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In this paper we study the synthesis of space-time optimal systolic arrays for the Cholesky Factorization (CF). First,
we discuss previous allocation methods and their application to CF. Second, stemming from a new allocation method
we derive a space-time optimal array, with nearest neighbor connections, that requires 3N + Θ(1) time steps and
N2/8+ Θ(N) processors, whereN is the size of the problem. The number of processors required by this new design
improves the best previously known bound,N2/6+ Θ(N), induced by previous allocation methods. This is the
first contribution of the paper. The second contribution stemms from the fact that the paper also introduces a new
allocation method that suggests to first perform index transformations on the initial dependence graph of a given
system of uniform recurrent equations before applying the weakest allocation method, the projection method.
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re-indexation

1 Introduction
The Cholesky Factorization (CF) is an important problem in computer science. Algorithms such as CF
are kernels of many numeric or signal processing programs. Because of the large number of arithmetic
operations,Θ(N3) whereN is the size of the matrix, required by the CF a number of research works have
been devoted to its parallelization [5, 11, 17]. In [17] Liu identifies three potential levels ofgranularity in
a parallel implementation of the CF:

1. fine-grain, in which each task consists of only on one or two floating point operations. Fine-grain
parallelism is available either for dense or sparse matrices.

2. medium-grain, in which each task is a single column operation. Medium-grain parallelism is also
available either for dence or sparse matrices.
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3. large-grain, in which each task is the computation of an entire group of columns. Large-grain
parallelism, at the level of subtrees of the elimination tree [17], is available only in the sparse case.

Hereafter we focus on fine-grain parallelism. This parallelism can be exploited effectively by massively
parallel computers such as SIMD computers and systolic arrays.

Systolic arrays as introduced by Kung and Leiserson [13] form an attractive class of special-purpose
parallel architectures suitable for an implementation in VLSI. A systolic array consists of a large num-
ber of elementary processors, also called processing element (PE), which are regularly connected in a
nearest neighbor fashion. Each PE is equipped with a limited storage and operates on a small part of
the problem to solve. As VLSI enables inexpensive special-purposes chips, systolic arrays are typically
used as back-end, special-purpose devices to meet high performance requirements. A number of such
arrays are currently used to accelerate computations arising in bioinformatics, biology and chemistry
(http://www.irisa.fr/cosi/SAMBA, http://www.timelogic.com, http://www.paracel.com,
http://www.cse.ucsc.edu/research/kestrel ) among others.

Most of the early systolic arrays were designed in an ad hoc case-by-case manner. But, this case-by-
case approach requires an apostoriori verification to guarantee the correctness of the resulting design.
In recent years there has been a great deal of effort on developping unifying theories for automatically
synthesizing such arrays. It is well known that the standard methodology [18, 20, 21, 22, 23, 25] for the
systematic synthesis of systolic array proceeds in four points:

1. The starting point is a solution of the problem to solve in term of a system of recurrent equations
(SREs).

2. The second point deals with the uniformization of the SREs. This point leads to a system of uni-
form recurrent equations (SUREs) associated to a dependence graphG = (D,U) in which each
node corresponds to a task and each link corresponds to a dependency between two elementary
computations, also called task.

3. The third point defines a timing function (or schedule)t : D→ N which gives the computation
datet(v) of each taskv of D, assuming that all tasks are of unit delay. A schedule is optimal
if the corresponding execution time (or time steps count) is the length of the longest path of the
dependence graphG.

4. The last point defines an allocation function which assigns the tasks to the processors of a systolic
array so as to avoid computation conflict, i.e no two tasks with the same execution date should be
executed by the same PE. An allocation function is optimal if the PEs count of the resulting array
is thepotential parallelism, i.e the maximum number of tasks that are scheduled to be executed at
the same date.

The standard methodology poses a number of interesting optimization problems.

