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Negative results on acyclic improper colorings
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Raspaud and Sopena showed that the oriented chromatic number of a graph with acyclic chromatic number k is
at most k271, We prove that this bound is tight for k& > 3. We also show that some improper and/or acyclic
colorings are NP-complete on a class C of planar graphs. We try to get the most restrictive conditions on the class C,
such as having large girth and small maximum degree. In particular, we obtain the NP-completeness of 3-ACYCLIC
COLORABILITY on bipartite planar graphs with maximum degree 4, and of 4-ACYCLIC COLORABILITY on bipartite
planar graphs with maximum degree 8.
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1 Introduction

Oriented graphs are directed graphs without opposite arcs. In other words an oriented graph is an orien-
tation of an undirected graph, obtained by assigning to every edge one of the two possible orientations.
If G is a graph, V(G) denotes its vertex set, F(G) denotes its set of edges (or arcs if G is an oriented
graph). A homomorphism from an oriented graph G to an oriented graph H is a mapping ¢ from V(G)
to V(H) which preserves the arcs, thatis (z,y) € E(G) = (p(z),¢(y)) € E(H). We say that H is a
target graph of G if there exists a homomorphism from G to H. The oriented chromatic number x,(G)
of an oriented graph G is defined as the minimum order of a target graph of GG. The oriented chromatic
number x,(G) of an undirected graph G is then defined as the maximum oriented chromatic number of its
orientations. Finally, the oriented chromatic number x,(C) of a graph class C is the maximum of x,(G)
taken over every graph G € C. We use in this paper the following notations:

‘Pi. denotes the class of planar graphs with girth at least &.

oc(k) denotes the class of graphs with oriented chromatic number at most k.
Sy, denotes the class of graphs with maximum degree at most k.

7}, denotes the class of partial k-trees.

Dy, denotes the class of k-degenerate graphs.

bip denotes the class of bipartite graphs.
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A vertex coloring ¢ of a graph G is acyclic if for every two distinct colors ¢ and j, the edges uv such
that ¢(u) = 7 and ¢(v) = j induce a forest. The acyclic chromatic number X, (G) is the minimum number
of colors needed in an acyclic proper coloring of the graph GG. Similarly, the acyclic chromatic number
Xa(C) of a graph class C is the maximum of x,(G) taken over every graph G € C. Raspaud and Sopena
showed in [12] that:

Proposition 1 [12] For every graph G such that x,(G) = k, xo(G) < k2F~L.

Together with the result of Borodin that planar graphs are acyclically 5-colorable (i.e. x,(P3) = 5), this
implies that the oriented chromatic number of a planar graph is at most 80 (i.e. x,(P5) < 80), which is
yet the best known upper bound. See [3, 11] for the known upper bounds on x,(P;,) for n > 4. In order to
get a better upper bound on x,(P3), if possible, it is interesting to study the tightness of Proposition 1, in
particular for k = 5. The previously best known lower bound on the maximum value of x,(G) in terms of
Xa(G) was given in [16] with a family of graphs G, k > 1 such that x,(G%) = k and x,(G%) = 2% — 1.

The notion of acyclic improper coloring was introduced in [1]. Let Cy,...,Ci—1 be graph classes. A
graph G belongs to the class Cy ® - - - ® Cy_1 if and only if G has an acyclic k-coloring such that the i*"
color class induces a graph in C;, for 0 < ¢ < k — 1. The main motivation in the study of acyclic improper
colorings is the following generalization of Proposition 1.
Proposition 2 /1] Let Cy, . .. ,C.—1 be graph classes such that Xo(C;) = ny, for 0 < i < k. Every graph
G €Cy® - ®Cy_1 satisfies X,(G) < 2F1 Ziig 4.
The bound of Proposition 2 is shown to be tight for £ > 3 under mild assumptions in Section 2.

We know from [13, 15] that x,(73) = x,(7Z3 N P3) = 16. Thus, Boiron et al. [1] point out that:

1. P3 C T3 ® Sy ® Sy would imply that x,(P3) < 72,
2. P53 C T3 © 8 © Sy would imply that x,(P3) < 76.

We will see that the second point is meaningless. Indeed, we have that P3 C 73 © S1 © Sg <= P3 C
T3 © Sy ® Sy from a general result on acyclic improper colorings of planar graphs given in Section 3.

In Section 4, we prove the NP-completeness of five coloring problems where the input graph is planar
with some large girth and low maximum degree. *.

2 Acyclic improper coloring versus oriented coloring

Theorem 1 Let k > 3. Let Cy, . ..,Cr_1 be hereditary graph classes closed under disjoint union, and
such that x,(C;) = n;. Then x,(Co @ -+ @ Cp_1) = 2F~1 Zzig ;.

