Color critical hypergraphs and forbidden configurations

Richard Anstee¹[†], Balin Fleming¹[‡], Zoltán Füredi²³[§] and Attila Sali³¶

¹Mathematics Department The University of British Columbia Vancouver, B.C., Canada V6T 1Z2

²Department of Mathematics University of Illinois at Urbana-Champaign 1409 W. Green Street Urbana, Illinois 61801-2975, USA

³Alfréd Rényi Instiute of Mathematics Hungarian Academy of Sciences Budapest, P.O.Box 127 H-1364 Hungary

The present paper connects sharpenings of Sauer's bound on forbidden configurations with color critical hypergraphs. We define a matrix to be *simple* if it is a (0,1)-matrix with no repeated columns. Let F be a $k \times l$ (0,1)-matrix (the forbidden configuration). Assume A is an $m \times n$ simple matrix which has no submatrix which is a row and column permutation of F. We define forb(m, F) as the best possible upper bound on n, for such a matrix A, which depends on m and F. It is known that forb $(m, F) = O(m^k)$ for any F, and Sauer's bond states that forb $(m, F) = O(m^{k-1})$ fore *simple* F. We give sufficient condition for non-simple F to have the same bound using linear algebra methods to prove a generalization of a result of Lovász on color critical hypergraphs.

Keywords: forbidden configuration, color critical hypergraph, linear algebra method

1 Introduction

A k-uniform hypergraph (V, \mathcal{E}) is 3-color critical if it is not 2-colorable, but for all $E \in \mathcal{E}$ the hypergraph $(V, \mathcal{E} \setminus \{E\})$ is 2-colorable. Lovász [12] proved in 1976, that

$$|\mathcal{E}| \le \binom{n}{k-1}$$

for a 3-color critical k-uniform hypergraph. Here we prove the following that can be considered as generalization of Lovász' result.

Theorem 1 Let $\mathcal{E} \subseteq {\binom{[m]}{k}}$ be a k-uniform set system on an underlying set X of m elements. Let us fix an ordering $E_1, E_2, \ldots E_t$ of \mathcal{E} and a prescribed partition $A_i \cup B_i = E_i$ $(A_i \cap B_i = \emptyset)$ for each member of \mathcal{E} . Assume that for all $i = 1, 2, \ldots, t$ there exists a partition $C_i \cup D_i = X$ $(C_i \cap D_i = \emptyset)$, such that

[†]Research is supported in part by NSERC

[‡]Research is supported in part by NSERC

[§]Research is supported in part by Hungarian National Research Fund (OTKA) numbers T034702 and T037846

[¶]Research is supported in part by Hungarian National Research Fund (OTKA) numbers T034702 and T037846 and by NSERC of the first author

^{1365-8050 © 2005} Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

 $E_i \cap C_i = A_i$ and $E_i \cap D_i = B_i$, but $E_j \cap C_i \neq A_j$ and $E_j \cap C_i \neq B_j$ for all j < i. (That is, the *i*th partition cuts the *i*th set as it is prescribed, but does not cut any earlier set properly.) Then

$$t \le \binom{m}{k-1} + \binom{m}{k-2} + \ldots + \binom{m}{0}.$$
(1)

Theorem 1 was motivated by the following sharpening of Sauer's bound for forbidden configurations. Let F be a $k \times l$ 0-1 matrix, then forb(m, F) denotes maximum n such that there exists an $m \times n$ simple matrix A such that no column and/or row permutation of F is a submatrix of A. Furthermore, let K_k denote the $k \times 2^k$ simple 0-1 matrix consisting of all possible columns.

Theorem 2 Let F be contained in $F_B = [K_k | t \cdot (K_k - B)]$ for an $k \times (k + 1)$ matrix B consisting of one column of each possible column sum. Then $forb(m, F) = O(m^{k-1})$.

We explain the the connection between Theorem 1 and Theorem 2.

