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We exhibit an initial specification of the rational numbers equipped with addition, subtraction, multiplication, greatest
integer function, and absolute value. Our specification uses only the sort of rational numbers. It uses one hidden
function; that function is unary. But it does not use an error constant, or extra (hidden) sorts, or conditional equations.
All of our work is elementary and self-contained.
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1 Introduction
This paper is a comment on the use of hidden functions in a well-studied example in the field of abstract
data types. We are concerned with the rational numbers, considered as an algebraQ with the constants
0 and 1 and the operations of addition, subtraction, and multiplication, greatest integer functionbxc and
absolute value function|x|. To specifyQ using initial algebra semantics means coming up with a possibly
bigger signatureΣ, writing a finite setE of equations inΣ, and then showing that the initialΣ–model ofE
is an expansion ofQ.

This particular example of rational arithmetic (withoutbxc and|x|) seems to have been important his-
torically, and a number of sources mention it. It is problematic because one cannot take a specification of
the integers and add an inverse functioninv(x). (The natural equation to add would bex× inv (x) = 1.
But there is no way to equip the rationals with such an operation; there is no inverse of 0.) It is well-known
thatQ can be specified in some version ofmany-sortedequational logic. For example, Ehrig and Mahr [4]
has a specification using “hidden” sorts of integers and booleans and also an error constant. This raises
the issue of whether the error constant is necessary, and indeed it also raises the same issue about the use
of more than one sort. It is also not hard to give a specification avoiding the error constant and using
conditional equations and two sorts (see [5]). But then this raises the same question about conditional
equations.

Ehrig and Mahr were also of the opinion (see p. 150 of [4]) that “Similar to other examples. . ., there
seems to be also in this example no way around hidden function symbols.” It is not clear whether they
mean that hiddensortswere needed, but one senses that they were. Meseguer’s review [5] of [4] interprets
their comment by saying, “the authors conclude in 6.10 that there is no way around heavily using hidden
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functions and error constants to get the rational numbers.” Again, it is not clear what would constitute a
“heavy” use, but one senses that it would be the use of an additional sort. For it had been known from
the work of Thatcher et al. [6] (following earlier results of Majster) that there are examples where hidden
sorts are indeed necessary. And since rational arithmetic was not easily specifiable without hidden sorts,
one might think that it wasimpossibleto do so.

The goal of this note is to clear up the situation with regard toQ. Neither extra sorts nor error constants
are needed to specifyQ. Moreover, one can get by with just one hidden function, and that function can be
taken to be unary. The key to our work is a recent result of Calkin and Wilf [2] which shows that there is
a bijectiong : N→Q+ which is definable by a very simple set of equations.

We should mention that the fact thatQ has a finite specification with no hidden sorts follows immedi-
ately from the main theorem of Bergstra and Tucker [1]. Indeed, [1] has the stronger result that a minimal
computable algebra has a specification which may be taken to a finite complete rewriting system. We shall
have more to say on the “complete rewriting system” part at the very end of our note. For now, here is an
explanation of how Bergstra and Tucker’s theorem implies thatQ has an equational specification. Since
the rationals are countable, there are functionsα, β, andγ such that〈Q,0,1,+,−,×〉 ∼= 〈N,0,1,α,β,γ〉.
Moreover,α, β, andγ may be taken to be primitive recursive. Now “minimal” means that every element
of the carrier set should be the denotation of some term. This is not the case with〈Q,0,1,+,−,×〉, so
not with 〈N,0,1,α,β,γ〉 either. But if we add to our signature a symbols and interpret it by the successor
functionsonN, thenN′ = 〈N,0,1,α,β,γ,s〉 is minimal (and computable). So by the main theorem of [1],
there is a bigger signature (but without new sorts) and a set of equations in it specifyingQ′.

However, if one follows the method of [1], the specification ofN′ that one would get would be large.
(The exact size would depend on the exact build up ofα, β, γ as primitive recursive functions. My guess
is that the actual specification would be too large for many people to ever write explicitly.) Our purpose is
to exhibit small specifications which can be understood from first principles. These should be interesting
to people who have worked in the area, and it would be suitable for classroom or textbook presentation.

