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Packing non-returning A-paths algorithmically
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In this paper we present an algorithmic approach to packing A-paths. It is regarded as a generalization of Edmonds’
matching algorithm, however there is the significant difference that here we do not build up any kind of alternating
tree. Instead we use the so-called 3-way lemma, which either provides augmentation, or a dual, or a subgraph which
can be used for contraction. The method works in the general setting of packing non-returning A-paths. It also implies
an ear-decomposition of criticals, as a generalization of the odd ear-decomposition of factor-critical graph.
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1 Introduction
The paper is devoted to the problem of packing fully node-disjoint non-returning A-paths in a graph
G = (V,E). Given a graph and a subset A ⊆ V , a path is said to be an A-path if its ends are two distinct
nodes in A. Packing fully node-disjoint A-paths reduces to maximum matching in an auxiliary graph, see
T. Gallai (3). The special case A = V is in fact equivalent to maximum matching. W. Mader considered
a more difficult problem. We are given a subset A ⊆ V with a partition A. An A-path is called an A-
path if its ends are in two distinct members of A. Mader (5) gave a min-max formula for the maximum
number of fully node-disjoint A-paths. A polynomial time algorithm to find these paths was given by
L. Lovász using his matroid parity apparatus. Matroid parity is still a challanging topic in combinatorial
optimization. If a problem turns out to be an instance for matroid parity, this does not necessarily imply
a polynomial time algorithm or a good characterization. Lovász disentangled some techincal details to
construct an algorithm, see (4). Later, A. Schrijver gave a funny reduction to linear matroid parity –
which by itself also implies an algorithm. It was a challange to construct directly an algorithm for packing
A-paths. Such an algorithm was given by Chudnovsky et al. (2). They in fact work with the concept
of non-zero A-paths, which is a generalization of A-paths, see also (1). The main goal of this paper is
to construct an algorithm which presents the “dual” in a more structured form. Our method implies an
ear-decomposition of “criticals” – this generalizes the ear-decomposition of factor-critical graphs.

Maximum matching is a special case of the problem discussed in this paper, let us briefly sketch how
the method works for maximum matching. For a given matching M ⊆ E in G, we call an odd cycle
C ⊆ E an M -alternating odd cycle if |C ∩M | = (|C| − 1)/2 and C is incident to an M -exposed node.
The following lemma can be proved directly, a proof “on the level of bipartite matching” can be given. In
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and by the Egerváry Research Group of the Hungarian Academy of Sciences. e-mail: gyuszko@cs.elte.hu

1365–8050 c© 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France



140 Gyula Pap

fact, Edmonds’ alternating forests provide an alternative proof of this lemma. Our crucial observation is
that a matching algorithm can be constructed by only using the below lemma as a black box. This black
box is regarded as a compact formulation of some consequences of alternating forests. However, one can
also give a short, inductive proof without alternating forests.

Lemma 1.1 (3-Way Lemma for Matching) Given an undirected graph G with a matching M , then at
least one of the following alternatives holds:

1. There is a matching N with |N | = |M |+ 1.

2. There is a matching N with |N | = |M | and an N -alternating odd cycle in G.

3. There is a vector c ∈ {0, 1, 2}V such that the weight of any edge is at least 2, and the sum of its
entries is exactly 2|M |.

This lemma allows us to interpret of Edmonds’ algorithm as follows. Consider a matching M in graph
G, try Lemma 1.1. Alternative 1 gives an augmentation, alternative 3 verifies optimality. Alternative
2 provides an odd cycle for contraction. Contraction of an alternating odd cycle has the property that
augmentation, or a Berge-Tutte-dual in G/C can be expanded to G.

2 Packings in p-graphs — Definitions
The most important notion in this paper is a permutation labeled graph or p-graph, for short. A p-graph
comes in the form of G, A, ω, π, where G is a graph, A is a set of nodes, π are edge-labels. This notion
provides a generalization of some well-known packing problems – matching, node-disjoint A-paths, non-
zero A-paths. The motivation for this version is that important reduction principles used by our algorithm
stay within the concept of a p-graph, but does not stay within well-known previous concepts. The precise
definition of a p-graph is formulated as follows.

