On the Minimum Number of Completely 3-Scrambling Permutations

Jun Tarui

Department of Information and Communication Engineering, University of Electro-Communications Chofu, Tokyo 182-8585 Japan tarui@ice.uec.ac.jp

A family $\mathcal{P}=\{\pi_1,\ldots,\pi_q\}$ of permutations of $[n]=\{1,\ldots,n\}$ is completely k-scrambling [Spencer, 1972; Füredi, 1996] if for any distinct k points $x_1,\ldots,x_k\in[n]$, permutations π_i 's in \mathcal{P} produce all k! possible orders on $\pi_i(x_1),\ldots,\pi_i(x_k)$. Let $N^*(n,k)$ be the minimum size of such a family. This paper focuses on the case k=3. By a simple explicit construction, we show the following upper bound, which we express together with the lower bound due to Füredi for comparison.

$$\frac{2}{\log_2 e} \log_2 n \le N^*(n,3) \le 2 \log_2 n + (1+o(1)) \log_2 \log_2 n.$$

We also prove the existence of $\lim_{n\to\infty} N^*(n,3)/\log_2 n = c_3$. Determining the value c_3 and proving the existence of $\lim_{n\to\infty} N^*(n,k)/\log_2 n = c_k$ for $k \ge 4$ remain open.

1 Introduction and Summary

Following Spencer [Sp72] and Füredi [Fü96], call a family $\mathcal{P} = \{\pi_1, \dots, \pi_q\}$ of permutations of [n] completely k-scrambling if for any distinct $x_1, x_2, \dots, x_k \in [n]$, there exists a permutation $\pi_i \in \mathcal{P}$ such that $\pi_i(x_1) < \pi_i(x_2) < \dots < \pi_i(x_k)$; or equivalently, π_i 's applied to x_1, x_2, \dots, x_k produce all k! orders. This paper focuses on the case k=3. Following Füredi [Fü96], say that a family \mathcal{P} is 3-mixing if for any distinct $x,y,z \in [n]$, there is a permutation $\pi_i \in \mathcal{P}$ that places x between y and z, i.e., there is a permutation π_i such that either $\pi_i(y) < \pi_i(x) < \pi_i(z) < \pi_i(z) < \pi_i(y)$.

Let $N^*(n,k)$ be the minimum q such that completely k-scrambling q permutations exist for [n]. The best known bounds for $N^*(n,k)$ can be expressed as follows. For arbitrary fixed $k \geq 3$, as $n \to \infty$,

$$\left(\frac{1}{\log_2 e}(k-1)! + o(1)\right) \log_2 n \le N^*(n,k) \le \frac{k}{\log_2 (k!/(k!-1))} \log_2 n. \tag{1}$$

The coefficient of the upper bound in (1) is $\Theta(k \cdot k!)$; thus the gap between the coefficients of the lower and upper bounds in (1) is $\Theta(k^2)$. The upper bound in (1) was shown by Spencer [Sp72] by a probabilistic argument, where one considers the probability that some order among some x_1, \ldots, x_k is never produced by q independent random permutations. The lower bound in (1) was first proved by Füredi [Fü96] for k=3, and was proved for $k\geq 3$ by Radhakrishnan [Ra03]; entropy arguments are used in both work;

1365-8050 © 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

352 Jun Tarui

the factor $\log_2 e$ in the lower bound comes from the fact that $\int_0^1 H(x) dx = (\log_2 e)/2$, where H(x) is the binary entropy function.