The easiest way to get a one-sorted specification ofQ is to begin with a specification forZ (any one
will do, for example the laws of commutative rings with 1). Then add a function symbolf of arity 4, with
the equation:

f (w,x,y,z)× (1+w2 +x2 +y2 +z2) = 1.

The intended semantics isf (w,x,y,z) = (1+w2 +x2 +y2 +z2)−1. The point is that thisf is total function
on the rationals, and moreover, for every natural numbern≥ 1, there are natural numbersw, x, y, and
z so that f (w,x,y,z) = 1/n. This uses the classical result of Lagrange that every natural number is the
sum of four squares. It is not hard to check that this gives a specification ofQ. We omit the details here
since similar ones will be presented in Section 2 for a different set of equations below. The reason that we
want to consider a different specification is that there does not seem to be a way to add other interesting
functions, such as absolute value or greatest integer, on top of this specification. Another reason is that I
could not see a way to reduce the arity off . Perhaps a unary function likef (x) = (1+ x+ x2)−1 would
work, but the matter is open. (As Ignacio Viglizzo pointed out to me,f (x) = (1+ x2)−1 does not work
because the smallest subring ofQ closed under this operation does not contain 1/3.)

Our results are summarized in the table below. Each line represents a specification. The result that
〈Q,0,1,+,−,×,b c〉 can be specified with one hidden symbol which is unary is probably the most impor-
tant of this paper.
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Structure Hidden symbols Number of Hidden Equations

〈Q,0,1,+,−,×〉 one 4-ary 1
〈Q,0,1,+,−,×〉 two unary 21
〈Q,0,1,+,−,×,b c〉 one unary 18
〈Q,0,1,+,−,×,b c, | |〉 one unary 18

2 A Specification of 〈Q,0,1,+,−,×,b c〉
We begin with the following result:

Proposition 1 There is a unique f: Z→ Z so that for all n∈ Z:

f (4n) = 1
f (1+4n) = f (n)
f (2+4n) = f (n)+ f (1+n)
f (3+4n) = f (1+n)

Moreover,

1. For all n∈ Z, f(n)≥ 1.

2. For all a,gcd( f (a), f (1+a)) = 1.

3. If a and b are positive integers such thatgcd(a,b) = 1, then there is some c≥ 0 so that f(c) = a
and f(1+c) = b.

Proof For the uniqueness, note that for all integersn, |1+ 4n| > n and|2+ 4n| > n+ 1. This implies
that for alln except 0, the values of the left sides of the recursion equations forf are always greater in
absolute value than those on the right. This, together with the fact thatf (0) = 1, means thatf is specified
uniquely on all integers.

Parts (1) and (2) are an easy induction onn. For (3), we argue by induction on max(a,b). If a = b = 1,
we takec = 0. In casea> b> 1, we considera−b andb. Clearly gcd(a−b,b) = 1. (This is just the
argument behind the Euclidean algorithm for the gcd.) And max(a−b,b)<max(a,b). By our induction
hypothesis, letc be so thatf (c) = a−b and f (1+c) = b. Then f (2+4c) = a and f (3+4c) = b. In case
1< a< b, we considerb−a andb. Again, gcd(a,b−a) = 1, and max(b−a,a) < max(a,b). By our
induction hypothesis, letc be so thatf (c) = a and f (1+c) = b−a. Then f (1+4c) = a and f (2+4c) = b.

a

Our f is not the only function with the properties of Proposition 1, of course. For our purposes, the
only facts we need are those of the proposition, together with the facts that some natural functions related
to f are equationally specifiable. We turn to these matters shortly.

But first, we should mention that this functionf is based on a function from Calkin and Wilf’s arti-
cle [2]. That paper considers the following simpler version which we callf0: f0(0) = 1, f0(2n+ 1) =
f0(n), and f0(2n+2) = f0(n)+ f0(n+1). Then [2] shows that for alln≥ 0, f0(n) and f0(n+1) are rela-
tively prime, and that for all relatively primea andb there is aunique nso thatf0(n) = a and f0(n+1) = b.
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In other words, if we defineg : N→Q+ by g(n) = f0(n)/ f0(n+ 1), theng is a bijection. This leads to a
rather explicit proof of Cantor’s theorem that the rationals are countable.