1. The problem of how to find a linear schedule that minimizes the execution time over all possible
linear schedules associated to a given SUREs has been investigated by several authors. Approaches,
based on integer programming, to a general solution are proposed in [26, 32]. Note that the resulting
linear schedule may not correspond to an optimal schedule.

http://www.irisa.fr/cosi/SAMBA
http://www.timelogic.com
http://www.paracel.com
http://www.cse.ucsc.edu/research/kestrel


A Space-Time Optimal Systolic Algorithms For The Cholesky Factorization 111

2. The problem of transforming a SREs into a SUREs that leads to a timing function that requires the
minimum possible execution time has attracted special interest. In other words, the question is to
minimize the execution time independently of the uniformization of the initial SREs. This question
remains open although there are now well defined methods [21, 22, 23, 35] to systematically trans-
form mostAffine Recurrent Equations(AREs) into a SUREs. This open question is investigated in
[27], by Djamegni et al., for theAlgebraic Path Problem(APP). In their paper the authors introduce
a new uniformization technique that transforms the initial SREs (associated to the APP) into a new
SUREs. The new SUREs leads to a piecewise affine schedule of 4n+ Θ(1) steps, wheren is the
size of the APP. This is a significant improvement over the number of steps, 5n+Θ(1), of schedules
induced by the earlier uniformization technique [1].

3. The problem of finding an optimal timing function for a given SUREs so as to minimize the par-
alelism rate has not yet received a full answer. In other words, the question is to minimize the
potential parallelism independently of the timing function. Integer progamming techniques can be
used to find the best affine schedule possible. However, the time spent to find such an affine sched-
ule cannot be neglected [7]. This open question is investigated in [28], by Djamegni et al., for the
Triangular Matrix Inversion (TMI). These authors have proposed an optimal piecewise affine timing
function with a potential parallelism of the order ofn2/8+ Θ(n), wheren is the size of the trian-
gular matrix. This is a significant improvement over the minimal potential parallelismn2/6+ Θ(n)
provided by optimal affine timing functions.

4. The probem of defining an allocation function that minimizes the PEs count for a given schedule
remains open. Research on this optimization criterion have been presented in [1, 2, 3, 5, 6, 25, 27,
28, 29, 30, 31, 33, 34] among others.

In this paper, we are interested in the design of a space-time optimal systolic array for the CF. The main
difficulty of this problem is to meet the last (fourth) optimization criterion. In the following we briefly
sommarize previous works related to this design constraint.

1. Projection Method[18, 20, 21]. This method corresponds to linear allocations. Such allocations are
realized by projecting the dependence graphG along a direction~p. All the tasks belonging to a same
line of direction~p are assigned to the same PE. The main drawback of this allocation technique is
the low PE utilization occuring in the resulting array [5]. Wong and Delosme [34], Ganapathy and
Wah [9] use integer programming to get the best linear allocation possible. However, such a linear
allocation may not correspond to an optimal allocation. For the CF the minimal PEs count obtained
by projecting the dependence graph isN2/2+ Θ(N).

2. Grouping (or Clustering) Method[4, 6, 7]. The starting point is a systolic array obtained from the
projection method in which all PE works one step overx, with x≥ 2. Then, groups ofx neighboring
PEs having disjoint working time steps are grouped into a single one. As a consequence, the PEs
count of the initial array is reduced by a factor ofx. This allocation technique do not guarantee
space-optimality. For the CF this method permits to reduce the PEs count fromN2/2+ Θ(N) to
N2/4+ Θ(N).

3. Instruction Shifts Method[5]. As in the grouping method, the starting point is an array obtained
from the projection method. Then, the initial array is partionned into a number of PEs segments
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parallel to a direction calledpartition direction. The tasks of each segment are reallocated so as to
minimize the PEs count on each segment. This approach do not guarantee space-optimality. For
the CF this technique reduces the PEs count fromN2/2+Θ(N) to N2/6+Θ(N) [5]. Although this
represents a significant improvement, this design is not space optimal as the potential parallelism
of the CF isN2/8+ Θ(N) [5].

4. Piling Method[1, 6]. First, from a given dependence graph and affine schedule, a setM of tasks is
found such that all tasks in the set are scheduled to be executed at the same time and the set size
| M | is maximal. Second, an allocation method is applied to assign the tasks of the dependence
graph to PEs. Any PE which has not been assigned to execute a task ofM is piled to a PE which
executes a task ofM and has disjoint working time steps. However, piling PEs results in long range
communications such as spiral links and increases irregularity for the resulting arrays. In this paper,
we seek to avoid this.