As for the case k = 3, Füredi [Fü96] has shown that

$$\frac{2}{\log_2 e} \log_2 n \le N^*(n,3) \le \left(\frac{10}{\log_2 7}\right) \log_2 n + O(1),\tag{2}$$

where the coefficients of $\log_2 n$ are $1.38\ldots$ and $3.56\ldots$ in (2). The lower bound in (2) is in fact a lower bound for the case where we only require a family to be 3-mixing. No better lower bound for completely 3-scrambling families is known. If a family $\mathcal{P}=\{\pi_1,\ldots,\pi_q\}$ is 3-mixing, by adding to \mathcal{P} the q reverse permutations of π_i 's mapping $x\mapsto n+1-\pi_i(x)$, we can obtain completely 3-scrambling 2q permutations. Ishigami [Is95] has given an efficient recursive construction of 3-mixing families starting with a 3-mixing family of five permutations of $\{1,\ldots,7\}$. Füredi [Fü96] gave the upper bound in (2) by making these observations and doubling the size of Ishigami's 3-mixing family.

In this paper, we first give an improved upper bound for $N^*(n,3)$ by a simple construction. Let f(q) be the maximum n such that completely 3-scrambling q permutations exist for [n].

Theorem 1

$$f(q) \ge \binom{\lfloor q/2 \rfloor}{\lfloor q/4 \rfloor}.$$

The following upper bound on $N^*(n,3)$ readily follows.

Corollary 1

$$N^*(n,3) \le 2\log_2 n + (1+o(1))\log_2\log_2 n.$$

It seems natural to conjecture that for every fixed $k \ge 3$, as $n \to \infty$, $N^*(n,k) = (c_k + o(1)) \log_2 n$ for some c_k . We show the existence of limit for the case k = 3:

Theorem 2

$$\lim_{q \to \infty} \frac{\log_2 f(q)}{q} = C \text{ exists.}$$

The following immediately follows.

Corollary 2

$$\lim_{n\to\infty} \frac{N^*(n,3)}{\log_2 n} = 1/C = c_3 \text{ exists.}$$

2 Proofs

We can identify in a natural way a total order ϕ on [n] and the permutation of [n] induced by ϕ ; thus we speak interchangeably in terms of permutations and total orders. In fact for an arbitrary finite set U with n elements, we can assume for our purposes that U is identified with [n] in an arbitrary fixed way, and speak about permutations of U in terms of total orders on U.

Proof of Theorem 1. Put $r = \lfloor q/2 \rfloor$ and let $\mathcal{F} = \{A_1, A_2, \dots, A_m\}$ be a family of subsets of $\{1, \dots, r\}$ such that $A_i \not\subseteq A_j$ for all $i \neq j$; i.e., \mathcal{F} is an antichain.

For each point $x \in \{1, \dots, r\}$, define two orders ϕ_x and ψ_x on \mathcal{F} . In both orders ϕ_x and ψ_x , the sets A_i containing the point x are smaller than all the sets A_k not containing x. Among the sets containing x and among the sets not containing x: in the order ϕ_x , $A_i < A_j$ precisely when i < j; in the order ψ_x , this is reversed, and $A_i < A_j$ precisely when i > j.

We claim that for arbitrary distinct $i,j,k \in [m]$, there exists an order $\theta \in \{\phi_1,\psi_1,\phi_2,\psi_2,\ldots,\phi_r,\psi_r\}$ such that $A_i < A_j < A_k$ in the order θ . To see the claim fix a point $x \in (A_i - A_k) \neq \emptyset$, i.e., $x \in A_i$ and $x \notin A_k$. Depending on whether $x \in A_j$ or $x \notin A_j$, we specify an order θ that produces the ordering $A_i < A_j < A_k$.

Case $x \in A_j$: Let $\theta = \phi_x$ if i < j and let $\theta = \psi_x$ if i > j.

Case $x \notin A_j$: Let $\theta = \phi_x$ if j < k and let $\theta = \psi_x$ if j > k.