The problem for us aboutf0 is that the equationf0(2n+2) = f0(n)+ f0(n+1) implies thatf0(−1) = 0.
We needed to modifyf0 to obtain a function onZ all of whose values are positive. We lose the uniqueness
assertion, but this is not a big problem.

Returning to our development, we extendf to a function which we also callf in the following way:
f (x) = f (bxc). (Herebxc is the greatest integer≤ x; for exampleb−1/2c=−1.) This is one natural way
to extendf . There are other ways, and they would lead to other sets of equations. We chose this way
because the details are the simplest that we could find, and because the resulting set of equations is the
smallest. Once again, we usef (x) = f (bxc). This determinesf : Q→ Q. Next, letg : Q→ Q be given
by g(x) = f (x)/ f (1+ x). Then againg(x) = g(bxc). The point aboutg is that for every positive rational
numberm/n in lowest terms, there is some natural numbera so thatg(a) = m/n.

We need the following equations involvingg andbxc:

bg(4n)c = h(n)
bg(1+4n)c = 0
bg(2+4n)c = 1+ bg(n)c
bg(3+4n)c = f (1+n)

b−g(4n)c = −1
b−g(1+4n)c = −1
b−g(2+4n)c = −1+ b−g(n)c
b−g(3+4n)c = − f (1+n)

Note that heren is an integer. We can obtain equations valid for all rationalx by replacingn by bxc
throughout. The functionh : Z→ Z which figures intog is given by

h(4n) = 1
h(1+4n) = h(n)
h(2+4n) = 0
h(3+4n) = h(1+n)

As with g, h extends naturally to a function onQ by h(x) = h(bxc). The point is that for alln, h(n) = 1 iff
f (n) = 1, andh(n) = 0 iff f (n)> 1. Sobg(4n)c= 0 iff h(1+4n) = 0, andbg(4n)c= 1 iff h(1+4n) = 1.
It follows that for allx∈Q, bg(4n)c= h(1+4n) = h(n). As we have seen, the extendedh is equationally
specifiable.

2.1 The specification
We take our signatureΣ to consist of the symbols0, 1, + ,−, × , b, f , g, h, where0 and1 are 0-ary (i.e.,
constants);−, b, f , g, andh are 1-ary; and+ and× are binary. As we have already been doing, we use a
different font to distinguish syntax from semantics. Our setE of equations is listed in the box below. Of
course, the main example of aΣ-algebra satisfyingE is

Q = 〈Q,0,1,+,−,×,b c, f ,g,h〉,

where all of the interpretations shown are the ones we have already considered. That is, henceforthQ
denotes the rationals equipped with all of the functions above.

Here are a few comments on our notation and equations: In general, we omit the parentheses onb(x),
and we sometimes omit other parentheses for readability. We use 2 as an abbreviation for 1+ 1, and
similarly for 3 and 4. Further, 4bx abbreviates 4×bx. In the invariance equation (3), we do not need
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The setE of equations for〈Q,0,1,+,−,×,b c〉 using hidden functionsf , g, andh

1. The equational laws of commutative rings with 1.

2. Concerningb: b0 = 0, b(1+ x) = 1+ bx, andb(−1+ x) =−1+ bx.

3. The laws thatb is invariant forf andh: f x = f bx andhx = hbx.

4. The connection ofg andf : g(x)× f (1+ x) = f (x).

5. The recursion equations forf , h, bg andb−g:

f (4bx) = 1
f (1+4bx) = f (x)
f (2+4bx) = f (x)+f (1+ x)
f (3+4bx) = f (1+ x)

bg(4bx) = h(x)
bg(1+4bx) = 0
bg(2+4bx) = 1+ bg(x)
bg(3+4bx) = f (1+ x)

h(4bx) = 1
h(1+4bx) = h(x)
h(2+4bx) = 0
h(3+4bx) = h(1+ x)

b−g(4bx) = −1
b−g(1+4bx) = −1
b−g(2+4bx) = −1+ b−g(x)
b−g(3+4bx) = −f (1+ x)

gx = gbx; the ground instances of this turn out to be derivable. For the same reason, we do not need
bbx = bx in (2). Concerning (5), note that earlier we had the same laws but for integersn. The important
point is that sincef (x) = f (bxc) for all x, the laws in (5) are valid inQ.

