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In our paper we consider the Ps-packing problem in subcubic graphs of different connectivity, improving earlier
results of Kelmans and Mubayi (5). We show that there exists a Ps-packing of at least [3n/4] vertices in any
connected subcubic graph of order n > 5 and minimum vertex degree § > 2, and that this bound is tight. The proof
is constructive and implied by a linear-time algorithm. We use this result to show that any 2-connected cubic graph
of order n > 8 has a P3-packing of at least [7n/9] vertices.
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1 Introduction

Generalized matching problems have been studied in a wide variety of contexts (1; 2; 4). One of the
possible generalizations is the problem of finding the maximum number of vertex-disjoint copies of some
fixed graph H in a graph G (maximum H-packing), and herein we study lower bounds on the size of the
maximum Ps-packing in certain classes of cubic and subcubic graphs (Ps denotes a path of order 3), a
problem first discussed by Akiyama and Kano in 1985 (1).

In 2004 Kelmans and Mubayi (5) showed that any cubic graph of order » must have a Ps-packing
of at least [3n/4] vertices (the presented 20-page proof is constructive and implied by a quadratic-time
algorithm). In Subsection 2.1 we show that a more general result holds, namely that any connected graph
of order n # 5, with vertices of degree 2 and 3 only, has a Ps-packing of at least [3n/4] vertices. The
proof immediately implies a linear-time algorithm for finding such a packing. This bound is shown to be
tight. We then briefly remark on general subcubic graphs, for which we show a tight bound of [3n/5],
provided n > 2. In Subsection 2.2 we use these results to show that any 2-connected cubic graph of order
n > 8 has a Ps-packing of at least [7n/9] vertices.

2 Bounds on the size of a P3-packing for subcubic graphs
2.1 Packing P in (2,3)-regular graphs

Let us recall that a graph is subcubic if all its vertex degrees are at most three. Next, we will call a graph
(2, 3)-regular if it has vertices of degree 2 and 3 only. In order to prove that a connected (2, 3)-regular
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graph of order n # 5 has a P3-packing of at least [3n /4] paths, we will show that such a graph must have
a spanning tree admitting such a packing. A modified version of the well known DFS approach may be
applied to find such a tree.

Definition 1 A graph is said to be pendant- P-free if it contains no path of k + 1 vertices such that one of
the end vertices of the path is of degree 1 in G, the other is of degree 3, while all other vertices of the path
are of degree 2. In particular, a graph is pendant- Po-free if none of its vertices of degree 2 is adjacent to
both a vertex of degree 1 and a vertex of degree 3.

Lemma 2 [f a subcubic tree T of order n & {1,2,5} is pendant- Py-free, then there exists a Ps-packing
in T of at least [n/4] paths.

Proof: The proof proceeds by induction on the number of vertices in the graph. If tree 7" has either 3 or 4
vertices or 7' is a path of length n > 6 then the thesis holds. It now suffices to show that if tree 7" fulfills
the assumption and n > 6, we can find a possibly disconnected subgraph S C T of order at most 4 such
that S has a P3-packing of one path, while 7"\ S is a tree fulfilling the assumptions of the lemma.

First, consider the case when T has a pendant path of length k& for some k > 4 (i.e. a path of length
k connected to a vertex of degree 3). We will show by contradiction that the subgraph S may be chosen
as either the 3-vertex path L3, or the 4-vertex path L, at the end of the pendant k-path. Suppose that
neither case is possible. The graph 7"\ L3 is a tree of at least 3 vertices, so therefore it must either have 5
vertices, or have a pendant P». In the first case we immediately have that T'\ Ly has 4 vertices, and since
any connected graph of 4 vertices fulfills the assumption of the lemma, we reach a contradiction. In the
second case, it transpires that &k = 5. Graph T'\ L4 does not have pendant P and has at least 3 vertices,
so it does not fulfill the assumptions of the lemma only when it has 5 vertices. It can easily be shown from
here that since 7" does not have pendant P, T" can only be the path Py, a contradiction with £ = 5. This
completes the proof for the case when 7" has a pendant path of length at least 4.

Now, let us suppose that 7" has a pendant path L3 of length exactly 3. If the tree 7'\ L3 does not fulfill
the assumption of the lemma, then it has 5 vertices or a pendant P,. In the first case 7" has order 8 and
can be covered by two paths P; (one for Ls, one for 7'\ Ls). The second case is illustrated in Fig. 1(b).
Taking S = L3 U K (where K is the one-vertex graph induced by the end of the pendant P, in T\ L3),
we ensure that 7'\ .S has no pendant P. Taking into account that 7" does not contain pendant Py, T\ S
may never have 5 vertices, which completes the proof in this case.

