Color critical hypergraphs and forbidden configurations

Richard Anstee ${ }^{1 \dagger}$, Balin Fleming ${ }^{1 \ddagger}$, Zoltán Füredi ${ }^{23 \S}$ and Attila Sali ${ }^{3 ¢}$
${ }^{1}$ Mathematics Department The University of British Columbia Vancouver, B.C., Canada V6T IZ2
${ }^{2}$ Department of Mathematics University of Illinois at Urbana-Champaign 1409 W. Green Street Urbana, Illinois 61801-2975, USA
${ }^{3}$ Alfréd Rényi Instiute of Mathematics Hungarian Academy of Sciences Budapest, P.O.Box 127 H-1364 Hungary

The present paper connects sharpenings of Sauer's bound on forbidden configurations with color critical hypergraphs. We define a matrix to be simple if it is a $(0,1)$-matrix with no repeated columns. Let F be a $k \times l(0,1)$-matrix (the forbidden configuration). Assume A is an $m \times n$ simple matrix which has no submatrix which is a row and column permutation of F. We define forb (m, F) as the best possible upper bound on n, for such a matrix A, which depends on m and F. It is known that forb $(m, F)=O\left(m^{k}\right)$ for any F, and Sauer's bond states that forb $(m, F)=O\left(m^{k-1}\right)$ fore simple F. We give sufficient condition for non-simple F to have the same bound using linear algebra methods to prove a generalization of a result of Lovász on color critical hypergraphs.

Keywords: forbidden configuration, color critical hypergraph, linear algebra method

1 Introduction

A k-uniform hypergraph (V, \mathcal{E}) is 3-color critical if it is not 2-colorable, but for all $E \in \mathcal{E}$ the hypergraph $(V, \mathcal{E} \backslash\{E\})$ is 2-colorable. Lovász [12] proved in 1976, that

$$
|\mathcal{E}| \leq\binom{ n}{k-1}
$$

for a 3-color critical k-uniform hypergraph. Here we prove the following that can be considered as generalization of Lovász' result.
 ordering $E_{1}, E_{2}, \ldots E_{t}$ of \mathcal{E} and a prescribed partition $A_{i} \cup B_{i}=E_{i}\left(A_{i} \cap B_{i}=\emptyset\right)$ for each member of \mathcal{E}. Assume that for all $i=1,2, \ldots$, t there exists a partition $C_{i} \cup D_{i}=X\left(C_{i} \cap D_{i}=\emptyset\right)$, such that

[^0]$E_{i} \cap C_{i}=A_{i}$ and $E_{i} \cap D_{i}=B_{i}$, but $E_{j} \cap C_{i} \neq A_{j}$ and $E_{j} \cap C_{i} \neq B_{j}$ for all $j<i$. (That is, the ith partition cuts the ith set as it is prescribed, but does not cut any earlier set properly.) Then
\[

$$
\begin{equation*}
t \leq\binom{ m}{k-1}+\binom{m}{k-2}+\ldots+\binom{m}{0} \tag{1}
\end{equation*}
$$

\]

Theorem 1 was motivated by the following sharpening of Sauer's bound for forbidden configurations. Let F be a $k \times l$ 0-1 matrix, then forb (m, F) denotes maximum n such that there exists an $m \times n$ simple matrix A such that no column and/or row permutation of F is a submatrix of A. Furthermore, let K_{k} denote the $k \times 2^{k}$ simple 0-1 matrix consisting of all possible columns.
Theorem 2 Let F be contained in $F_{B}=\left[K_{k} \mid t \cdot\left(K_{k}-B\right)\right]$ for an $k \times(k+1)$ matrix B consisting of one column of each possible column sum. Then forb $(m, F)=O\left(m^{k-1}\right)$.
We explain the the connection between Theorem 1 and Theorem 2.
The study of forbidden configurations is a problem in extremal set theory. The language we use here is matrix theory which conveniently encodes the problems. We define a simple matrix as a $(0,1)$-matrix with no repeated columns. Such a matrix can be thought of a set of subsets of $\{1,2, \ldots, m\}$ with the columns encoding the subsets and the rows indexing the elements. Assume we are give a $k \times l(0,1)$-matrix F. We say that a matrix A has no configuration F if no submatrix of A is a row and column permutation of F and so F is referred to as a forbidden configuration (sometimes called trace). A variety of combinatorial objects can be defined by forbidden configurations. For a simple $m \times n$ matrix A which is assumed to have no configuration F, we seek an upper bound on n which will depend on m, F. We denote the best possible upper bound as forb (m, F). Many results have been obtained about forb (m, F) including [2],[3],[5].