The study of forbidden configurations is a problem in extremal set theory. The language we use here is matrix theory which conveniently encodes the problems. We define a *simple* matrix as a (0,1)-matrix with no repeated columns. Such a matrix can be thought of a set of subsets of $\{1, 2, \ldots, m\}$ with the columns encoding the subsets and the rows indexing the elements. Assume we are give a $k \times l$ (0,1)-matrix F. We say that a matrix A has no *configuration* F if no submatrix of A is a row and column permutation of F and so F is referred to as a *forbidden configuration* (sometimes called *trace*). A variety of combinatorial objects can be defined by forbidden configurations. For a simple $m \times n$ matrix A which is assumed to have no configuration F, we seek an upper bound on n which will depend on m, F. We denote the best possible upper bound as forb(m, F). Many results have been obtained about forb(m, F) including [2],[3],[5].

At this point all values known for forb(m, F) are of the form $\Theta(m^e)$ for some integer e. We completed the classification for $2 \times l$ matrices F in [2] and for $3 \times l$ matrices F in [6]. We also put forward a conjecture on what properties of F drive the exponent e. Roughly speaking, we proposed a set of constructions and guessed that these constructions are sufficient to deduce the exponent e in the expression $\Theta(m^e)$.

We use the notation K_k to denote the $k \times 2^k$ simple matrix of all possible columns on k rows. The basic result for forb(m, F) is as follows.

Theorem 3 [Sauer [13], Perles and Shelah [14], Vapnik and Chervonenkis [15]] We have that $forb(m, K_k)$ is $\Theta(m^{k-1})$.

In fact Theorem 3 is usually stated with $\operatorname{forb}(m, K_k) = \binom{m}{k-1} + \binom{m}{k-2} + \cdots + \binom{m}{0}$ but the asymptotic growth of $\Theta(m^{k-1})$ was what interested Vapnik and Chervonenkis.

One easy observation is that if we let A^c denote the 0-1-complement of A then forb $(m, F^c) = \text{forb}(m, F)$. Another observation is that if F' is a submatrix of F, then forb $(m, F) \ge \text{forb}(m, F')$. We let K_k^s denote the $k \times {k \choose s}$ simple matrix of all possible columns of column sum s.

We use the notation [A|B] to denote the matrix obtained from concatenating the two matrices A and B. We use the notation $k \cdot A$ to denote the matrix $[A|A| \cdots |A]$ consisting of k copies of A concatenated together. We give precedence to the operation \cdot (multiplication) over concatenation so that for example $[2 \cdot A|B]$ is the matrix consisting of the concatenation of B with the concatenation of two copies of A.

According to an earlier unpublished result of Füredi [10] for $b(m, F) = O(m^k)$ for arbitrary $k \times l$ configuration F. The goal of this paper is to give sufficient conditions that ensure for $b(m, F) = O(m^{k-1})$.

2 The boundary between m^{k-1} and m^k

Theorem 3 implies that simple configurations all have $\operatorname{forb}(m, F) = O(m^{k-1})$, thus we investigate f's with multiple columns. First, we show that which configurations F have $\operatorname{forb}(m, F) = \Omega(m^k)$ using the direct product construction. Let A(k, 2) be defined as a minimal matrix with the property that any pair of rows has $\begin{bmatrix} 1\\1 \end{bmatrix}$ has both with 1's in some column and such that deleting a column of A(k, 2) would violate this property.

Lemma 4 Let F be a $k \times l$ configuration. for $b(m, F) = \Omega(m^k)$ if F contains $2 \cdot K_k^l$ for $2 \le l \le k - 2$ and l = 0, k or if F contains $[2 \cdot K_k^1 | A(k, 2)]$.

