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Spanning paths in hypercubes
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Given a family {ui, vi}k
i=1 of pairwise distinct vertices of the n-dimensional hypercube Qn such that the distance of

ui and vi is odd and k ≤ n− 1, there exists a family {Pi}k
i=1 of paths such that ui and vi are the endvertices of Pi

and {V (Pi)}k
i=1 partitions V (Qn). This holds for any n ≥ 2 with one exception in the case when n = k + 1 = 4.

On the other hand, for any n ≥ 3 there exist n pairs of vertices satisfying the above condition for which such a family
of spanning paths does not exist. We suggest further generalization of this result and explore a relationship to the
problem of hamiltonicity of hypercubes with faulty vertices.
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1 Introduction
The n-dimensional hypercube Qn is an undirected graph whose vertex set consists of all binary vectors
of length n, two vertices being joined by an edge whenever their binary representations differ in a single
coordinate. The structural properties of hypercubes have been a subject of interest to graph theoreticians
(cf. a survey [8]) as well as to computer scientists due to the application of hypercubes as prospective
interconnection networks for parallel or distributed computation (cf. a monograph [11]).

The existence of a hamiltonian cycle (path) in Qn for any n ≥ 2 (n ≥ 1) is a well-known and a widely
studied fact (cf. [13]). Note that as any hypercube is a bipartite graph with an even number of vertices,
endvertices of any hamiltonian path must belong to different partite sets. A classical result of Havel
([9]) says that this obvious necessary condition is also sufficient, i. e. for any n ≥ 1, Qn contains a
hamiltonian path between a given pair of vertices u, v iff u and v belong to different partite sets. A
further generalization was recently obtained by Caha and Koubek as one of results in [2]: Given a family
{ui, vi}k

i=1 of pairwise distinct vertices of Qn such that ui and vi belong to different partite sets and
k ≤ (n−1)/3, there exists a family of paths {Pi}k

i=1 such that ui, vi are endvertices of Pi and {V (Pi)}k
i=1

partitions V (Qn). They also asked about the maximum value of k for which such spanning paths exist.
Our main result in Section 3 resolves this problem.

The applications of hypercubic networks in parallel computing stimulated the research of hamiltonicity
of hypercubes with faulty edges and vertices. The problem may be formulated as follows: If certain
edges or vertices of Qn are removed, does the remaining graph still contain a hamiltonian cycle or path?
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While the variant with faulty edges was settled by results of Chan and Lee (in [3] they prove that Qn

remains hamiltonian even after the removal of at most 2n − 5 edges provided that the resulting graph
has minimum degree at least two) and of Tsai ([14] extends the previous result to hamiltonian paths
with given endvertices), the status of the problem with faulty vertices is less satisfactory. Lewinter and
Widulski proved in [12] that for any distinct vertices u, v and w of Qn, Qn −{w} contains a hamiltonian
path between u and v iff u, v belong to the same partite set, different from that containing w. In Section 4
we formulate a conjecture generalizing this result to the case with a nonconstant number of faulty vertices.
The other results we are aware of only say that if f vertices are removed from Qn, the resulting graph
contains a cycle of length at least |V (Qn)| − 2f (Fu in [6] proves this for f ≤ 2n− 4).

2 Concepts and notation
Our terminology mostly follows [7]. The vertex and edge sets of a graph G are denoted by V (G) and
E(G), respectively. The distance of vertices u, v ∈ V (G) is denoted by d(u, v). Given a set V ′ ⊆ V (G),
G− V ′ denotes the subgraph of G, induced by the vertices of V \ V ′. A family {Pi}k

i=1 of paths (cycles)
of G forms a family of spanning paths (spanning cycles) of G if {V (Pi)}k

i=1 partitions V (G).
The norm of a vertex v ∈ V (Qn) is defined as the number of ones in the binary representation of v.

The dimension of an edge {u, v} ∈ E(Qn) is the integer i such that u and v differ in the i-th coordinate.
Edges of the same dimension are called parallel. Let F be a family of pairs {ui, vi}k

i=1 of vertices of Qn

such that {ui, vi} ∩ {uj , vj} = ∅ for all i 6= j ∈ {1, 2, . . . , k}. We call F

connectable if there exists a family {Pi}k
i=1 of spanning paths of Qn such that Pi is a path between ui

and vi for every i = 1, 2, . . . , k;

odd if d(ui, vi) is odd for all i = 1, 2, . . . , k;

balanced if the number of pairs with both vertices of even norm equals the number of pairs with both
vertices of odd norm.

Note that the definition of a balanced family allows that ui = vi for some i, and therefore e.g.

{{(00), (00)}, {(01), (10)}}

is a balanced family of vertices of Q2.

3 Results
The following result was proved by Caha and Koubek in [2]:

Theorem 3.1 ([2]) Let n ≥ 2 and {ui, vi}k
i=1 be an odd family of vertices of Qn. If k ≤ (n− 1)/3, then

{ui, vi}k
i=1 is connectable.

Our main result improves the upper bound on the size of the connectable family.