Finally, we consider the case when 7" has no pendant Py, for any k£ > 2. It must therefore have a vertex
of degree 3 adjacent to two vertices of degree 1. Consider the path L3 induced by three such vertices.
The proof follows analogously as in the previous case. The only difference is that this time there are two
cases corresponding to the situation when 7'\ L3 has a pendant P, (depicted in Fig. 1(c) and (d)), which
necessitate a different choice of vertex K for which S = L3 U K fulfills the inductive assumption. a

As a side note, let us recall that Masuyama and Ibaraki (7) showed that the maximum PF;-packing
problem in trees can be solved in linear time, for any ¢ > 3. The idea of their algorithm is to treat a tree
T as arooted tree (T, r) (with an arbitrary vertex r a the root) and to pack i-vertex paths while traversing
(T, r) in the bottom-up manner.

Corollary 3 If graph G of order n has a spanning forest whose trees fulfill the assumptions of Lemma 2,
then there exists a Ps-packing in G of at least [n/4) paths, which can be found in linear time.
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Fig. 1: (a) a tree containing a pendant P» path, (b) choice of path L3 and vertex K for trees with pendant Ps, (¢), (d)
choice of path L3 and vertex K for trees without pendant paths longer than 1

Theorem 4 There exists a Ps-packing of at least [n/4] paths for any connected (2, 3)-regular graph of
n > b vertices.

Proof: Consider a (2, 3)-regular graph G of order n which fulfills the assumptions of the theorem. Taking
into account Corollary 3, it suffices to show an algorithm for constructing a spanning forest in G whose
trees fulfill the assumptions of Lemma 2. Such an algorithm is presented below.

1. For each connected component of GG successively consider all edges e connecting vertices of degree
3. If removal of the edge from G does not create a new connected component of order 5, remove
the edge from G and continue the process. Otherwise mark one of the endpoints of e as a cut vertex
and proceed to the next connected component.

2. For each connected component H of G construct a Depth First Search (DFS) spanning tree T'. The
tree should be rooted following one of the rules below:

(a) If H has a cut vertex v marked in Step 1, let vertex v be the root of the tree.

(b) If there exists an induced path (u1, us, us3) in H such that us and ug are adjacent and of degree
2 in H, let u; be the root of the tree and let us be the first vertex visited while recursing.

(c) If neither rule (a) nor rule (b) can be applied, let any vertex of degree 2 in H be the root of the
tree.

3. For each connected component H, if the resulting DFS tree T is not pendant- P»-free, then for each
DFS leaf v at the end of a pendant P, remove from 7' the edge incident to v and insert into 7" any
other edge which is incident to v in H. The set of spanning trees obtained in this way (taken over
all components of G3) is the sought pendant- P>-free spanning forest.

Careful analysis shows that application of Step 1 and the rules of selecting a DFS root in Step 2 of the
algorithm guarantee that the root of the DFS tree is not an end vertex of a pendant P, path and does not
become one throughout step 3. We will confine ourselves to the proof that applying Step 3 of the algorithm
on any DFS spanning tree guarantees that the resultant tree does not have pendant- P, containing the DFS-
leaves of the tree. Indeed, each pendant P, of T at the start of Step 3 either contains the DFS root v, or
ends in some DFS leaf u. In the latter case, since vertex v is of degree at least 2 by assumption, there must
exist an edge connecting v with some vertex w on the path from v to u in the DFS tree, other than the
direct DFS parent of u. It transpires that w is not a DFS leaf and that the subtree of 7" rooted at w is not
a path. Performing the reconnection operation described in Step 3 of the algorithm removes one pendant
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P, path from T without creating any new ones. Furthermore, since operations are performed on leaves
only, the essential properties of the DFS tree are not lost throughout the algorithm.
The runtime of all the steps of the presented algorithm is linear and requires little comment. O

The bound given by Theorem 4 is tight even for the class of 2-connected (2, 3)-regular graphs. The
class of graphs obtained from cyclic ladders by inserting exactly two vertices on every edge, may serve as
an example (see Appendix).

It is interesting to consider in what way Lemma 2 may be generalised if no assumptions are made on
the form of the considered spanning tree. Using a similar technique as that used in the proof of Lemma 2,
it is easy to show the following statement.