5. Partition Method[25, 31]. The starting point is to partition the dependence graphG into a number
of sub-graphs of lower dimension. Then the tasks of each sub-graph are allocated to PEs so as to
minimize the PEs count on each sub-graph. This allocation heuristic leads to an array ofn2/8+θ(n)
PEs for theDynamic Programming(DP), wheren is the size of the problem [15]. In [29] Djamegni
et al. reduces the PEs count of the DP ton2/10+ θ(n). This better solution is obtained by merging
nodes of the dependence graph associated with de DP before applying the partition method. All
these solutions are not space-optimal as they are based on the earliest optimal timing function whose
the potential parallelism isn2/14+ Θ(n). The partition method is also used in [27] by Djamegni
et al. to derive a space-optimal array for the APP and in [2, 3] by Bermond et al. to derive various
arrays for theGaussian Elimination(GE). However these GE solutions are not space-optimal. A
Space-time optimal array for the GE is proposed in [1] by Benaini and Robert. For CF the partition
method leads to an array ofN2/6+ Θ(N) PEs.

The weakest allocation technique, in term of the resulting PEs count, seems to be the projection method.
The most interesting seem to be the instruction shifts method and the partition method. Combination of
different allocation techniques is possible. For instance, in [28] Djamegni et al. show how one can
combine projection, piling and partition methods to design a space-optimal array for the TMI when the
schedule corresponds to a piecewise affine timing function. However, their design do not correspond to a
systolic array because of long-range communications occuring in the array.

We believe that it is important to investigate the problem of designing space-optimal arrays based on
domain transformations, given that: (i) there are tools that propose to (semi) automatically generate appli-
cation specific VLSI processor arrays, (ii) such arrays are becoming more and more powerful (iii) systolic
array synthesis methods find applications in parallelizing compilers. For this last point, the PAF (Par-
alléliseur Automatique de Fortran) project [8] uses a generalization of systolic schedule and allocation
techniques for generating parallel code. The LooPo project [10] at the University of Passau explores par-
allelization with systolic synthesis methods, as does the OPERA project [19] at the University of Stras-
bourg. Systolic schedule and allocation techniques are also used in [11] to compute CF on distributed
memory parallel computers.
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Fig. 1: The dependence graph of the CF forN = 6

In this paper, we derive a space-time optimal systolic array for the CF that requires 3N + Θ(1) time
steps andN2/8+ Θ(N) PEs. This constitutes the first contribution of the paper. The second contribu-
tion stemms from the fact that this new array is obtained from a new allocation strategy that suggests
to re-index the initial dependence graph of the CF before applying the weakest allocation method, the
projection method. As this new allocation strategy is based on re-indexing transformations, it could be
integrated in parallelizing compilers and tools.

Throughout this paper we will use notation[z→ z′] which expresses a causal dependency between the
index pointsz andz′, i.e results of calculations associated to pointz are needed by calculations assigned
to pointz′. We will also use the following definition: a plane is said to be parallel to direction<~a, ~b> if
it is parallel to vectors~a and~b.

The rest of the paper is organized as follows. Section 2 discusses the application of previous allocations
methods to CF. Section 3 presents our contribution. This section applies a new allocation strategy to the
CF, and this results in a space-time optimal array that improves previous solutions. Concluding remarks
are stated in the last section.

2 Deriving Systolic Arrays From Previous Allocation Techniques

The CF is defined as follows: Given aN×N symetric positive definite matrixA, the CF calculates a
lower triangular matrixL such thatA = LLt . It is defined by the following well known affine recurrence
equations:
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Fig. 2: Illustration of the partition method onG1 for N = 10

For (i, j,k) ∈ D = {1≤ j ≤ i ≤ N ∧ 0≤ k≤ j}

L(i, j,k) =


A j,i if 1 ≤ j ≤ i ≤ N∧k = 0
L(i, j,k−1)/L( j, j, j−1) if 1 ≤ i ≤ N∧1≤ j ≤ i−1∧k = j
L(i, j,k−1)1/2 if 1 ≤ i ≤ N∧ j = i∧k = i
L(i, j,k−1)−L(i,k,k) if 1 ≤ j ≤ i ≤ N∧1≤ k≤ j−1

×L( j,k,k)

(1)

Following the standard methodology for the systematic synthesis of systolic architectures [18, 20, 21,
22, 23, 25] we first derive a uniform version of (1). Regarding the dependencies of (1) a uniform version
S can be obtained with(1,0,0), (0,1,0) and (0,0,1) as the dependence vectors [21], and this without
changing the domainD of equations (1). An optimal timing function corresponding to such a uniformiza-
tion is t(i, j,k) = i + j +k. The dependence graphG and the timing function are illustrated in figure 1. In
this figure, we have not draw all the dependence vectors of direction(0,0,1) for sake of clarity.