Theorem 3.2 Let n ≥ 2 and {ui, vi}k
i=1 be an odd family of vertices of Qn. If k ≤ n−1, then {ui, vi}k

i=1

is connectable unless n = 4, k = 3, d(ui, vi) = 3 for all i ∈ {1, 2, 3} and the subgraph induced by
{ui, vi}3

i=1 forms a cycle of length 6.
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Fig. 1: The only non-connectable odd family of three pairs of vertices of Q4

The only exceptional configuration in the case when n = k + 1 = 4 is depicted on Figure 1.
It is not difficult to see that the upper bound on the size of the family of vertex pairs for which Theo-

rem 3.2 holds is actually sharp.

Proposition 3.3 For any n ≥ 3 there exists an odd family of n pairs of vertices of Qn which is not
connectable.

Indeed, let u1, . . . , un be distinct neighbors of an arbitrary vertex u ∈ V (Qn). Observe that as n ≥ 3, we
can choose pairwise distinct vertices v1, . . . , vn such that for any i ∈ {1, 2, . . . , n}, vi is a neighbor of ui

distinct from u. Now if there is a path between ui and vi for some i ∈ {1, 2, . . . , n} passing through u, it
must also contain uj for some j 6= i. Hence {ui, vi}n

i=1 forms an odd family of vertices of Qn which is
not connectable.

If the family of spanning paths which exists by Theorem 3.2 contains no path of length one and
d(ui, vi) = 1 for all i ∈ {1, 2, . . . , k}, then we actually have a family of spanning cycles {Ci}k

i=1

passing through given edges {ui, vi} ∈ E(Ci). It should be noted that spanning cycles of hypercubes
were previously studied by Kobeissi and Mollard in [10], where they construct spanning cycles of given
lengths, each passing through a prescribed edge and avoiding a set of forbidden edges, provided all pre-
scribed and forbidden edges are parallel. Hamiltonian cycles and paths of hypercubes passing through a
given set of prescribes edges of arbitrary dimensions were studied in [1, 4, 5].

4 Conjectures
The following result was proved by Caha and Koubek in [2]:

Theorem 4.1 ([2]) Let n ≥ 2 and {ui, vi}k
i=1 be a family of pairwise distinct vertices of Qn. If k ≤

(n + 1)/3, then {ui, vi}k
i=1 is connectable iff it is balanced.

We conjecture that this result may be improved by increasing the upper bound on the number of vertex
pairs and weakening the requirement that each pair must consist of distinct vertices.

Conjecture 4.2 Let n ≥ 2 and {ui, vi}k
i=1 be a balanced family of vertices of Qn such that ui 6= vi for

some i ∈ {1, 2, . . . , k} . If k ≤ n− 1, then {ui, vi}k
i=1 is connectable unless

(i) n = k + 1 = 3, d(u1, v1) = d(u2, v2) = 2 and {u1, u2}, {v1, v2} are parallel edges, or

(ii) n = k + 1 = 4, d(ui, vi) = 3 for all i ∈ {1, 2, 3} and the subgraph induced by {ui, vi}3
i=1 forms a

cycle of length 6.



366 Tomáš Dvořák, Petr Gregor and Václav Koubek

So far we have been able to verify the validity of the conjecture for n ≤ 5 by a computer search. The only
two (up to isomorphism) exceptional configurations in the case when n = 3 are depicted on Figure 2.
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Fig. 2: The only non-connectable balanced families of two pairs of vertices of Q3

Note that if true, then the upper bound n− 1 is certainly the best possible, as demonstrated by Proposi-
tion 3.3. Moreover, the validity of the conjecture would also partially resolve the problem of hamiltonicity
of Qn with faulty vertices. Indeed, if u1 6= v1 and ui = vi for all i ∈ {2, . . . k}, then Conjecture 4.2 sim-
ply says that Qn −{u2, . . . , uk} contains a hamiltonian path between u1 and v1 iff the family {ui, vi}k

i=1

is balanced. This is known to be true for k ≤ 2 by the results of [9] and [12], quoted in Section 1.
We conclude this discussion with a question related to the complexity of our problem. Deciding whether

Qn contains a hamiltonian cycle avoiding a given set of faulty edges is known to be NP-complete ([3]).
Does a similar result hold for the variant with faulty vertices?
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135–152.

[10] M. KOBEISSI, M. MOLLARD, Disjoint cycles and spanning graphs of hypercubes, Discrete Math.
288 (2004), 73–87.

[11] F. T. LEIGHTON, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes.
Morgan Kaufmann, San Mateo, CA 1992.

[12] M. LEWINTER, W. WIDULSKI, Hyper-Hamilton laceable and caterpillar-spannable product
graphs, Comput. Math. Appl. 34 (1997), 99–104.

[13] C. SAVAGE, A survey of combinatorial Gray codes, SIAM Rev. 39 (1997), 605–629.

[14] C.-H. TSAI, Linear array and ring embeddings in conditional faulty hypercubes, Theor. Comput.
Sci. 314 (2004), 431–443.
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