Clearly under the order θ , $A_i < A_j < A_k$. Hence the 2r orders thus defined on [m] are completely 3-scrambling. We obtain the theorem by taking $\mathcal F$ to be the family of all subsets of $\{1,\ldots,r\}$ with cardinality $\lfloor r/2 \rfloor = \lfloor q/4 \rfloor$. \square

Proof of Theorem 2. Our proof of Theorem 2 will be basically similar to Füredi's proof [Fü96] of the existence of $\lim_{q\to\infty} (\log_2 g(q))/q$, where g(q) is the maximum n such that 3-mixing q permutations exist for [n]. To make a recursive construction go through for scrambling permutations, we introduce and use red-blue colored doubly reversing permutations: Call a family $\mathcal{P}=\{\pi_1,\ldots,\pi_q\}$ of permutations of [n] 2-reversing if there is a coloring $\chi:\{\pi_1,\ldots,\pi_q\}\to\{\text{red},\text{blue}\}$ such that for every distinct $i,j\in[n]$, there are red π_κ , red π_λ , blue π_μ , and blue π_ν satisfying

$$\pi_{\kappa}(i) < \pi_{\kappa}(j), \ \pi_{\lambda}(i) > \pi_{\lambda}(j); \ \pi_{\mu}(i) < \pi_{\mu}(j), \ \pi_{\nu}(i) > \pi_{\nu}(j).$$

For a permutation π of [n], let $\operatorname{reverse}(\pi)$ be the permutation of [n] mapping $x\mapsto n+1-\pi(x)$. Let $\mathcal P$ be a family of permutations of [n] with $|\mathcal P|\geq 3$. We can easily transform $\mathcal P$ to a 2-reversing family by adding at most two permutations as follows. Arbitrarily fix two distinct permutations $\sigma,\tau\in\mathcal P$ such that $\tau\neq\operatorname{reverse}(\sigma)$; such σ and τ exist since $|\mathcal P|\geq 3$; add $\operatorname{reverse}(\sigma)$ and $\operatorname{reverse}(\tau)$ to $\mathcal P$; color σ and $\operatorname{reverse}(\sigma)$ red; color τ and $\operatorname{reverse}(\tau)$ blue; color the remaining permutations arbitrarily.

Let $f^*(q)$ be the maximum n such that completely 3-scrambling and 2-reversing q permutations exist for [n]. By definition and from the discussion above we have

$$f^*(q) \le f(q) \le f^*(q+2).$$
 (3)

Claim 1

$$f^*(q+r) \ge f^*(q)f^*(r)$$
.

For the moment we assume that Claim 1 holds and go on to derive Theorem 2.

The sequence $(1/q)\log_2 f^*(q)$ is bounded above. ¿From this and Claim 1 it follows by classical calculus (Fekete's theorem) that

$$\lim_{q\to\infty}\frac{1}{q}\log_2 f^*(q)=\limsup_{q\to\infty}\frac{1}{q}\log_2 f^*(q).$$

From (3) it now follows that

$$\lim_{q\to\infty}\frac{1}{q}\log_2 f(q)=\lim_{q\to\infty}\frac{1}{q}\log_2 f^*(q).$$

Thus we are left to prove Claim 1.

Let $\mathcal{S}=\{\sigma_1,\ldots,\sigma_q\}$ and $\mathcal{T}=\{\tau_1,\ldots,\tau_r\}$ be completely 3-scrambling and 2-reversing families of permutations of [l] and [m] respectively. Assume that both families are validly red-blue colored. Let $U=\{(i,j):1\leq i\leq l,1\leq j\leq m\}$; think of U as a matrix with l rows and m columns. We will show that we can define q+r orders on U that are completely 3-scrambling and 2-reversing. Note that from this Claim 1 follows.