At this point all values known for forb (m, F) are of the form $\Theta\left(m^{e}\right)$ for some integer e. We completed the classification for $2 \times l$ matrices F in [2] and for $3 \times l$ matrices F in [6]. We also put forward a conjecture on what properties of F drive the exponent e. Roughly speaking, we proposed a set of constructions and guessed that these constructions are sufficient to deduce the exponent e in the expression $\Theta\left(m^{e}\right)$.

We use the notation K_{k} to denote the $k \times 2^{k}$ simple matrix of all possible columns on k rows. The basic result for forb (m, F) is as follows.

Theorem 3 [Sauer [13], Perles and Shelah [14], Vapnik and Chervonenkis [15]] We have that forb $\left(m, K_{k}\right)$ is $\Theta\left(m^{k-1}\right)$.

In fact Theorem 3 is usually stated with forb $\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0}$ but the asymptotic growth of $\Theta\left(m^{k-1}\right)$ was what interested Vapnik and Chervonenkis.

One easy observation is that if we let A^{c} denote the 0-1-complement of A then forb $\left(m, F^{c}\right)=$ forb (m, F). Another observation is that if F^{\prime} is a submatrix of F, then $\operatorname{forb}(m, F) \geq \operatorname{forb}\left(m, F^{\prime}\right)$. We let K_{k}^{s} denote the $k \times\binom{ k}{s}$ simple matrix of all possible columns of column sum s.

We use the notation $[A \mid B]$ to denote the matrix obtained from concatenating the two matrices A and B. We use the notation $k \cdot A$ to denote the matrix $[A|A| \cdots \mid A]$ consisting of k copies of A concatenated together. We give precedence to the operation (multiplication) over concatenation so that for example $[2 \cdot A \mid B]$ is the matrix consisting of the concatenation of B with the concatenation of two copies of A.

According to an earlier unpublished result of Füredi [10] forb $(m, F)=O\left(m^{k}\right)$ for arbitrary $k \times l$ configuration F. The goal of this paper is to give sufficient conditions that ensure forb $(m, F)=O\left(m^{k-1}\right)$.

2 The boundary between m^{k-1} and m^{k}

Theorem 3 implies that simple configurations all have forb $(m, F)=O\left(m^{k-1}\right)$, thus we investigate f 's with multiple columns. First, we show that which configurations F have forb $(m, F)=\Omega\left(m^{k}\right)$ using the direct product construction. Let $A(k, 2)$ be defined as a minimal matrix with the property that any pair of rows has $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ has both with 1 's in some column and such that deleting a column of $A(k, 2)$ would violate this property.

Lemma 4 Let F be a $k \times l$ configuration. forb $(m, F)=\Omega\left(m^{k}\right)$ if F contains $2 \cdot K_{k}^{l}$ for $2 \leq l \leq k-2$ and $l=0, k$ or if F contains $\left[2 \cdot K_{k}^{1} \mid A(k, 2)\right]$.

Proof: We find that forb (m, F) is $\Omega\left(m^{k}\right)$ if F contains $2 \cdot K_{k}^{l}$ for $0 \leq l \leq k$ and $l \neq 1, k-1$. This follows since $2 \cdot K_{k}^{l}$ is not contained in the k-fold product of $l K_{m / k}^{1}$'s and $k-l K_{m / k}^{(m / k)-1}$,s and so may deduce forb $\left(m, 2 \cdot K_{k}^{l}\right)$ is $\Omega\left(m^{k}\right)$. To verify this for $2 \leq l \leq k-2$, we note that any pair of rows of K_{k}^{l} has $\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$ and so if we have a submatrix that is a row and column permutation of K_{k}^{l}, we can only choose one row from either $K_{m / k}^{1}$ or from $K_{m / k}^{(m / k)-1}$. The verification for K_{k}^{0} or K_{k}^{k} is easier.

