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Random Inscribing Polytopes

Ross M. Richardson'! Van H. Vu'* and Lei Wu!$

1Department of Mathematics, University of California at San Diego, La Jolla, CA 92093-0112, USA

For convex bodies K with C* boundary in R?, we provide results on the volume of random polytopes with vertices
chosen along the boundary of K which we call random inscribing polytopes. In particular, we prove results concern-
ing the variance and higher moments of the volume, as well as show that the random inscribing polytopes generated
by the Poisson process satisty central limit theorem.
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1 Introduction

Let X be a set in R? and let «1, . . ., z,, be independent random points chosen according to some distri-
bution 1 on X. The convex hull of the x;’s is called a random polytope and its study is an active area of
research which links together combinatorics, geometry and probability. This study traces its root to the
middle of the nineteenth century with Sylvester’s famous question about the probability of four random
points in the plane forming a convex quadrangle [12], and has become a mainstream research area since
the mid 1960s, following the investigation of Rényi and Sulanke [11] and Efron [5].

One popular model for random polytopes is the following. Let K be a convex body in R? with volume
one and z1,...,x, be independent random points chosen according to the uniform distribution on K.
We denote this random polytope by K,,. Another one, which we call “inscribing polytopes”, also begins
with a convex body K, but the points are chosen from the surface of K, with respect to a properly defined
measure (see [14] for the definition of such a measure). We denote this random polytope by K. In this
paper, we assume that K has smooth boundary, if not otherwise mentioned. The reader who is interested
in the case of general K, e.g. when K is a polytope, is referred to [3, 15, 16].

The main goal of the theory of random polytopes is to understand the asymptotic behavior of key
functionals on K,,, such as the volume or the number of vertices.

For most of these functionals, the expectations have been estimated (either approximately or up to a
constant factor) for a long time, due to collective results of many researchers (we refer the interested
reader to [1, 17] and [13] for surveys). The main open question is thus to understand the distributions
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of these functionals around their means, as coined by Weil and Wieacker’s survey from the Handbook of
Geometry (see the concluding paragraph of [17])

“We finally emphasize that the results described so far give mean values hence first-order informa-
tion on random sets and point processes. This is due to the geometric nature of the underlying integral
geometric results. There are also some less geometric methods to obtain higher-order information or
distributions, but generally the determination of variance, e.g., is a major open problem”.

The last few years have seen several developments in this direction, thanks to new methods and tools
from modern probability. Let us first discuss the model K,, where the points are chosen inside K. Reitzner
[8], using the Efron-Stein inequality shows that

d+3

VarVol(K,,) = O(n™ 1),

Varf;(K,) = O(n%),

where f; denotes the number of i-dimensional facets. Here and later the asymptotic notation is used under
the assumption that n goes to infinity. The hidden constants depend on K. Using martingale techniques,
Vu [15] proves the following tail estimate

P(|Vol(K,,) — E(Vol(K,))| > V/ )\n_%?) < exp(—c)) + exp(—c'n)

for any 0 < A < n®, where ¢, ¢/, and « are positive constants. A similar bound also holds for f; with the
same proof. From this tail estimate, one can deduce the above variance bound and also bounds for any
fixed moments. These moment bounds are sharp, up to a constant, as shown by Reitzner in [7]. Thus, the
order of magnitude of all fixed moments are determined.

Another topic where a significant development has been made is central limit theorems. It has been
conjectured that the key functionals such as the volume and number of faces satisfy a central limit theorem
(hereafter CLT). For instance,

Conjecture. There is a function ¢(n) tending to zero with n such that for every x

P (vOl(Kn) — E(Vol(K)) < x) — ®(x)
Val'(VUl(Kn))

< e(n),

where ® denotes the distribution function of the normal distribution.

Reitzner [7], using an inequality due to Baldi and Rinott [4] (which proved a CLT for a sum of weakly
dependent random variables), showed that CLT really holds for the volume and number of faces of the
so-called Poisson random polytope. This is a variant of K,,, where the number of random points is not
n, but a Poisson random variable with mean n. The advantage of this model is that it guarantees the
independence between the number of random points in disjoint regions of K, which proves a significant
technical advantage. Based on Reitzner’s result and the tail estimate above, Vu [16] showed that the
volumes of the Poisson random polytope and K,, are comparable, and thus confirmed the CLT conjecture.

The above results together provide a fairly comprehensive picture about K,,. We refer the reader to the
last section of [16] for a detailed summary. The main goal of this paper is to provide such a picture for
the inscribing model K. For this model, the volume is perhaps the most interesting functional (as the
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number of vertices is always n), and thus the volume functional will be the sole focus of this work. In
what follows we shall write Y in place of Vol(K}%), for convenience.

The inscribing model is somewhat harder to analyze than K,, and a sharp estimate on the volume was
obtained only recently, thanks to the tremendous effort of Schiitt and Werner, in a long (over one hundred
pages) and highly technical paper [14]. We have

E(Y)=1-(cx +o(1))n 71

where cg is a constant depending on K (the 1 here represents the volume of K). Reitzner [10] obtained
estimates (which are sharp up to a constant factor) for all intrinsic volumes. He also gives an upper bound

on the variance [8]:
d+3

Var(Y) = O(n~a1).
The first result we show in this paper is that the variance estimate is sharp, up to a constant factor.

Theorem 1.1 (Variance)
d+3

Var(Y) = Q(n~ 1)
The next result in this paper shows that the volume has exponential tail.

Theorem 1.2 (Concentration) For a given convex body K, there are constants o, ¢, and €y such that the
Sollowing holds. For any alnn/n < e < ¢y and 0 < A < n, we have

d+3 2(d+1)
P <|Y —EY| > \/)\n_ﬁ(lnn) @D ) < 2exp(—A/4) + exp(—cen).
Corollary 1.3 (Moments) For any given convex body K, the k-th moments of Y satisfies
. o k/2
M, =0 ((n_jlts(lnn) 2<(ddj1))) ) .

Finally, we obtain the analogue of Reitzner’s central limit theorem for the Poisson model. Instead of ¥
we use Yp to denote the volume of the random polytope generated in this model.

Theorem 1.4 (Central Limit Theorem) Yp satisfies the central limit theorem.

All proofs are technical and due to space limitation, we cannot even sketch them. Let us, however,
point out a key difference between K,, and K. In the investigation of volume, a quantity which seems
to matter much is the amount of volume change when one puts in a new random point (see [15]). In
the model K, if we put in a new random point, it is going to effect the volume if and only if the new
point falls outside the convex hull of the others. The probability of this is quite small and is related to
the notion of the so-called wet-region as defined by Barany (see [1] for a survey on methods relying on
these notions). On the other hand, in the model K 7{, every new point is a vertex of the convex hull and has
an effect on the volume. This leads to difficulties in the analysis. For instance, we cannot yet prove the
analogue of Vu’s result [16] concerning the central limit theorem.
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