By projecting the domainD of equationsS along vector~p1 = (1,1,0), we obtain a triangular or-
thoganally connected array ofN(N + 1)/2 processors which solves the CF in optimal time 3N + Θ(1).
In the resulting array, all PE is active only once over two time steps. Using the grouping method, the
array can be compressed by a factor of 2, thereby reducing the PEs count toN2/4+ Θ(N). Note that
if we projectD along vector~p2 = (1,0,0) we also obtain a triangular orthoganally connected array of
N(N + 1)/2 processors. But this last array can not be compressed by the grouping method as all PE is
active at any time step between its first and last calculations. On the other hand, the space complexity
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of this array has been reduced toN2/6+ Θ(N) [5] by applying the instruction shifts method with the
partition direction~a = (0,1,1). This is a significant improvement over the space complexity of the initial
array. However this array is not space-optimal as the potential parallelism of the problem isN2/8+Θ(N)
[5]. Now let apply the partition method [25, 31]. To this end, we first consider the intersections of the
dependence graphG with a number of planes of direction< (1,1,0), (0,0,1) >. This partitionsG into
N sub-graphs,Gh = {(x,y,z) ∈G | x−y = h−1}, h = 1,2, ... N. Then the tasks of each sub-graph are
seperately allocated so as to minimize the PEs count for each sub-graph as in [16], where it is proposed
a space-time optimal systolic array ofn2/6+ Θ(n) PEs for TMI (n is the size of the triangular matrix).
Figure 2 illustrated how the tasks of a sub-graph are allocated to PEs. The idea behind this allocation is
to recursively assign at each step two columns of direction(1,1,0) and one line of direction(0,0,1) to a
new PE. Sub-graphGh inducesd(N−h+ 1)/3e PEs. Thus the overall PEs count isN2/6+ Θ(N). Note
that if the partition method is applied by partitioningG following direction<~a, ~b> where~a and~b belong
to {(1,0,0), (0,1,0),(0,0,1)} (~a 6=~b), the resulting array will requiredN2/4+ Θ(N) PEs [25, 31].

3 Our Contribution: A Space-Time Optimal Design
In this section we derive a new systolic array ofN2/8+ Θ(N) PEs which solves the CF problem in
3N + Θ(1) steps. This is space-time optimal as the potential parallelism isN2/8+ Θ(N) [5]. This better
solution is obtained by performing a pre-processing by re-indexation which transforms the domainD of
equationsS into a new one which is more suitable for the application of projection methods.

Note that we can assume without loss of generality that the input (resp. output) points of equations
S are of the form(i, j,0) (resp. (i, j, j)), with 1≤ j ≤ i ≤ N. In the following we present a space-time
optimal systolic array with nearest neighbor connections for the CF problem. Note that we make a dis-
tinction between nearest-neighbor arrays and local arrays where the interconnections may “jump” over
one or more processors (the so-called bounded broadcast facility [24, 35]). This often allows a constant
factor of improvement, and the method can be applied to the array that we present. The derivation of this
new design can be divided into three phases.

Phase 1We first apply to systemSan unimodular transformationq that transforms the initial affine timing
functiont(i, j,k) = i + j + k into a new onet′(i, j,k) = i. To do so we setq(i, j,k) = (i + j + k, j,k). The
re-indexingq leaves inchanged the initial dependence vector(1,0,0) while (0,1,0) and(0,0,1) become
(1,1,0) and(0,1,1) respectively. It also maintains input points (resp. output points) on their initial plane,
i.e plane of cartesian equationk = 0 (resp.− j + k = 0). DenoteD(0) = {(i, j,k) ∈ Z3 | − i + 2 j + k≤
0, i− j−k−N ≤ 0, −k≤ 0, − j + k≤ 0}. The domain of the new systemq(S) is a subset ofD(0). In
the following phase we considerD(0) to simplify the presentation.