For $l=1$ (the case $l=k-1$ is the (0,1)-complement) we can no longer assert that any pair of rows of K_{k}^{l} has $\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$ merely $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and so can choose two rows from the copy of $K_{m / k}^{1}$, one row from each of $k-2$ of the $K_{m / k}^{(m / k)-1}$ terms and generate a copy of $2 \cdot K_{k}^{1}$. (Theorem 5.1 of [6] shows that forb $\left(m, K_{k}^{1}\right)$ is $\Theta\left(m_{k-1}\right)$). This is fixed by considering a minimal matrix $A(k, 2)$ with the property that any pair of rows has $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ has both with 1 's in some column and such that deleting a column of $A(k, 2)$ would violate this. As above, we have that if F contains $\left[2 \cdot K_{k}^{1} \mid A(k, 2)\right]$, then forb (m, F) is $\Omega\left(m^{k}\right)$.

Lemma 4 leaves two possibilities if we want $\operatorname{forb}(m, f)$ be bounded away from m^{k}. Either F is contained in a matrix $F_{B}=\left[K_{k} \mid t \cdot\left(K_{k}-B\right)\right]$ for an $k \times(k+1)$ matrix B consisting of one column of each possible column sum or F is contained in a matrix $\left[K_{k}^{0} \mid t \cdot C\right]$ where C is a k-rowed simple matrix consisting of all columns which do not have 1's in both rows 1 and 2 and also with at least one 1. Note, that these are not mutually exclusive cases. Our main result Theorem 2 is that in the first case forb $(m, F)=O\left(m^{k-1}\right)$.
Proof of Theorem 2: Let A be an $m \times n$ simple $0-1$ matrix, and B be a $k \times(k+1)$ matrix consisting of one column of each possible column sum. Suppose that A does not have $F_{B}=\left[K_{k} \mid t \cdot\left(K_{k}-B\right)\right]$ as configuration. This implies that on a given k-tuple L of rows either K_{k} is missing, or if all possible columns of size k occur on L, then $t \cdot\left(K_{k}-B\right)$ must be missing. This latter means, that for some $0 \leq s \leq k$, two columns of column sum s occur at most $t-1$ times on L, respectively. Let \mathcal{K} be the set of k-tuples of rows where the latter happens. Using Lemma 5 a set of columns of size $O\left(m^{k-1}\right)$ can be removed from A to obtain A^{\prime}, so that for all $L \in \mathcal{K}$ a column (in fact two) is missing on L in A^{\prime}. However, this implies that K_{k} is not a configuration in A^{\prime}, thus by Theorem $3 A^{\prime}$ has at most $O\left(m^{k-1}\right)$ columns. \square

Let \mathcal{K} be a system of k-tuples of rows such that $\forall K \in \mathcal{K}$ there are two $(k \times 1)$ columns, $\alpha_{K} \neq \beta_{K}$ specified. We say that a column x of A violates $\left(K, \alpha_{K}\right)$, if $\left.x\right|_{K}=\alpha_{K}$, similarly, x violates $\left(K, \beta_{K}\right)$, if $\left.x\right|_{K}=\beta_{K}$.

Lemma 5 Assume, that for every $K \in \mathcal{K}$ there are at most $t-1$ columns of A that violate $\left(K, \alpha_{K}\right)$, and at most $t-1$ columns of A violate $\left(K, \beta_{K}\right)$. Then there exists a subset X of columns of A, such that $|X|=O\left(m^{k-1}\right)$ and no column of $A-X$ violates any of $\left(K, \alpha_{K}\right)$ or $\left(K, \beta_{K}\right)$.

Proof: It can be assumed without loss of generality that for all $K \in \mathcal{K} \alpha_{K}=\alpha$ and $\beta_{K}=\beta$ independent of K. Indeed, there are $2^{k} \times 2^{k}$ possible α_{K}, β_{K} pairs, that is a constant number of them. Thus, \mathcal{K} can be partitioned into a constant number of parts, so that in each part $\alpha_{K}=\alpha$ and $\beta_{K}=\beta$ holds. We apply induction on k using the simplification given above. $k=1$ is obvious.