Proof: We find that $\operatorname{forb}(m, F)$ is $\Omega(m^k)$ if F contains $2 \cdot K_k^l$ for $0 \le l \le k$ and $l \ne 1, k - 1$. This follows since $2 \cdot K_k^l$ is not contained in the k-fold product of $l K_{m/k}^1$'s and $k - l K_{m/k}^{(m/k)-1}$'s and so may deduce $\operatorname{forb}(m, 2 \cdot K_k^l)$ is $\Omega(m^k)$. To verify this for $2 \le l \le k - 2$, we note that any pair of rows of K_k^l has $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ and so if we have a submatrix that is a row and column permutation of K_k^l , we can only choose one row from either $K_{m/k}^1$ or from $K_{m/k}^{(m/k)-1}$. The verification for K_k^0 or K_k^k is easier. For l = 1 (the case l = k - 1 is the (0,1)-complement) we can no longer assert that any pair of rows of

For l = 1 (the case l = k - 1 is the (0,1)-complement) we can no longer assert that any pair of rows of K_k^l has $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ merely $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and so can choose two rows from the copy of $K_{m/k}^1$, one row from each of k - 2 of the $K_{m/k}^{(m/k)-1}$ terms and generate a copy of $2 \cdot K_k^1$. (Theorem 5.1 of [6] shows that forb (m, K_k^1) is $\Theta(m_{k-1})$). This is fixed by considering a minimal matrix A(k, 2) with the property that any pair of rows has $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ has both with 1's in some column and such that deleting a column of A(k, 2) would violate this. As above, we have that if F contains $[2 \cdot K_k^1 | A(k, 2)]$, then forb(m, F) is $\Omega(m^k)$.

Lemma 4 leaves two possibilities if we want $\operatorname{forb}(m, f)$ be bounded away from m^k . Either F is contained in a matrix $F_B = [K_k | t \cdot (K_k - B)]$ for an $k \times (k + 1)$ matrix B consisting of one column of each possible column sum or F is contained in a matrix $[K_k^0 | t \cdot C]$ where C is a k-rowed simple matrix consisting of all columns which do not have 1's in both rows 1 and 2 and also with at least one 1. Note, that these are not mutually exclusive cases. Our main result Theorem 2 is that in the first case $\operatorname{forb}(m, F) = O(m^{k-1})$.

Proof of Theorem 2: Let A be an $m \times n$ simple 0-1 matrix, and B be a $k \times (k + 1)$ matrix consisting of one column of each possible column sum. Suppose that A does not have $F_B = [K_k | t \cdot (K_k - B)]$ as configuration. This implies that on a given k-tuple L of rows either K_k is missing, or if all possible columns of size k occur on L, then $t \cdot (K_k - B)$ must be missing. This latter means, that for some $0 \le s \le k$, two columns of column sum s occur at most t - 1 times on L, respectively. Let \mathcal{K} be the set of k-tuples of rows where the latter happens. Using Lemma 5 a set of columns of size $O(m^{k-1})$ can be removed from A to obtain A', so that for all $L \in \mathcal{K}$ a column (in fact two) is missing on L in A'. However, this implies that K_k is not a configuration in A', thus by Theorem 3 A' has at most $O(m^{k-1})$ columns. \Box

Let \mathcal{K} be a system of k-tuples of rows such that $\forall K \in \mathcal{K}$ there are two $(k \times 1)$ columns, $\alpha_K \neq \beta_K$ specified. We say that a column x of A violates (K, α_K) , if $x|_K = \alpha_K$, similarly, x violates (K, β_K) , if $x|_K = \beta_K$. **Lemma 5** Assume, that for every $K \in \mathcal{K}$ there are at most t - 1 columns of A that violate (K, α_K) , and at most t - 1 columns of A violate (K, β_K) . Then there exists a subset X of columns of A, such that $|X| = O(m^{k-1})$ and no column of A - X violates any of (K, α_K) or (K, β_K) .

Proof: It can be assumed without loss of generality that for all $K \in \mathcal{K} \alpha_K = \alpha$ and $\beta_K = \beta$ independent of K. Indeed, there are $2^k \times 2^k$ possible α_K, β_K pairs, that is a constant number of them .Thus, \mathcal{K} can be partitioned into a constant number of parts, so that in each part $\alpha_K = \alpha$ and $\beta_K = \beta$ holds. We apply induction on k using the simplification given above. k = 1 is obvious.

