang Mader. Homomorphieeigenschaften und mittlere Kantendichte von Graphen. Math. Ann., 174:265-268, 1967.
[7] Serge Plotkin, Satish Rao, and Warren D. Smith. Shallow excluded minors and improved graph decompositions. In Proc. 5th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA '94), pp. 462-470. ACM, 1994.
[8] Neil Robertson and Paul D. Seymour. Graph minors. XIII. The disjoint paths problem. J. Combin. Theory Ser. B, 63(1):65-110, 1995.
[9] Arnold L. Rosenberg and Lenwood S. Heath. Graph separators, with applications. Frontiers of Computer Science. Kluwer, 2001.
[10] Andrew Thomason. An extremal function for contractions of graphs. Math. Proc. Cambridge Philos. Soc., 95(2):261-265, 1984.

[^0]: ${ }^{\dagger}$ Research of B.R. is supported by NSERC. Research of D.W. is supported by the Government of Spain grant MEC SB2003-0270.

