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Packing triangles in low degree graphs and
indifference graphs

Gordana Manić† and Yoshiko Wakabayashi‡

Instituto de Matemática e Estatı́stica da Universidade de São Paulo — Departamento de Ciência da Computação —
Rua do Matão 1010, CEP 05508-090, São Paulo, SP – Brazil, {gocam,yw}@ime.usp.br

We consider the problems of finding the maximum number of vertex-disjoint triangles (VTP) and edge-disjoint
triangles (ETP) in a simple graph. Both problems are NP-hard. The algorithm with the best approximation guarantee
known so far for these problems has ratio 3/2+ ε, a result that follows from a more general algorithm for set packing
obtained by Hurkens and Schrijver in 1989. We present improvements on the approximation ratio for restricted cases
of VTP and ETP that are known to be APX-hard: we give an approximation algorithm for VTP on graphs with
maximum degree 4 with ratio slightly less than 1.2, and for ETP on graphs with maximum degree 5 with ratio 4/3.
We also present an exact linear-time algorithm for VTP on the class of indifference graphs.
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1 Introduction
For a given family F of sets, any collection of pairwise disjoint sets is called a packing of F . The
maximum k-set packing problem is defined as follows: given a family F of sets of size k ≥ 2 over a
certain domain, find a largest packing of F . This problem is a fundamental combinatorial problem that
underlies a range of practical and theoretical problems. The case k = 2 is the well-known maximum
matching problem. We study two special cases of the maximum 3-set packing problem that are NP-hard.

A cycle of length 3 in a graph G = (VG, EG) is called a triangle. Let TV (G) (resp. TE(G)) denote the
collection of the sets of vertices (resp. edges) of all triangles in G. We address the following problems on
simple graphs. Vertex-Disjoint Triangle Packing (VTP): given a graph G, find a maximum size packing
of TV (G), and Edge-Disjoint Triangle Packing (ETP): given a graph G, find a maximum size packing of
TE(G). For simplicity, we may also refer to a collection of vertex-disjoint (resp. edge-disjoint) triangles
of a graph G as a packing of TV (G) (resp. TE(G)).

The problem VTP arises in scheduling airline flight crew (say pilots, copilots, and navigators) to air-
planes, while ETP has applications in computational biology (2). As both problems are NP-hard (7; 5),
we wish to find good approximation algorithms or special instances amenable to polynomial algorithms.
Consider the following local search algorithm HS(T , t), where T is TV (G) for VTP (resp. TE(G) for
ETP) and t is a positive integer.
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Algorithm HS(T , t): Given a collection C of disjoint sets constructed so far, check whether
there are p ≤ t disjoint sets in T \C that intersect at most p − 1 sets that are in C. If this
happens, swap the sets to form a larger collection C, and repeat; otherwise, return C.

A general result of Hurkens and Schrijver (6) on the maximum k-set packing problem implies that the
above algorithm is a ( 3

2 +ε)-approximation algorithm for both VTP and ETP (ε is inversely proportional
to t). This ratio is tight and is the best approximation ratio known so far for both problems. There are
only a few more results concerning maximum triangle packings. Both problems admit a polynomial-time
approximation scheme on planar graphs (1) and λ-precision unit disk graphs (a result proved by Hunt et al.
in 1998). The problem VTP is NP-complete when restricted to chordal graphs, while it is polynomially
solvable on split graphs and cographs (4).

For a given integer k ≥ 3, we denote by VTP-k (resp. ETP-k), the problem VTP (resp. ETP) on
graphs with maximum degree k. Both VTP-3 and ETP-4 can be solved in polynomial time, whereas
VTP-4 and ETP-5 are APX-hard (2). We present improvements on the approximation ratios of these
APX-hard instances: a (3 −

√
13
2 + ε)-approximation algorithm for VTP-4, and a 4

3 -approximation al-
gorithm for ETP-5. We also give an exact linear-time algorithm for VTP on indifference graphs (or,
equivalently, unit interval graphs and proper interval graphs). This result is of interest in view of many
applications of such graphs in management, psychology, scheduling, etc.

1.1 Basic definitions and notation
A natural reduction for both VTP and ETP consists in deleting the edges that do not belong to any
triangle. We, thus, restrict our attention to simple graphs in which every edge belongs to some triangle;
these graphs will be called irredundant. The terminology we use is standard. One exception is that, when
we write G− U (for U ⊆ VG or U ⊆ EG) we assume that isolated vertices and edges that do not belong
to any triangle on the graph obtained by deleting U from G have been removed as well. Graphs G and H
intersect if G ∩H is a non-empty graph. The degree of a triangle T in a graph G, dG(T ), is the number
of triangles in G, different from T , that intersect T . We denote by TG the collection of all triangles in G,
and by [u, v, w] the triangle with vertices u, v and w. If two triangles T1 and T2 of G have only one vertex
in common and there is no other triangle in G that intersects both T1 and T2, we say that the subgraph
T1 ∪ T2 is a butterfly in G, and denote by vT1T2 the only vertex in common to T1 and T2. A collection
T of vertex-disjoint triangles in G is locally optimal in G if {VT : T ∈ T } is a maximum packing of the
family {VT : T ∈ TG, T intersects a triangle in T }.

