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Fast separation in a graph with an excluded
minor
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Let G be an n-vertex m-edge graph with weighted vertices. A pair of vertex sets A, B C V(G) is a %-separation of

order |[ANB|if AUB = V(G), there is no edge between A\ B and B\ A, and both A\ B and B\ A have weight at
most % the total weight of G. Let £ € Z™ be fixed. Alon, Seymour and Thomas [J. Amer. Math. Soc. 1990] presented
an algorithm that in O(n'/?m) time, either outputs a K ,-minor of G, or a separation of G of order O(n'/?). Whether
there is a O(n + m) time algorithm for this theorem was left as open problem. In this paper, we obtain a O(n + m)
time algorithm at the expense of (’)(nz/ 3) separator. Moreover, our algorithm exhibits a tradeoff between running
time and the order of the separator. In particular, for any given € € [0, %}, our algorithm either outputs a K-minor of
G, or a separation of G with order O(n?~9/3) in O(n'** 4 m) time.
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1 Introduction

We consider graphs G that are simple, finite, and undirected. Let V(G) and E(G) denote the vertex and
edge sets of G. Let |G| := |V (G)| and ||G|| := |E(G)|. A separation of G is a pair { A, B} of vertex sets
A, B C V(G) such that AU B = V(G), and there is no edge with one endpoint in A \ B and the other
endpoint in B\ A. The order of { A, B} is |AN B|. The set AN B is called a separator of G. A weighting
of Gisafunctionw : V(G) — R*. Letw(S) := 3 cgw(v) forall S € V(G), and w(G) := w(V(G)).
We say (G, w) is a weighted graph. A separation { A, B} of a weighted graph (G, w) is an a-separation
ifw(A\ B) <o w(G)andw(B\ A) < a-w(q).

A ‘separator theorem’ is of the format: for some 0 < o < 1 and 0 < € < 1, every graph G from a
certain family has an a-separation of order O(|G|*~¢). Applications of separator theorems are numerous,
and include VLSI circuit layout, approximation algorithms using the divide-and-conquer paradigm, solv-
ing sparse systems of linear equations, pebbling games, and graph drawing. See the recent monograph by
Rosenberg and Heath [9] for more details.

A seminal theorem due to Lipton and Tarjan [5] states that every weighted planar graph G has a %-
separation of order O(|G|'/2) that can be computed in O(|G| + ||G/||) time. This result was generalised

TResearch of B.R. is supported by NSERC. Research of D.W. is supported by the Government of Spain grant MEC SB2003-0270.
1365-8050 (©) 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France



46 Bruce Reed and David R. Wood

for graphs with an excluded minor by Alon ef al. [1] (see [2, 3, 7] for related results). A graph H is a
minor of a graph G if H can be obtained from a subgraph of G by contracting edges, in which case we
say that G has an H-minor. The Kuratowski-Wagner Theorem states that a graph is planar if and only
if it has no Ks-minor and no K33 3-minor. An H-model in G is a set of disjoint connected subgraphs
{X, : v € V(H)} indexed by the vertices of H, such that for every edge vw € F(H), there is an edge
zy € E(G) withz € X, and y € X,,. Clearly G has an H-minor if and only if G has an H-model. We
choose to work with H-models rather than H-minors.

Theorem 1 (Alon et al. [1]) There is an algorithm with running time O((£ - |G|)*/? - (|G| + ||G|))) that,
given £ € Z and a weighted graph (G, w), either outputs:

(a) a Ky-model of G, or

(b) a 2-separation of (G, w) of order at most 3/2. |GV

Suppose that £ is fixed. It follows from a result of Mader [6] (see Theorem 3) that Theorem 1 can be
implemented in O(|G|*/2 4 ||G||) time. Alon et al. [1] left as an open problem whether linear time is
possible. The main result of this paper is the following partial answer to this question. We obtain a linear
running time at the expense of a slightly larger separator (and a larger dependence on ¢). Moreover, our
algorithm exhibits a tradeoff between running time (ranging from O(n) to O(n>/?)) and the order of the
separator (ranging from O(n?/3) to O(n'/?)).

Theorem 2 There is an algorithm with running time O(2BC+7=3)/2 . |\G|\*+e 4 0. |G||) that, given
€ €[0,1], £ € ZT, and a weighted graph (G, w), either outputs:

(a) a Ky-model of G, or

(b) a 2-separation of (G, w) of order at most 2(C+36+1)/2 || (2-9)/3,

Note that for applications to divide-and-conquer algorithms a separation of order O(|G/|*~¢), for some
constant € > 0, is all that is needed.