Proof: We construct an oriented graph G € Cy ® --- ® Cj_ such that x,(G) = 2F~1 E;fg n;. Let
u1,us, us3 be a directed 2-path with arcs ujue and uous, or usus and uou;. We say that u; and ug
are the endpoints of the directed 2-path. By definition, the endpoints of the directed 2-path get distinct
colors in any oriented coloring. Since x,(C;) = n;, there exists a witness oriented graph W such that
Xo(W?) = n;. The graph G; contains k — 1 independent vertices v¢, 0 < j < k — 1 and 2! disjoint

¥ A full paper version of this extended abstract containing all proofs is available at:
http://dept-info.labri.fr/ ochem/acyclic.ps
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copies W, 0 < I < 25=1 of W, We consider the binary representation [ = Y."=+"" 27z, (1) of I. For
every two vertices v} and uj € WY, we put the arc vjuj (resp. ujv}) if z;(I) = 1 (resp. z;(I) = 0). If
[ # I, their binary representations differ at the n'" digit, thus u! € W} u!, € W}, are the endpoints of a
directed 2-path uj, v;,, uj,. So the same color cannot be used in distinct copies of WW*, which means that
at least 2~ 1n; colors are needed to color the copies of W in any oriented coloring of G;. We acyclically
color G; as follows. The k — 1 vertices vé get pairwise distinct colors in {0,...,k — 1} \ {¢} and every
vertex u; get color ¢ (that is why we need the “closed under disjoint union” assumption). Let S; denote
the set of colors in some oriented coloring of the vertices u; of G;. Now we take one copy of each graph
G, and finish the construction of G. For every two vertices u! € W} and u}, € W}, such that i # 7,
we add a new vertex [ and create a directed 2-path u'li, l, ul‘: . So, for i # ', we have S; N S;; = (), which
means that at least 2+~1 Zzig n; colors are needed in any oriented coloring of GG. To obtain an acyclic
coloring of G, the new vertex [ adjacent to u and u}, gets a color in {0,...,k — 1} \ {i,i'}, which is
non-empty if k£ > 3. O

Notice that Theorem 1 cannot be extended to the case k& = 2 in general. By setting £k = 2 and
Co = C1 = Sy, we obtain the class of forests S(()Q) = D;. Proposition 2 provides the bound XO(S(()2)) < 4.
This is not a tight bound, since oriented forests have a homomorphism to the oriented triangle, and thus

(2)y _
Xo(Sy™) = 3.

The proof of Theorem 1 is constructive, but it does not help for the problem of determining x,(Ps).
Indeed, the graph corresponding to the proper 5-acyclic coloring (i.e. k =5andCy = --- = C4y = Sp) is
highly non-planar (it contains e.g. K32 45 as a minor).

3 Acyclic improper colorings of planar graphs

Theorem 2 Letr2 < k < 4.
Then Ps CCQ@"'@Ck72®OC(14) < P3CChO- - OCx_2®Sp

Theorem 2 allows us to study which statement of the form “every planar graph belongs to Co®- - - ®Cr—1”
may improve the upper bound x,(P3) < 80. If k = 4, the "least” candidate class would be 0oc¢(15) ® So ®
So ® So, but the corresponding bound is too large (247 1(15 + 1+ 1 + 1) = 144 > 80). If k = 1, there
must be exactly one improper color, otherwise the least candidate oc(15) ® oc(15) ® Sy provides a too
large bound (2571 (15 + 15 + 1) = 124 > 80).

The constant 14 in Theorem 2 can be improved to 15 using ideas in [15].

We have not been able to get similar results for planar graphs with larger girth.

4 NP-complete colorings

A graph G belongs to the class Cy o - - - o Cp_1 if and only if G has a k-coloring such that the i‘" color
class induces a graph in C;, for 0 < ¢ < k — 1. For brevity, if Cy = - - - = C,—1 = C we will denote by ck
the class Cy o - -+ o0 C,—1 and by C™*) the class Co @ - -+ ® Cpp—1. If C1 and Cy are graph classes, we note
(Cy : Cq) the problem of deciding whether a given graph G € C; belongs to Cy. If Py and P; are decision
problems, we note P; o< P if there is a polynomial reduction from P; to Ps.

Kratochvil proved that PLANAR (3, <4)-SAT is NP-complete [9]. In this restricted version of SAT, the
graph of incidences variable-clause of the input formula must be planar, every clause is a disjonction of
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exactly three literals, and every variable occurs in at most four clauses. A subcoloring is a partition the
vertex set into disjoint cliques. The problem 2-SUBCOLORABILITY is NP-complete on triangle-free pla-
nar graphs with maximum degree 4 [5, 7]. Notice that on triangle-free graphs, a 2-subcoloring correspond
to a vertex partition into two graphs with maximum degree 1. Finally, the problem 3-COLORABILITY is
shown to be NP-complete on planar graphs with maximum degree 4 in [6].

Theorem 3 PLANAR (3, <4)-SAT ox (Ps NS5 : Sp 0 Sy)

Notice that on triangle-free graphs, the Sy o S; coloring correspond to the (1,2)-subcoloring defined in
[10]. Theorem 3 improves a result in [10] stating that (P4 N S3 : Sy 0 S1) is NP-complete.

Theorem 4 PLANAR (3, S4)-SAT o (P19 NSz Nbip: Sop © Sy)
Theorem 5 (P4 NSy : S2) x (Ps NSy Nbip: S2)
Theorem 6 (P3N Sy : S3) o< (PyNSyNbipN Dy : Ség))
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Figure 1: The vertex gadget for the reduction of Theorem 6.

Given a planar graph G, we construct the graph G’ as follows. We replace every vertex v of G by a copy
of the vertex gadget depicted in Figure 1 and for every edge vw we link a big vertex u; in the gadget of
v to a small vertex u; in the gadget of w. The given 3-acyclic coloring of the vertex gadget is the unique
one up to permutation of colors. Notice that all u,; get the same color and there exists no alternating path
between distinct w;. This common color in the gadget of a vertex v correspond to the color of v in a
3-coloring of G. Thus G is acyclically 3-colorable if and only if G is 3-colorable.

Theorem 7 (733 n 84 : Sg) X (734 N 88 N bip N Dg : Sé4))
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