Consider now $k \times 1$ columns $\alpha \neq \beta$. Assume first, that $\alpha \neq \bar{\beta}$. That is, there is a coordinate where α and β agree, say both have 1 as their ℓ th coordinate. The case of a common 0 coordinate is similar. For the i th row of A we count how many columns have violation so that for some $K \in \mathcal{K}$ the ℓ th coordinate in K is exactly row i. Let $\mathcal{K}_{i, \ell}$ be the set of these k-tuples from \mathcal{K}. Columns that have violation on k-tuples from $\mathcal{K}_{i, \ell}$ have 1 in the i th row, let $A_{i, 1}$ denote matrix formed by the set of columns that have 1 in row i. If row i is removed from $A_{i, 1}$, the remaining matrix $A_{i, 1}^{\prime}$ is still simple. Let $\mathcal{K}_{i, \ell}^{\prime}$ denote the set of $(k-1)$-tuples obtained from k-tuples of $\mathcal{K}_{i, \ell}$ by removing their ℓ th coordinate, i, furthermore let α^{\prime} (β^{\prime}, respectively) denote the $(k-1) \times 1$ column obtained from $\alpha(\beta)$ by removing the ℓ th coordinate, 1 . Note, that $\alpha^{\prime} \neq \beta^{\prime}$. A column of A has a violation on $K \in \mathcal{K}_{i, \ell}$ iff its counterpart in $A_{i, 1}^{\prime}$ has a violation on the corresponding $K^{\prime} \in \mathcal{K}_{i, \ell}^{\prime}$. The number of those columns is at most $c m^{k-2}$ by the inductive hypothesis. Since $\mathcal{K}=\cup_{i=1}^{m} \mathcal{K}_{i, \ell}$, we obtain that the number of columns of A having violation on some $K \in \mathcal{K}$ is at most $m \cdot c m^{k-2}$.

Let us assume now, that $\alpha=\bar{\beta}$. A subset $\mathcal{J} \subseteq \mathcal{K}$ is called independent if there exists an ordering $J_{1}, J_{2}, \ldots J_{g}$ of the elements of \mathcal{J} such that for every $J_{i} \in \mathcal{J}$ there exists an $m \times 10-1$ column that violates J_{i} and does not violate any $J_{j} \in \mathcal{J}$ for $j<i$. Let us call a maximal independent subset \mathcal{B} of \mathcal{K} a basis of \mathcal{K}. If a column of A has a violation on $K \in \mathcal{K}$, then it has a violation on some $B \in \mathcal{B}$, as well. Indeed, either $K \in \mathcal{B}$ holds, or if $K \notin \mathcal{B}$, then by the maximality of \mathcal{B}, K cannot be added to it as a $|\mathcal{B}|+1$ st element in the order, so the column having violation on K must have a violation on $B \in \mathcal{B}$, for some B. By Theorem 1 for a basis \mathcal{B} we have

$$
|\mathcal{B}| \leq\binom{ m}{k-1}+\binom{m}{k-2}+\ldots+\binom{m}{0}
$$

since a column violating a k-tuple B_{i} from \mathcal{B}, but none of B_{j} for $j<i$, gives an appropriate partition of the set of rows. Thus, there could be at most $\left.(2 t-2)\left[\begin{array}{c}m \\ k-1\end{array}\right)+\binom{m}{k-2}+\ldots+\binom{m}{0}\right]$ columns violating some $K \in \mathcal{K}$.

Proof of Theorem 1: We define a polynomial $p_{i}(\underline{x}) \in \mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{m}\right]$ for each E_{i} as follows.

$$
\begin{equation*}
p_{i}\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\prod_{a \in A_{i}}\left(1-x_{a}\right) \prod_{b \in B_{i}} x_{b}+(-1)^{k+1} \prod_{a \in A_{i}} x_{a} \prod_{b \in B_{i}}\left(1-x_{b}\right) \tag{2}
\end{equation*}
$$

Polynomials defined by (2) are multilinear of degree at most $k-1$, since the product $\prod_{e \in E_{i}} x_{e}$ cancels by the coefficient $(-1)^{k+1}$. Thus, they are from the space generated by monomials of type $\prod_{j=1}^{r} x_{i_{j}}$, for $r=0,1, \ldots k-1$. The dimension of this space over \mathbb{R} is $\binom{m}{k-1}+\binom{m}{k-2}+\ldots+\binom{m}{0}$.