The idea behind the proof of Theorem 2 is simple. We now outline the proof for fixed ¢ and with € = 0.
Suppose that in O(|G| + ||G||) time, we can find a partition of V' (G) into |G|?/? connected subgraphs
{51, 52, ..., 8|g2/s }, each containing O(|G|*/3) vertices. Let H be the weighted graph obtained from
G by contracting each S; to a vertex v; with weight w(v;) = w(S;). Then apply Theorem 1 to H to
either obtain a Ky-model in H which defines a Ky,-model in G, or a %-separation {4, B} of H with order
O(|H|Y?) = O(|G|*/?), in which case {{S; : v; € A},U{Si : v; € B}} ais a 2-separation of G
with order O(|G|?/?). The running time is O(|H|>/2 + || H||) € O(|G| + ||G||). The proof of Theorem 2
is actually a little different from this outline. In particular, the subgraphs S; will not necessarily be
connected, but we will still be able to convert the output from Theorem 1 applied to H to the desired
output for G. By relaxing the connectivity condition, we are able to prove that an appropriate partition
exists.

We will use the following notation for a graph G. For x € V(G), let N(z) := {y € V(G) : zy €
E(G)}. For a subgraph X of G, let N(X) := | J{N(z) \ X : © € X}. Where there is no confusion, a set
of vertices S C V(@) will also refer to the subgraph of G induced by S.

2 Mader’s Theorem

This section contains a number of easily proved results—see the full version of the paper for details. We
start with an algorithmic version of a theorem of Mader [6] (cf. [8]).
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Theorem 3 Given a graph G with ||G|| > 272 - |G| (for some { € ZY), a Ky,-model of G can be
computed in O(L(|G]| + ||G]|)) time.

Note that if we ignore the running time, Theorem 3 is far from best possible. Kostochka [4] and
Thomason [10] independently proved that if ||G|| € ©Q(¢+/log ¢ - |G|) then G has a Ky-model. Theorem 3
implies the following slightly faster version of Theorem 1 (for fixed ¢)

Theorem 4 There is an algorithm with running time O(22¢ - |G|/ + ¢ - ||G||) that, given ¢ € 7" and a
weighted graph (G, w), either outputs:

(a) a Ky-model of G, or

(b) a 2-separation of (G, w) of order at most 032 G2,

A k-clique of G is a (not necessarily maximal) set of k pairwise adjacent vertices of G. If every
subgraph of G has a vertex of degree at most d, then G is d-degenerate. For example, Theorem 3 implies
that a graph with no K,-minor is 2¢~2-degenerate. It is easily proved that a d-degenerate graph G with no
k-clique has less than d*~! - |G| cliques. Hence a graph G with no K-minor has less than 2(¢-2 (=1 |G|
cliques. For an algorithm, we have the following result.

Lemma 1 Given a graph G with no k-clique and at least 2=~V |G| cliques (for some £ € 7.7), a
Ky-minor of G can be computed in O(L(|G| + ||G||)) time.

3 Proof of Theorem 2

Let G be a graph. Let A be a partition of V(G). Let H be the graph obtained from G by collapsing each
part S € A to a single vertex v, and replacing parallel edges by a single edge. Denote H,, := S. We say
{H, : v € V(H)} is an H-partition of G. Furthermore, {H, : v € V(H)} is a connected H-partition
of G if vw € E(H) if and only if there is an edge of G between every component of H, and every
component of H,,. We prove the following lemma.

Lemma 2 There is an algorithm with running time O(2%¢ - |G|+ ||G)||) that, given £,k € 7 and a graph
G, outputs a connected H-partition of G such that either:

(a) H has a Ky-model (which is also output), or

(b) |H| < 211G - k=, and |H,| < 2k for all = € V(H).

Proof of Theorem 2 assuming Lemma 2: Apply Lemma 2 with k& = ||G|("=2¢)/3]. First suppose that
Lemma 2 outputs a Kyp-model {51, Sa,. .., Se} of H. Thus each S; is a connected subgraph of H. Choose
a connected component Z,, of H,, foreachv € V(H). LetT; := |J{Z, : v € S;}. Then {11, T5, ..., Ty}
is a Ky-model of G.

Otherwise |H| < 27 +-1.|G[20+9)/3 and|H,| < 2|G|(1=29/3 forallz € V(H). Letw(v) := w(H,)
forall v € V(H). Apply Theorem 4 to (H, w). The running time is

O H* 2+ H]) € 0@ (27 H L GRIHIB240G) € OREEHT9/2 161 e G

We either obtain a K,-model of H, or a 2-separation of H with order at most ¢3/2 - |H|/2. In the first
case, G has a K;-model as proved above.
Now suppose that we obtain a 2-separation {A, B} of (H, w) with order

‘AQB| < 63/2 . |H‘1/2 < €3/2 . (2€2+Z*1|G|2(1+6)/3)1/2 < 2(E2+3€71)/2 . |G|(1+e)/3 )
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Let X := J{H, :v€ A} and Y := |J{H, : v € B}. Then {X, Y} is a separation of G with order
IXNY| = |U{Hv ‘v e ANB}| < 2(@%3@—1)/2,‘G|(1+e)/3.2|G|(1—25)/3 < 2(52+3z+1)/2.|G|(2—e)/3 .
We have w(X \'Y) = w(A\ B) < 2w(H) = 2w(G). Similarly w(B \ A) < 2w(G). ]

Proof of Lemma 2:

Step 1: Using a breadth-first search algorithm, compute a maximal set .4 of connected subgraphs of G
such that |S| = k for all S € A. Let B be the set of connected components of G\ | J{S € A}. Then AUB
is a partition of V(G), and there is no edge of G between distinct 71, T% € B. Note that |T| < k for all
T € B, as otherwise T would contain a connected subgraph X with | X'| = k, which could be added to A.