Let x=(i,j) and y=(i',j') be distinct elements of U. For $k=1,\ldots,q$, define the order $\tilde{\sigma}_k$ using σ_k in a row-major form as follows: if $i\neq i'$, order x and y according to the order of $\sigma_k(i)$ and $\sigma_k(i')$. When i=i': if σ_k is red, $(i,j)<(i,j')\Longleftrightarrow j< j'$; if σ_k is blue, $(i,j)<(i,j')\Longleftrightarrow j>j'$. Similarly for $k=1,\ldots,r$, define the order $\tilde{\tau}_k$ on U in a column-major form: when $j\neq j', x< y\Longleftrightarrow \tau_k(j)<\tau_k(j')$; when j=j': if τ_k is red, $(i,j)<(i',j)\Longleftrightarrow i< i'$; if τ_k is blue, $(i,j)<(i',j)\Longleftrightarrow i>i'$. As for colors, let $\tilde{\sigma}_k$ and $\tilde{\tau}_k$ inherit the colors of σ_k and τ_k .

Claim 2 The family $\mathcal{F} = \{\tilde{\sigma}_1, \dots, \tilde{\sigma}_q, \tilde{\tau}_1, \dots, \tilde{\tau}_r\}$ is completely 3-scrambling and 2-reversing.

To see Claim 2, let $x_1=(i_1,j_1), x_2=(i_2,j_2), x_3=(i_3,j_3)$ be distinct elements of U. If i_1,i_2,i_3 are all distinct, σ_k 's produce all six orderings of i_1,i_2,i_3 , and hence $\tilde{\sigma}_k$'s produce all six orderings of x_1,x_2,x_3 . Similar arguments with τ_k 's and $\tilde{\tau}_k$'s apply for the case when j_1,j_2,j_3 are all distinct.

The remaining case is when $|\{i_1, i_2, i_3\}| = |\{j_1, j_2, j_3\}| = 2$. We write, e.g., 231 to express the ordering $x_2 < x_3 < x_1$. Assume that

$$x_1 = (i, j), x_2 = (i, j'), x_3 = (i', j), i \neq i', j \neq j'.$$

We will see that all six orderings of x_1, x_2, x_3 are produced by checking that (1) all the four orders in which x_3 is smallest or largest, i.e., 312, 321, 123, 213 are produced and that (2) all the four orders in which x_2 is smallest or largest are produced.

A red $\tilde{\sigma}_{\kappa}$ and a blue $\tilde{\sigma}_{\mu}$ satisfying $\sigma_{\kappa}(i) < \sigma_{\kappa}(i')$ and $\sigma_{\mu}(i) < \sigma_{\mu}(i')$ produce 123 and 213 respectively. Similarly, a red $\tilde{\sigma}_{\lambda}$ and a blue $\tilde{\sigma}_{\nu}$ satisfying $\sigma_{\lambda}(i) > \sigma_{\lambda}(i')$ and $\sigma_{\nu}(i) > \sigma_{\nu}(i')$ produce 312 and 321 respectively. Thus all the four orders in which x_3 is smallest or largest are produced. Similarly, two red $\tilde{\tau}$'s and two blue $\tilde{\tau}$'s ordering j and j' in both directions produce the four orders in which x_2 is smallest or largest.

Finally, if x=(i,j) and y=(i',j') are distinct points in U, either (i) $i\neq i'$ or (ii) $j\neq j'$. The 2-reversing condition is satisfied by $\tilde{\sigma}_k$'s in case (i) and by $\tilde{\tau}_k$'s in case (ii). \square

Acknowledgements

The author thanks the anonymous referees for helpful comments.

References

- [Fü96] Z. Füredi. Scrambling Permutations and Entropy of Hypergraphs, *Random Structures and Algorithms*, vol. 8, no. 2, pp. 97–104, 1996.
- [Is95] Y. Ishigami. Containment Problems in High-Dimensional Spaces, *Graphs and Combinatorics*, vol. 11, pp. 327–335, 1995.
- [Ra03] J. Radhakrishnan. A Note on Scrambling Permutations, *Random Structures and Algorithms*, vol. 22, no. 4, pp. 435–439, 2003.
- [Sp72] J. Spencer. Minimal Scrambling Sets of Simple Orders, *Acta Mathematica Hungarica*, vol. 22, pp. 349–353, 1972.