The intersection graph of a collection of sets T is the graph H with VH := T and such that XY ∈
EH ⇔ X∩Y 6= ∅. A graph G is an indifference graph if there exists a positive number δ and a real-valued
function f on VG such that for all u, v ∈ VG (u 6= v), uv is an edge in G whenever |f(u)− f(v)| < δ.

2 The problem VTP on graphs with maximum degree 4
We describe in this section an algorithm, called VT4k, for VTP on graphs with maximum degree 4.
This algorithm performs some approximation-preserving reductions to transform the input graph G into
another graph G′ in which every triangle intersects at most 3 other triangles. Then, on the intersection
graph of TG′ it applies the (3−

√
13
2 + 13−

√
13

52k )-approximation algorithm of Chlebı́k and Chlebı́ková (3),
which we denote by MIS3k (where k is a fixed integer parameter), for the problem of finding a maximum
cardinality independent set of vertices on graphs with maximum degree 3. We note that for k = 4 the
above ratio is slightly less than 1.25; and for k > 65 it is slightly less than 1.2.
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In each iteration of the algorithm VT4k, a set T ⊆ TG, |T | ≤ 2, locally optimal in G is repeatedly
added to A∗ (the set to be returned by the algorithm) and G is updated. If G contains a triangle T with
degree greater than 3, the algorithm finds a certain subgraph H that contains T and applies an appropriate
reduction (in a way that in the reduced graph the triangles obtained by this reduction have degree at most
3). The reduction is based on the number of triangles in H that forms a butterfly with a triangle not in H
(which is at most 2).

Algorithm VT4k

Input: A graph G with maximum degree 4.
1 A∗ ← ∅
2 while exists a triangle in G with degree greater than 3
3 do while exists T ⊆ TG, |T | ≤ 2, locally optimal in G do Accept(T )
4 if exists a triangle T ∈ TG with dG(T ) > 3
5 then H ← maximal connected irredundant subgraph of G that
6 contains T and does not contain any butterfly
7 BH ← {T ′ ∈ TH : exists a triangle in TG\TH that forms a butterfly with T ′ in G}
8 if |BH | = 2 then apply Reduction(H)
9 else if |BH | = 0
10 then { take a triangle T̃ in TH , SolH ← T̃ ∪ Commit(H − V eT ) }
11 if |BH | = 1 then SolH ← Commit(H)
12 A∗ ← A∗ ∪ SolH
13 if G 6= ∅ then A∗ ← A∗ ∪MIS3k(intersection graph of TG)
14 for every application of Reduction(H) do Restauration(H)
15 return A∗

Each of the procedures is described next in more detail.

1. Accept(T ): Add T to A∗ and delete from G the vertices of all triangles in T .

2. Commit(H): Set E := ∅. While H 6= ∅, find a triangle T locally optimal in H , add T to E and
delete VT from H . Return E .

3. Reduction(H): Take T ′, T ′′ ∈ BH and T̃ ′, T̃ ′′ ∈ TG \TH such that T ′ ∪ T̃ ′ and T ′′ ∪ T̃ ′′ are
butterflies in G (possibly T̃ ′ = T̃ ′′). Let

SolT ′T ′′ := {T ′, T ′′}∪Commit(H−VT ′−VT ′′),SolT ′T
′′ := {T ′}∪Commit(H−VT ′−vT ′′ eT ′′),

SolT ′
T ′′ := {T ′′}∪Commit(H−VT ′′−vT ′ eT ′), SolT ′

T
′′ := Commit(H−vT ′ eT ′−vT ′′ eT ′′).

(a) If |SolT ′T ′′ | = |SolT ′T
′′ | = |SolT ′

T ′′ | = |SolT ′
T

′′ |, then Accept (SolT ′
T

′′).

(b) If the equalities in (a) are not satisfied and T̃ ′ = T̃ ′′, then Accept (SolT ′T ′′).

(c) If |SolT ′T ′′ |−1= |SolT ′T
′′ |= |SolT ′

T ′′ |= |SolT ′
T

′′ | and T̃ ′ 6= T̃ ′′ then apply Reduction 1(H):

G←
(
G− (EH \{ET ′ ∪ ET ′′})

)
∪ TH ,

where TH := [v′, w, v′′], w is a new vertex, v′ is any vertex of T ′ different from vT ′ eT ′ , and
v′′ is any vertex of T ′′ different from vT ′′ eT ′′ . Thus, Reduction 1(H) replaces all triangles of
H , except T ′ and T ′′, with a new triangle TH .
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(d) If |SolT ′T ′′ |= |SolT ′T
′′ |=|SolT ′

T ′′ |= |SolT ′
T

′′ |+1 and T̃ ′ 6= T̃ ′′, then apply Reduction 2(H):

G← (G− EH) ∪ T 1
H ∪ T 2

H ,

where T 1
H := [vT ′ eT ′ , w1, w], T 2

H := [w,w2, vT ′′ eT ′′ ] and w1, w, w2 are new vertices. Hence,
this reduction replaces all triangles of H with the new triangles T 1

H and T 2
H .