We shall prove that polynomials $p_{1}(\underline{x}), p_{2}(\underline{x}), \ldots p_{t}(\underline{x})$ are linearly independent over \mathbb{R}, which implies (1). Assume that

$$
\begin{equation*}
\sum_{i=1}^{t} \lambda_{i} p_{i}(\underline{x})=0 \tag{3}
\end{equation*}
$$

is a linear combination of the $p_{i}(\underline{x})$'s that is the zero polynomial. Consider the partition $C_{t} \cup D_{t}=X$, and substitute $x_{c}=0$ if $c \in C_{t}$ and $x_{d}=1$ if $d \in D_{t}$ into (3). Then $p_{t}(\underline{x})=1$, but it is easy to see that $p_{k}(\underline{x})=0$ for $k<t$. This implies that $\lambda_{t}=0$. Now assume by induction on j, that $\lambda_{t}=\lambda_{t-1}=\ldots=\lambda_{t-j+1}=0$. Take the partition $C_{t-j} \cup D_{t-j}=X$ and substitute into (3) $x_{c}=0$ if $c \in C_{t-j}$ and $x_{d}=1$ if $d \in D_{t-j}$. Then, as before, $p_{t-j}(\underline{x})=1$, but $p_{k}(\underline{x})=0$ for $k<t-j$. This implies $\lambda_{t-j}=0$, as well. Thus, all coefficients in (3) must be 0 , hence the polynomials are linearly independent.

References

[1] R.P. Anstee, Some Problems Concerning Forbidden Configurations, preprint.
[2] R.P. Anstee, J.R. Griggs, A. Sali, Small Forbidden Configurations, Graphs and Combinatorics 13(1997),97-118.
[3] R.P. Anstee, R. Ferguson, A. Sali, Small Forbidden Configurations II, Electronic J. Combin. 8(2001), R4 (25pp)
[4] R.P. Anstee, Z. FÜredi, Forbidden Submatrices, Discrete Math. 62(1986),225-243.
[5] R.P. Anstee, N. Kamoosi, Small Forbidden Configurations III, preprint.
[6] R.P. Anstee, A. Sali Small forbidden configurations IV: The 3-rowed case, Combinatorica, to appear.
[7] J. Balogh, B. BollobÁs, Unavoidable Traces of Set Systems, to appear, Combinatorica.
[8] B. Bollobás Extremal graph theory. London Mathematical Society Monographs, 11 Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978.
[9] P. Erdős, A.H. Stone, On the Structure of Linear Graphs, Bull. Amer. Math. Soc. 52(1946), 1089-1091.
[10] Z. FÜREDI, personal communication.
[11] T. KővÁri, V.T. Sós, P. Turán On a problem of K. Zarankiewicz, Colloquium Math. 3 (1954) 50-57.
[12] L. LovÁSz Cromatic number of hypergraphs and linear algebra, Studia Sci. Math. Hung. 11 (1976) 113-114.
[13] N. SaUER, On the density of families of sets, J. Combin. Th. Ser A 13(1973), 145-147.
[14] S. Shelah, A combinatorial problem: Stability and order for models and theories in infinitary languages, Pac. J. Math. 4(1972), 247-261.
[15] V.N. Vapnik, A.Ya. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities, Th. Prob. and Applics. 16(1971), 264-280.

[^0]: ${ }^{\dagger}$ Research is supported in part by NSERC
 \ddagger Research is supported in part by NSERC
 §Research is supported in part by Hungarian National Research Fund (OTKA) numbers T034702 and T037846
 ${ }^{\top}$ Research is supported in part by Hungarian National Research Fund (OTKA) numbers T034702 and T037846 and by NSERC of the first author