Consider now $k \times 1$ columns $\alpha \neq \beta$. Assume first, that $\alpha \neq \overline{\beta}$. That is, there is a coordinate where α and β agree, say both have 1 as their ℓ th coordinate. The case of a common 0 coordinate is similar. For the *i*th row of A we count how many columns have violation so that for some $K \in \mathcal{K}$ the ℓ th coordinate in K is exactly row *i*. Let $\mathcal{K}_{i,\ell}$ be the set of these k-tuples from \mathcal{K} . Columns that have violation on k-tuples from $\mathcal{K}_{i,\ell}$ have 1 in the *i*th row, let $A_{i,1}$ denote matrix formed by the set of columns that have 1 in row *i*. If row *i* is removed from $A_{i,1}$, the remaining matrix $A'_{i,1}$ is still simple. Let $\mathcal{K}'_{i,\ell}$ denote the set of (k-1)-tuples obtained from k-tuples of $\mathcal{K}_{i,\ell}$ by removing their ℓ th coordinate, *i*, furthermore let $\alpha'(\beta', respectively)$ denote the $(k-1) \times 1$ column obtained from $\alpha(\beta)$ by removing the ℓ th coordinate, 1. Note, that $\alpha' \neq \beta'$. A column of A has a violation on $K \in \mathcal{K}_{i,\ell}$ iff its counterpart in $A'_{i,1}$ has a violation on the corresponding $K' \in \mathcal{K}'_{i,\ell}$. The number of those columns is at most $c m^{k-2}$ by the inductive hypothesis. Since $\mathcal{K} = \bigcup_{i=1}^m \mathcal{K}_{i,\ell}$, we obtain that the number of columns of A having violation on some $K \in \mathcal{K}$ is at most $m \cdot c m^{k-2}$.

Let us assume now, that $\alpha = \overline{\beta}$. A subset $\mathcal{J} \subseteq \mathcal{K}$ is called *independent* if there exists an ordering $J_1, J_2, \ldots J_g$ of the elements of \mathcal{J} such that for every $J_i \in \mathcal{J}$ there exists an $m \times 1$ 0-1 column that violates J_i and does not violate any $J_j \in \mathcal{J}$ for j < i. Let us call a *maximal* independent subset \mathcal{B} of \mathcal{K} a *basis* of \mathcal{K} . If a column of A has a violation on $K \in \mathcal{K}$, then it has a violation on some $B \in \mathcal{B}$, as well. Indeed, either $K \in \mathcal{B}$ holds, or if $K \notin \mathcal{B}$, then by the maximality of \mathcal{B} , K cannot be added to it as a $|\mathcal{B}| + 1$ st element in the order, so the column having violation on K must have a violation on $B \in \mathcal{B}$, for some B. By Theorem 1 for a basis \mathcal{B} we have

$$|\mathcal{B}| \le \binom{m}{k-1} + \binom{m}{k-2} + \ldots + \binom{m}{0},$$

since a column violating a k-tuple B_i from \mathcal{B} , but none of B_j for j < i, gives an appropriate partition of the set of rows. Thus, there could be at most $(2t-2)\left[\binom{m}{k-1} + \binom{m}{k-2} + \ldots + \binom{m}{0}\right]$ columns violating some $K \in \mathcal{K}$.