Let G = (V,E) be an undirected graph with node-set V , edge-set E with a reference orientation. Let
A ⊆ V be a fixed set of terminals. Let Ω be an arbitrary set of “potentials” and let jj, JJ be called
Jolly Joker (some imaginary labels). Let ω : A → Ω define the potential of origin for the terminals.
Let π : E → S(Ω) ∪ {JJ} where S(Ω) is the set of all permutations of Ω. For an edge ab = e ∈ E,
let π(e, a) := π(e) and π(e, b) := π−1(e) be the mapping of potential on edge ab. (We use ◦ for the
composition of permutations. We define JJ−1 := JJ ◦ π := π ◦ JJ := JJ and JJ(ω) := π(jj) := jj for
any π ∈ S(Ω) ∪ {JJ} and for any ω ∈ Ω ∪ {jj}.) A walk in G is a sequence of nodes and edges, say
W = (v0, e0, v1, e1, . . . , ek−1, vk) where ei = vivi+1 or ei = vi+1vi for all 0 ≤ i ≤ k − 1. W is called
an A-walk in G if v0, vk ∈ A and vj /∈ A (for j 6= 0, k). χW ∈ NV denotes the traversing multiplicity
vector of walk W , defined by χW (v) := |{j : vj = v}|. A walk W is called a path if χW ≤ 1. We will
usually use letters P,R for paths. For an A-walk let π(W ) := π(e0, v0) ◦ π(e1, v1) ◦ . . . ◦ π(ek−1, vk−1)
define the mapping of potentials on W . W is called non-returning if π(W )(ω(v0)) 6= ω(vk). (Hence,
an empty A-walk (having a single node and no edge) is not considered to be non-returning. Notice, if
W traverses any edge with label JJ, then W is non-returning.) A family P of fully node-disjoint non-
returning A-paths is called a packing. ν = ν(G) = ν(G, A, ω, π) denotes the maximum cardinality of
a packing. Also, a “node-capacited packing problem” can be defined. Consider a function b ∈ NV of
node capacities. A family W of A-walks (we allow walks to be taken multiply) is called a b-packing if∑

W∈W χW ≤ b. Let νb = νb(G) = νb(G, A, ω, π) denotes the maximum cardinality of a b-packing.
b = 1 defines packings, b = 2 defines 2-packings.
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3 Min-max Theorems for packings
For a set F ⊆ E of edges, let AF := A ∪ V (F ). F is called A-balanced if ω can be extended to a
function ωF : AF → Ω s.t. each edge ab ∈ F is ωF -balanced – i.e. π(ab, a)(ωF (a)) = ωF (b). Let
codd(G, A) be the number of components in G having an odd number of nodes in A – these will be called
odd components of G, A. Let c1(G, A) be the number of nodes in A which are isolated nodes of G.

Theorem 3.1 In a p-graph the maximum cardinality of a packing is determined by

ν(G, A, ω, π) = min
F,X

|X|+ 1
2

(
|AF −X| − codd(G− F −X, AF −X)

)
, (1)

where the minimum is taken over an A-balanced edge-set F and a set X ⊆ V .

Theorem 3.2 In a p-graph the maximum cardinality of a 2-packing is determined by

ν2(G, A, ω, π) = min
F,X

2|X|+ |AF −X| − c1(G− F −X, AF −X) , (2)

where the minimum is taken over an A-balanced edge-set F and a set X ⊆ V .

In Theorem 3.2 we do not count odd components to determine a maximum 2-packing, this indicates that
2-packings are simpler than packings. A similar relation there is between matchings and 2-matchings, the
latter admitting a reduction to bipartite matching, Kőnig’s Theorem. The following theorem is in fact a
reformulation of Theorem 3.2, here we formulate a Kőnig-type condition for 2-packings.

Theorem 3.3 In a p-graph the maximum cardinality of a 2-packing is determined by

ν2(G, A, ω, π) = min ||c|| , (3)

where ||c|| :=
∑

v∈V c(v) and the minimum is taken over 2-covers c, i.e. vectors c ∈ {0, 1, 2}V such that
c · χW ≥ 2 for any non-returning A-walk.

4 Contraction of dragons
A path P is called a half-A-path if it starts in a terminal s ∈ A, ends in a node t ∈ V and V (P )∩A = {s}.
We say P ends in t with potential π(P )(ω(s)). Consider a node v ∈ V and a potential ω0 ∈ Ω ∪ {jj}.
We say a node v is ω0-reachable (or ω0 is reachable at v), if there is a pair P, Pv such that Pv is a
half-A-path ending in v with ω0, and P is a packing of ν non-returning A-paths each of which is fully
node-disjoint from Pv . We say a node is reachable if it is ω0-reachable for some ω0 ∈ Ω ∪ {jj}. v is
called uniquely reachable if it is ω0-reachable only with a single element ω0 6= jj. Otherwise – if v is
jj-reachable or there are at least two different elements of Ω which are reachable at v, then v is called
multiply reachable. The definition implies that a reachable terminal is uniquely reachable. We call a
p-graph G a dragon if |A| = 2ν + 1 and every node is reachable. A p-graph is called critical if it is
a dragon such that every non-terminal is multiply reachable. (The notion of criticals is analogue to the
notion used in (1). The notion of dragons should be considered as a weak version of criticality.) Let us
use the expression odd cycle for p-graphs s.t. G = (V,E) is an odd cycle, A = V , and all the edges in
E give one-edge non-returning A-walks (which are in fact non-returning A-paths except for 1-edge odd
cycles). A p-graph with V = {a, b}, E = {ab}, A = {a} is called a rod.
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Claim 4.1 Odd cycles and rods are dragons. 2

A crucial lemma is the following, saying that the min-max formula holds for dragons.

Lemma 4.2 (A dragon has a special dual) Suppose a G is a dragon with exactly its nodes in V1 being
uniquely reachable, say v ∈ V1 is ω′(v)-reachable. Let F := {e ∈ E[V1] : e is ω′-balanced}. Then
2ν = |V1| − c(G− F, V1).