Finally, notice thatE has 2+1+16= 19 equations that use the hidden symbols.

2.2 Proof of correctness

As usual, we letTΣ be the set of (ground)Σ-terms, andTΣ/E the quotient ofTΣ by the smallestΣ-
congruence including the substitution instances ofE. Let ε : TΣ → Q be the uniqueΣ-homomorphism.
We writeE ` t = u to mean thatt = u is derivable fromE in equational logic. (This is the logical system
whose axioms are the substitution instances of the equations inE∪{x = x} and whose rules of inference
correspond to the symmetric and transitive properties of equality and to the substitution of equals for
equals in functions.) We shall only be interested in this whent andu are ground terms, and then it also
means that[t] = [u] in TΣ/E.

We prove thatTΣ/E∼= Q. The idea is that every term is provably equal, modE, to a special kind of term
which we callnormal. To state the definition, and for our future work, we associate with each integern a
termn in the following way. Forn = 0, we setn to be0; for n = 1+ · · ·+ 1, we setn to be1+ · · · +1;
and forn =−(1+ · · ·+ 1), we use−(1+ · · · +1). Now we can say that our normal terms are 0,g(n) for
n≥ 1, and−g(n) for n∈ Z.

Lemma 2 Let a, b, and c∈ Z.
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1. If a+b = c, then E` a+b = c , and similarly for× and−.

2. E` a = ba.

3. If f (a) = b, then E` f (a) = b, and similarly for h andh.

Proof Part (1) is an easy consequence of the initiality ofZ among commutative rings with 1. Part (2) is
an easy induction on|a|, as is (3). In addition, (3) uses the invariance laws forb with f andh, and also
parts (1) and (2). It is essentially an elaboration of the proof of Proposition 1. a

Lemma 3 If t ∈ TΣ is such that È t× f (1+n) = f (n), then E` t = g(n).

Proof Let m = 1+ 4(1+ n), so that f (m) = 1, f (1+ m) = f (1+ n), andg(m) = 1/ f (1+ n). Then
E ` g(m)× f (1+m) = 1. And by Lemma 2(3),E ` f (1+n) = f (1+m). From these facts and the
commutative, associative, and unit laws, we deduce according toE that

t = t×1
= t× f (1+m)×g(m)
= t× f (1+n)×g(m)
= f (n)×g(m)
= g(n)× f (1+n)×g(m)
= g(n)× f (1+m)×g(m)
= g(n)

a

Lemma 4 Let a,b∈ Z. Then

1. E` ga = gba.

2. If bg(a)c= b, then E` bga = b, and ifb−g(a)c= b, then E` b−ga = b.

Proof The first part is an easy calculation using Lemma 3, and the second is an induction on|a| using
the first and Lemma 2(3). a

Lemma 5 Let a, b, and c∈ Z.

1. If g(a) = g(b), then E` g(a) = g(b).

2. If g(a) = b, then E` g(a) = b.

3. If g(a)+g(b) = g(c), then E` g(a)+g(b) = g(c).

4. If g(a)−g(b) = g(c), then E` g(a)+(−g(b)) = g(c).

5. If g(a)×g(b) = g(c), then E` g(a)×g(b) = g(c).

Proof For part (1), note that sincef (a) and f (1+ a) are relatively prime, and similarly forf (b) and
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f (1+b), we havef (a) = f (b) and f (1+a) = f (1+b). Now our result follows easily from Lemma 3.
Part (2) is similar. Ifg(a) is the natural numberb, then f (a) = b and f (1+ a) = 1. Then since

E ` b× f (1+a) = f (a), we see thatE ` g(a) = b.
We also use Lemma 3 to check part (3). We know that

f (a) f (1+b)+ f (1+a) f (b)
f (1+a) f (1+b)

=
f (c)

f (1+c)
.