Proof of Theorem 1: We define a polynomial $p_i(\underline{x}) \in \mathbb{R}[x_1, x_2, \dots, x_m]$ for each E_i as follows.

$$p_i(x_1, x_2, \dots, x_m) = \prod_{a \in A_i} (1 - x_a) \prod_{b \in B_i} x_b + (-1)^{k+1} \prod_{a \in A_i} x_a \prod_{b \in B_i} (1 - x_b)$$
(2)

Polynomials defined by (2) are multilinear of degree at most k - 1, since the product $\prod_{e \in E_i} x_e$ cancels by the coefficient $(-1)^{k+1}$. Thus, they are from the space generated by monomials of type $\prod_{j=1}^r x_{i_j}$, for $r = 0, 1, \ldots k - 1$. The dimension of this space over \mathbb{R} is $\binom{m}{k-1} + \binom{m}{k-2} + \ldots + \binom{m}{0}$. We shall prove that polynomials $p_1(\underline{x}), p_2(\underline{x}), \dots, p_t(\underline{x})$ are linearly independent over \mathbb{R} , which implies (1). Assume that

$$\sum_{i=1}^{t} \lambda_i p_i(\underline{x}) = 0 \tag{3}$$

is a linear combination of the $p_i(\underline{x})$'s that is the zero polynomial. Consider the partition $C_t \cup D_t = X$, and substitute $x_c = 0$ if $c \in C_t$ and $x_d = 1$ if $d \in D_t$ into (3). Then $p_t(\underline{x}) = 1$, but it is easy to see that $p_k(\underline{x}) = 0$ for k < t. This implies that $\lambda_t = 0$. Now assume by induction on j, that $\lambda_t = \lambda_{t-1} = \ldots = \lambda_{t-j+1} = 0$. Take the partition $C_{t-j} \cup D_{t-j} = X$ and substitute into (3) $x_c = 0$ if $c \in C_{t-j}$ and $x_d = 1$ if $d \in D_{t-j}$. Then, as before, $p_{t-j}(\underline{x}) = 1$, but $p_k(\underline{x}) = 0$ for k < t - j. This implies $\lambda_{t-j} = 0$, as well. Thus, all coefficients in (3) must be 0, hence the polynomials are linearly independent.

References

- [1] R.P. ANSTEE, Some Problems Concerning Forbidden Configurations, preprint.
- [2] R.P. ANSTEE, J.R. GRIGGS, A. SALI, Small Forbidden Configurations, *Graphs and Combinatorics* 13(1997),97-118.
- [3] R.P. ANSTEE, R. FERGUSON, A. SALI, Small Forbidden Configurations II, *Electronic J. Combin.* 8(2001), R4 (25pp)
- [4] R.P. ANSTEE, Z. FÜREDI, Forbidden Submatrices, Discrete Math. 62(1986),225-243.
- [5] R.P. ANSTEE, N. KAMOOSI, Small Forbidden Configurations III, preprint.
- [6] R.P. ANSTEE, A. SALI Small forbidden configurations IV: The 3-rowed case, *Combinatorica*, to appear.
- [7] J. BALOGH, B. BOLLOBÁS, Unavoidable Traces of Set Systems, to appear, Combinatorica.
- [8] B. BOLLOBÁS Extremal graph theory. London Mathematical Society Monographs, **11** Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978.
- [9] P. ERDŐS, A.H. STONE, On the Structure of Linear Graphs, Bull. Amer. Math. Soc. 52(1946), 1089-1091.
- [10] Z. FÜREDI, personal communication.
- [11] T. KŐVÁRI, V.T. SÓS, P. TURÁN On a problem of K. Zarankiewicz, *Colloquium Math.* 3 (1954) 50-57.
- [12] L. LOVÁSZ Cromatic number of hypergraphs and linear algebra, *Studia Sci. Math. Hung.* 11 (1976) 113-114.
- [13] N. SAUER, On the density of families of sets, J. Combin. Th. Ser A 13(1973), 145-147.

- [14] S. SHELAH, A combinatorial problem: Stability and order for models and theories in infinitary languages, *Pac. J. Math.* **4**(1972), 247-261.
- [15] V.N. VAPNIK, A.YA. CHERVONENKIS, On the uniform convergence of relative frequencies of events to their probabilities, *Th. Prob. and Applics*. **16**(1971), 264-280.