4. Restauration(H):
(a) If the reduction applied to H was Reduction 1(H), then if TH belongs toA∗ before applying

Restauration(H), this procedure removes TH from A∗ and adds to it the set SolT ′
T

′′ (com-
puted in the procedure Reduction(H)); if T ′, T ′′ ∈ A∗, thenA∗ ← A∗∪SolT ′T ′′ ; if T ′ ∈ A∗,
T ′′ /∈ A∗, then A∗ ← A∗ ∪ SolT ′T

′′ ; and if T ′ /∈ A∗, T ′′ ∈ A∗, then A∗ ← A∗ ∪ SolT ′
T ′′ .

(b) If, however, the reduction applied to H was Reduction 2(H), then if T 1
H belongs toA∗ before

applying Restauration(H), this procedure adds SolT ′T
′′ toA∗ and removes T 1

H ; if T 2
H ∈ A∗,

then adds SolT ′
T ′′ to A∗ and removes T 2

H ; and if T 1
H , T 2

H /∈ A∗, then adds SolT ′
T

′′ to A∗.

Making use of the structural properties of the input graph, maximum degree 4 and irredundancy (that are
maintained in each iteration), we can prove that the graph H defined in the algorithm is isomorphic to
one of the graphs in Figure 1. Thus, for each iteration of VT4k, the cardinality of BH in line 8 is less
than 3. If |BH | ≤ 1, then G[VH ] is a component of G and SolH is an optimal solution in that component.
We can also prove that Reduction 1, Reduction 2 (and corresponding restaurations) and Accept are all
approximation-preserving reductions, and thus the approximation ratio of VT4k is that of MIS3k.
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Fig. 1: Possible configurations of graph H . Each square vertex is a vertex common to two triangles in G whose union
is a butterfly. The graph (c) has at least 7 vertices.The graphs (d) and (e) have at least 9 vertices, and G[VH ] is a
component of G (in (d) dashed lines indicate edges not in EH ).

Theorem 2.1 The algorithm VT4k is a (3−
√

13
2 + 13−

√
13

52k )-approximation algorithm for VTP-4.

The time complexity of VT4k is dominated by that of MIS3k, which is O(|VG|O(k)).

3 The problem ETP on graphs with maximum degree 5
We restrict now our attention to graphs with maximum degree 5 and describe an approximation algorithm,
called ET5, for the problem ETP on such graphs.

Algorithm ET5
Input: A graph G with maximum degree 5.
1 A∗ ← ∅
2 while G contains a Hajos graph H = H[T1, T2, T3] (see the figure beside)
3 do {A∗ ← A∗ ∪ {T1, T2, T3}, G← G− EH}
4 return A∗ ∪ {T : ET ∈ HS(TE(G), 3)}

b bb

bb

b

T2T1

T3

Lemma 3.1 The algorithm HS(TE(G), 3) is a 4
3 -approximation algorithm for the problem ETP-5 on a

graph G that does not contain a Hajós graph.
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The proof of Lemma 3.1 is by induction on the number of triangles in G. For that, one should prove
first that if T ∗ is a maximum packing of TE(G), then there is a subcollection A ⊆ HS(TE(G), 3) with
|A| ≤ 3, such that, the ratio of the number of triangles from T ∗ that share an edge with a triangle in A to
|A|, is at most 4

3 ; and then apply the induction hypothesis on G−
⋃

T∈A ET . Now, using Lemma 3.1 and
the fact that if G is a graph that contains a Hajós graph H , then the number of triangles in any maximum
packing of TE(G) that share an edge with H is at most 4, we obtain the approximation ratio of ET5.

Theorem 3.2 The algorithm ET5 is a 4
3 -approximation algorithm for the problem ETP-5. Furthermore,

the ratio 4
3 is tight and the algorithm can be implemented to run in O(|VG|3) time.

4 The problem VTP on indifference graphs
For the next result we use the following characterization obtained by Looges and Olariu (8): a graph G is
an indifference graph if, and only if, there exists a linear order < (which we call canonical) on VG such
that, for every choice of vertices u, v, w we have that if u < v < w and uw ∈ EG, then uv, vw ∈ EG.

Algorithm VTindifference
Input: An indifference graph G.
1 Find a canonical order v1 < v2 < · · · < vn on VG

2 A∗ ← ∅
3 for i← 1 to |VG| − 2
4 do if vivi+2 ∈ EG then {T ← [vi, vi+1, vi+2], A∗ ← A∗ ∪ T , G← G− VT }
5 return A∗

One may prove by contradiction that the algorithm above solves VTP on indifference graphs. It suffices
to consider an optimal solution that has the maximum number of triangles in common with the solution
found by the algorithm. Since the canonical order can be computed in linear time (8), it follows that the
algorithm is linear.
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