Step 2: Let H be the graph obtained from G by contracting each set S € A U B into a single vertex v
with H, := S, and replacing parallel edges by a single edge. Since each S € A U B is connected in G,
{H, : v € V(H)} is a connected H-partition of G. Let A := {v € V(H) : H, € A} and B := {v €
V(H) : H, € B}. A vertex v of H is big if |H,| > k. A vertex v of H is small if |H,| < k. Observe
that every vertex in A is big, B is an independent set of H, and every vertex in B is small. Partition
B=CUDUE, where C :={v € B :degy(v) >22},D:={ve B:{—1<degy(v) <22},
and F := {v € B :degy(v) < {—2}.

Step 3: Suppose that |C| > |A|. Then the subgraph C' U A of H has at least 2°=2 - |C| edges and at
most 2|C| vertices. By Theorem 3, a K;-model of C'U A can be computed in O(¢ - |G|) time. We now
assume that |C| < |A|.

Step 4: For each vertex v € D U E, if there is a pair x,y € A of distinct neighbours of v, such that
{z, y} has not been assigned any vertex in D U E, then assign v to {x, y}. This step can be implemented
in O(22¢ - |G|) time, since each vertex in D U E has degree at most 2¢=2.

Suppose that there is a vertex v € D that is not assigned. Let the neighbourhood of v be {x1, z2, ..., x4}
Then d > ¢ — 1. Thus forall 1 < i < j < d, there is a distinct vertex v; ; that is assigned to the pair
{z;,x;}, and v, ; is adjacent to both x; and z;. In the graph obtained from H by contracting each edge
x;v; j, the subgraph {x1, 9, ..., x4, v} is a clique on at least £ vertices. Thus H has a K,-model. We
now assume that every vertex in D is assigned.

Let £ be the set of assigned vertices in . Consider the graph obtained from AU DU E* by contracting
the edge vz for each v € D U E* assigned to the pair {z,y}. This graph has | A| vertices and at least
|D| + |E*| edges. Thus if |D| + |E*| > 23 . | A|, then by Theorem 3, H has a K;-model that can be
computed in O(¢ - |G|) time. We now assume that |D| + |E*| < 273 - |A|.

Step 5: Partition £\ E* = |J{ Py, Pa, ..., P} suchthat for all u,v € E\ E*, we have N (u) = N (v) if
and only if both u,v € P, forsome 1 < ¢ < s. Forall 1 <4 < s, partition P; = |J(P;1,Pi2,..., Pi+,)
such that forall 1 < j < ¢, — 1, k < [|JH{Hy : v € P;}| < 2k, and |J{H, : v € Py, }| < k.
This is possible since |H,| < k for all v € P;. Collapse each set P; ; into a single vertex p; ; in H,
whose associated subgraph in G is Hy, ; := (J{H, : v € P; ;}. Since the vertices in P; ; have the same
neighbourhood, {H,, : v € V(H)} remains a connected partition of G. Let Eyjg = {p; ; : 1 <i <s,1 <
J <t;— 1} and Egnan = {pi,, : 1 <4 < s}. Then every vertex in Ejg is big and every vertex in Egmay
is small.
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Suppose that | Egpan| > 20 . |A|. Let X be the graph obtained from A by adding a clique on N (v) for
each vertex v € Fgya. Since distinct vertices in Egp, have distinct neighbourhoods, this process adds
at least |Egman| > 27 - |A| cliques. Thus by Lemma 1, a K;-model of X can be computed in O(|G])
time. For every edge x;z; in this K,-model that is in X but not in A, we have z;,z; € N(v) for some
v € Egnan. Since v is not assigned, there is a vertex u € D U E* assigned to {z;, z;}, and u is adjacent
to both z; and z;. Since u is not in the K,-model, we can include u in the connected subgraph of the
K,-model that contains x; or x;, and we obtain a K,-model in A U D U E* (in particular, without the
edge z;x;). Now assume that | Egman| < 2. |Al.

Step 6: We have now partitioned V' (H ) into sets AU El,iy of big vertices, and sets CUDU E*U Egyay of
small vertices. We have proved that |C| < |A|, |D| + |E*| < 203 |A|, and | Eqnan| < 2¢ - |A|. Thus the
number of small vertices is less than (1 + 273 4 20 4 1)-]4| < 20 +0-2, | A]. By definition, the number
of big vertices in H is at most |G| - k= 1. In particular, |A| < |G| - k. Thus |H| < 26°+-1. |G| - kL.
Moreover, every |H,| < 2k for every vertex v € V(H). O
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