Moreover, the second fraction is reduced. Letmbe such thatm· f (c) = f (a) f (1+b)+ f (1+a) f (b) and
m· f (1+ c) = f (1+ a) f (1+ b). Let n be such thatf (n) = 1 and f (1+ n) = m. Sog(n) = 1/m. Using
Lemma 2, parts (1) and (3), we see that

E ` f (1+n)× f (c) = (f (a)× f (1+b))+ (f (1+a)× f (b)),

and also thatE ` f (n) = 1 and thatE ` f (1+n)× f (1+c ) = f (1+a)× f (1+b). So moduloE,

(g(a)+g(b))× f (1+c )
= (g(a)+g(b))× f (1+c )× f (1+n)×g(n)
= (g(a)+g(b))× f (1+a)× f (1+b)×g(n)
= (g(a)f (1+a)f (1+b)+g(b)f (1+a)f (1+b))×g(n)
= (f (a)f (1+b)+f (1+a)f (b))×g(n)
= f (c)× f (1+n)×g(n)
= f (c)× f (n)
= f (c)

(We have omitted some× signs for readability.) Part (4) is similar, and (5) is the easiest to check.a

In the next lemma, recall that thenormalterms are0 and alsogn and−gn for n∈ Z.

Lemma 6 For every t∈ TΣ there is some normal u∈ TΣ such that È t = u.

Proof By induction ont. Obviously0 is normal, and as for1, E ` 1 = g(0) by a calculation involving
Lemma 3. Assuming the lemma fort andu, we easily get it fort +u,−t andt×u. The routine details use
Lemma 5.

Concerningbt, we argue as follows: By induction hypothesis,t is normal. IfE ` t = 0, thenE ` bt =
b0 = 0. Suppose, for example, thatE ` t =−g(n). ThenE ` bt = b−g(n). Nowb−g(n)c is some natural
numberb, and by Lemma 5(2),E ` b−g(n) = b. If b = 0, thenb is normal and we are done. Otherwise,
let a be so thatg(a) = b. Then by Lemma 5(2) we see thatE ` bt = b−g(n) = g(a).

The argument forf (t) is similar: If E ` t = 0, thenE ` f (t) = f (0) = 1 = g(0). Suppose again that
E ` t =−g(n). ThenE ` f (t) = f (−g(n)) = f b−g(n). This uses the invariance law forb andf . Now
b−g(n)c is some natural numberb, and by Lemma 5(2),E ` b−g(n) = b. Let a andc be natural numbers
such thatc = f (b) andg(a) = c, so thatE ` f (b) = c = g(a). ThenE ` f (t) = g(a).

The same argument works forh(t). For g(t), the argument is slightly easier: as soon as we know
E ` b−g(n) = b, we then haveE ` gb−g(n) = g(b). This last term is normal. a

Theorem 7 TΣ/E ∼= Q.

Proof Let ϕ : TΣ/E→Q be the uniqueΣ-homomorphism, by initiality. Explicitly,ϕ([t]) = ε(t). Thenϕ
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is surjective, sinceϕ(0) = 0, and for every positive rationalr there is somen so thatε(g(n)) = g(n) = r
(and hence alsoε(−g(n)) =−r).

We conclude by showing thatϕ is injective. Letε(t) = ε(u). We assume first that this number is
positive, sayε(t) = g(n). Then there are normal termst ′ andu′ so thatE ` t = t ′ andE ` u = u′. Since
ε(t ′) = ε(t) = g(n) > 0, t ′ must be of the formg(m) for somem. Similarly, u′ must be of the formg(p)
for somep. But nowg(m) = g(n) = g(p). So by Lemma 5(1), we see thatE ` g(m) = g(n) = g(p). And
from this we see thatE ` t = g(n) = t ′. This concludes the argument whenε(t)> 0. Of course, the same
reasoning applies whenε(t) < 0. If ε(t) = 0 = ε(t ′), then again we have normalu andu′ as above. We
haveε(u) = ε(t) andε(u′) = ε(t ′). By normality,u andu′ must both be the term0. And soE ` t = 0 = t ′.

a

2.3 One hidden function
We promised at the outset to get things down to one hidden function symbol which is unary. Currently we
have three hidden symbols,f , g, andh. To combine them into one, sayi , we first describe the intended
semantic functioni. On integers,i is given byi(3n) = f (n), i(1+3n) = g(n), andi(2+3n) = h(n). Then
we extend this to all rationals byi(x) = i(bxc). Let Q∗ = 〈Q,0,1,+,−,×, i〉.