Theorem 5 There exists a Ps-packing of at least [ (3n — 6) /5] vertices in any subcubic graph of order n.

The bound given in Theorem 5 is tight even for subcubic trees (see Appendix).

2.2 Packing P; in cubic 2-connected graphs

For connected cubic graphs the known lower bound is a direct conclusion from Theorem 4 (since a cubic
graph may not have 5 vertices, all cubic graphs have a Ps-packing of at least [3n/4] vertices). It is not
known whether this bound is tight for arbitrarily large values of n; an upper bound of [4n/5] can be
obtained by considering a class of graphs with numerous pendant 5-vertex components (see Appendix).

The effect of the connectivity of a cubic graph on the size of its Ps-packing was first discussed by
Akiyama and Kano (1), who posed the following conjecture (which is still open).

Conjecture 6 (1) Every 3-connected cubic graph of order divisible by three has a perfect Ps-packing.

For 2-connected cubic graphs Conjecture 6 does not hold (1), and the problem of finding a maximum
Ps-packing in a 2-connected bipartite graph is APX-hard. However it is possible to develop an improved
lower bound of [7n /9] vertices on the size of the Ps-matching in a 2-connected cubic graph.

Due to the lack of space we only present the outline of the proofs. The applied techniques are similar
to those used in the proof of Theorem 4 and the proof is based on a very detailed analysis of individual
cases.

Lemma 7 [f the vertex set of a connected subcubic graph G of order n > 8 can be partitioned into sets of
4, 5 and 8 elements, each of which induces a Hamiltonian subgraph of G, then there exists a P3-packing
of at least [Tn /9] vertices in G.

Proof: Consider a multigraph M obtained from graph G by replacing each subgraph induced by sets
of 4, 5 and 8 elements (called an s-graph, where s = 4,5,8) by a vertex in the multigraph (called an
s-vertex, where s = 4,5,8). Two s-vertices are adjacent in M iff there is an edge in G connecting two
corresponding s-graphs. As noticed in (6) every connected graph G of at least 3 vertices has a partition
into spiders (i.e. stars of at least 3 vertices with attached pendant vertices, at most one per each pendant
vertex of the star). Since G has at least 9 vertices, multigraph M can be partitioned into spiders or M has
exactly two vertices, one of them representing a 5- or 8-vertex cycle in G. This partition of M induces
the corresponding partition of graph G into connected components of one of several possible types (of not
more than 136 vertices). By the detailed analysis of these components it can be proven that in each such
component C' there exists a Ps-packing of at least [7|V (C')|/9] vertices. O
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Class of graphs Connected 2-connected 3-connected
Subcubic [(3n —6)/5]* - -
(2,3)-regular | [3n/4],n > 5% | [3n/4],n > 5* -
Cubic [3n/4] (see (5)) | [Tn/9],n>8 | [Tn/9],n > 8

Tab. 1: Proven lower bounds on the number of vertices in a maximum Ps-packing in a subcubic graph. Tight bounds
are marked with asterisks.

Let G be a 2-connected cubic graph of order n > 8. Since G is a 2-connected cubic graph, its vertex
set can be partitioned into subsets inducing Hamiltonian subgraphs of order at least 4 (see Lemma 7 (4)).
Analogously as in the proof of Lemma 7, we construct the multigraph A with s-vertices corresponding
to the subsets of s elements inducing Hamiltonian subgraphs in G. We consider connected components
of multigraph M induced by all s-vertices, where s € {4, 5,8} and the rest of multigraph M, say M’.
We attach isolated s-vertices (for s = 4,5, 8) and components of two connected 4-vertices to M’. By
Theorem 4 one can prove that M’ admits Ps-packing of at least [7n /9] vertices, and by Lemma 7 we get

Theorem 8 There exists a Ps-packing of at least [Tn/9] vertices for any 2-connected cubic graph of
order n > 8.

A summary of the main results presented in the paper is given in Table 1.
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Appendix
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Fig. 2: (a) A tight example for the bound on the number of vertices in the maximum Ps-packing in a subcubic
graph ([(3n — 6)/57). (b) A tight example for the bound on the number of vertices in the maximum Ps-packing in a
2-connected (2, 3)-regular graph ([3n/4]).
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Fig. 3: An example of a class of cubic graphs with a maximum P5 packing of not more than 4n/5 vertices.