The notion “reachability” is in fact motivated by the goal to define the contraction of dragon subgraphs.

Definition 4.3 (Contraction of a dragon) Consider a set Z ⊆ V such that G[Z] is dragon. We define
the contracted p-graph on G/Z as follows. Let Z1 be the uniquely reachable nodes in G[Z], say a ∈ Z1

is ωa-reachable. Let A/Z := A − Z + {Z}. Let Ω′ := Ω + • for some new element • /∈ Ω. Let
ωZ(s) := ω(s) for all s ∈ A/Z − {Z}, and let ωZ({Z}) := •. We define πZ(e) by the following case
splitting. If e is disjoint from Z, then we define πZ(e) by extending π(e) to Ω′ by mapping • to •. For an
edge ab with a ∈ Z1, b /∈ Z we label its image {Z}b s.t. πZ({Z}b)({Z}) = π(ab)(ωa). For an edge ab
with a ∈ Z − Z1, b /∈ Z we define let πZ({Z}b) := JJ.

We define the contraction of a node-disjoint family Z of dragons G/Z, A/Z, ωZ , πZ by contracting
the dragons in Z one-by-one. By definition, a contraction has the following properties.

Claim 4.4 (Expansion of a packing) From any packing in G/Z one can construct a packing in G which
exposes the same number of terminals.

Claim 4.5 (Pre-image of a dragon) The pre-image of a dragon Z1 in G/Z is dragon. (Thus, Z/Z1 :=
{Z : Z ∈ Z, {Z} /∈ Z1} ∪ {the pre-image of Z1} is a finer node-disjoint family of dragons.)

5 The 3-Way Lemma and the algorithm
Our main tool in the algorithm is the 3-Way Lemma for packings. Consider a packing P in G and a
dragon Z in G. We say P is equipped with Z if P consists of some paths disjoint from V (Z) and exactly
ν(G[Z]) = (|A ∩ V (Z)| − 1)/2 paths inside Z.

Lemma 5.1 (The 3-way Lemma) Consider a p-graph with a packing P . Then at least one of the follow-
ing alternatives holds:

1. There is a packing R with |R| = |P|+ 1.

2. There is a packing R s.t. |R| = |P|, and is equipped with a rod or an odd cycle.

3. There is a 2-cover c such that 2|P| = ||c||. (I.e. a verifying 2-cover for 2× P)

The 3-Way Lemma is applied sequentially in the algorithm to construct sequences of contractions.
A sequence of contractions is a sequence (Z1, G1,P1,R1, S1), · · · , (Zm, Gm,Pm,Rm, Sm),
(Zm+1, Gm+1,Pm+1) with m ≥ 0, and the following properties. Z0 = ∅, and Zi is a node-disjoint
family of dragons in G. Gi = (Vi, Ei) := G/Zi. Gi[Si] is an odd cycle or a rod, where Si ⊆ Vi. Ri

is a packing in Gi which is equipped with Si. Pi+1 := Ri/Si, Zi+1 := Zi/Si for i = 1, · · · ,m. Each
Pi,Ri leaves the same number of terminals uncovered.

The proof of Theorem 3.1 and the algorithm relies on the following key observation, which provides
a tool to construct a verifying pair. It says that from a 2-packing verification in a contraction we can
construct a packing verification in the original p-graph.
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Lemma 5.2 (Constructing a verifying pair) Suppose we have a sequence of contractions, and a 2-cover
c in Gm+1 with 2|Pm+1| = ||c||. Then for all i, Pi is a maximum packing in Gi and one can construct a
verifying pair for Pi.

Now we are in position to sketch the algorithm. Our algorithm has an input of a p-graph G and a packing
P . The output is either a larger packing, or a verifying pair for P . The algorithm starts off with initiating
the trivial sequence of contractions, m = 0. In a general step, apply Lemma 5.1 to Gm+1,Pm+1! If
alternative 1 holds, then by Claim 4.4 one can construct a packing in G larger than P . If alternative 2
holds, then by Claim 4.5 one can construct a longer sequence of contractions. If alternative 3 holds, then
by Claim 5.2P is maximum, and a verifying pair can be constructed. Full proofs are given in (7). Detailed
analysis of the algorithm implies that dragons have a so-called dragon-decomposition.

Definition 5.3 A dragon-decomposition is given by a forest F ⊆ E which has the following properties.

1. The components of forest (V (F ) ∪A,F ) are exactly {Fa : for each a ∈ A} s.t. for each a ∈ A we
have A ∩ V (Fa) = {a}.

2. Let ωF : V (F )∪A → Ω be the (uniquely defined) function s.t. each edge in F is ωF -balanced. Let
F ′ be the set of ωF -balanced edges. Let K is the family of components of G− F ′. F/K is a tree.

3. K, V (F ) ∩ V (K), ωF , π is critical.

Lemma 5.4 Dragons are exactly those p-graphs which have a dragon-decomposition. V (F ) ∪ A is
exactly the set of uniquely reachable nodes.
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