Let Σ be our old signature, and letΣ∗ = (Σ\{f ,g,h})∪{i }. There is a translationt 7→ t∗ of TΣ to TΣ∗

given as follows:x∗ = x for variables,0∗ = 0, 1∗ = 1, (bt)∗ = bt∗, (t +u)∗ = t∗+u∗, and similarly for−
and× , (f t)∗ = i (3bt∗), (gt)∗ = i (1+3bt∗), (ht)∗ = i (2+3bt∗). For example,n∗ = n for all n ∈ Z.
And the translations of the normal terms ofTΣ are just those of the formi (1+3n ), wheren∈ Z. We get
a setE∗ of Σ∗-equations by

E∗ = {t∗ = u∗ : t = u is an axiom ofE}.

Theorem 8 TΣ∗/E∗ ∼= Q∗.

Proof The translation map commutes with substitution in the appropriate sense. Using this, we prove
by an easy induction on derivations that ifE ` t = u, thenE∗ ` t∗ = u∗.

The crux of the proof is the analog of Lemma 6: for every termt ∈ TΣ∗ there is some normalu∈ TΣ
such thatE∗ ` t = u∗. Just as in Theorem 7, this implies thatTΣ∗/E∗ ∼= Q∗.

We argue by induction ont. The only interesting case is fori . Assuming thatE∗ ` t = u∗, we consider
i (t). Since the case thatu is 0 is easy, we consider only the case whenu is gn . ThenE∗ ` i (t) = i bt =
i b(gn)∗ = i (bgn)∗. Let m= bg(n)c, soE ` bgn = mby Lemma 4(2). ThusE∗ ` i (t) = i (m). Now we
argue by cases onm. If m is of the form 3p or 2+ 3p for some positive integerp, thenim is (fp )∗ or
(hp)∗. Both situations are similar. In the first, letq be such thatg(q) = f (p). ThenE ` fp = gq , and so
E∗ ` i (t) = (gq)∗. If m is of the form 1+2p, theni (m) is (gp)∗. SoE∗ ` i (t) = (gp)∗. a

At this point, E∗ has 19 equations involvingi . The translations off bx = f x andhbx = hx can be
replaced byi bx = i x. So we are left with a specification withi as the one and only hidden function
symbol, and 18 equations usingi .

2.4 Additional remarks
More operations We also promised to specifyQ with the absolute value function|x|. Here we would
add|0|= 0, |g(x)|= g(x), and|−g(x)|= g(x).

We could also consider a functioninv onQ defined byinv(0) = 0 andinv(m/n) = n/m. We specify this
usinginv (0) = 0, inv (gx)×gx = 1, andinv (−gx)× (−gx) = 1.
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Fewer operations Suppose one wants to dropbxc and specify the ring〈Q,0,1,+,−,×〉 with as few
hidden symbols as possible. Our work gives this with two hidden unary symbols,b and i . Sinceb is
hidden, we now have 18+ 3 = 21 hidden equations. We do not know how to specify this structure with
just one unary hidden symbol, though we believe that this should be possible. As we mentioned early on,
one 4-ary symbol suffices.

Rewriting Specifications ofQ We conclude with a remark on rewriting presentations forQ, as studied
in Contejean et al [3]. Their paper is really about getting a rewriting presentation suitable for efficient
computation. Our work does not address that important issue. In any case, the paper gives a three-
sorted presentation of rational arithmetic using acomplete rewrite system. The three sorts are the natural
numbers, the non-zero natural numbers, and the rationals. Moreover, the addition and multiplication on
the natural number sort are associative and commutative. A complete rewrite system obtained by the
methods of [1] should be neither associative nor commutative. It is still open to get a rewrite presentation
with addition and multiplication on the rational number sort being associative and commutative.

Our approach cannot directly give a complete rewrite system for two reasons. First and foremost, the
connection lawg(x)× f (1+ x) = f (x) leads to a non-confluent system. The same is true of the distributive
law, which we have used in a few places. (However, [3] show how to use a positional notation for integers
to get around this.) We believe it is likely that our work could be combined with that of [3] to get a
two-sorted presentation of rational arithmetic, again with addition and multiplication on integers to be
associative and commutative.
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