Phase 2We now apply toD(0) a re-indexation that locates the points of{(i, j,k)∈D(0) | i− j−k−N = 0}
on the plane of cartesian equationk = 0. To do so, we use the re-indexing functionq0 defined by:

q0(i, j,k) =

{
(i, j,−i + j +k+N) if (i, j,k) ∈ D(0)

1

(i, j,k) if (i, j,k) ∈ D(0)
2

where
D(0)

1 = {(i, j,k) ∈ D(0) | − i + j +N< 0}
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D(0)
2 = {(i, j,k) ∈ D(0) | − i + j +N≥ 0}

DenoteQ (0)
1 = q0(D(0)

1 ), Q (0)
2 = q0(D(0)

2 ) andD(1) = q0(D(0)) = Q (0)
1 ∪Q (0)

2 . We haveQ (0)
1 = {(i, j,k)∈

Z3 | − i + j +N< 0, j +k−N≤ 0, −k≤ 0, i−2 j +k−N≤ 0} andQ (0)
2 = {(i, j,k)∈ Z3 | − i + j +N≥

0, − i + 2 j + k≤ 0, − k≤ 0, − j + k≤ 0}. Simple linear algebraic shows that(i, j,k) ∈ Q (0)
1 implies

− j +k≤ 0 ∧ − i +2 j +k≤ 0 and that(i, j,k) ∈ Q (0)
2 implies j +k−N≤ 0 ∧ i−2 j +k−N≤ 0. Thus

D(1) = {(i, j,k) ∈ Z3 | j +k−N≤ 0, −k≤ 0, i−2 j +k−N≤ 0, − i +2 j +k≤ 0, − j +k≤ 0 }.

The re-indexingq0 acts differently on the dependencies of the two regionsD(0)
1 andD(0)

2 of D(0). It
transforms dependencies[z− (1,0,1) −→ z], [z− (1,1,0) −→ z] and[z− (1,0,0) −→ z] into [q0(z)−
(1,0,0)−→ q0(z)], [q0(z)− (1,1,0)−→ q0(z)] and[q0(z)− (1,0,−1)−→ q0(z)] respectively ifz∈D(0)

1 ,
and into[q0(z)− (1,0,1) −→ q0(z)], [q0(z)− (1,1,0) −→ q0(z)] and[q0(z)− (1,0,0) −→ q0(z)] respec-

tively if z∈ D(0)
2 . The resulting dependence vectors are:(1,0,0), (1,1,0) and(1,0,−1) in regionQ (0)

1 ,

and(1,0,1), (1,1,0) and(1,0,0) in regionQ (0)
2 .

Note that the re-indexingq0 leaves inchanged the timing functiont′(i, j,k) = i. Thus vector~p= (1,0,0)
is a valid projection direction. It leads to a triangular orthogonally connected array ofN2/4+ Θ(N) pro-
cessors which is two times smaller than the size complexity of the array obtained by projecting the initial
domainD along the same direction. On the other hand, the re-indexingq0 maintains the input points (resp.

output points belonging toD(0)
2 ) on the plane of cartesian equationk = 0 (resp.− j + k = 0) and locates

the output points belonging toD(0)
1 on the plane of equationi−2 j +k−N = 0.

Phase 3This array can be further optimized. For this purpose we re-index the points ofD(1) so as to
locate the points of{(i, j,k) ∈ D(1) | j−k = 0 ∨ i−2 j + k−N = 0 ∨ i−2 j + k−N = 1} on the plane
of cartesian equationj = 0. To do so, we consider the re-indexing functionq1 defined by:

q1(i, j,k) =


(i,−1

2 i + j− 1
2k+ N

2 ,k) if (i, j,k) ∈ D(1)
1,0

(i,−1
2 i + j− 1

2k+ N+1
2 ,k) if (i, j,k) ∈ D(1)

1,1

(i, j−k,k) if (i, j,k) ∈ D(1)
2

where

D(1)
1,0 = {(i, j,k) ∈ D(1) | − i + j +N< 0∧ (i +k−N)(mod 2) = 0}

D(1)
1,1 = {(i, j,k) ∈ D(1) | − i + j +N< 0∧ (i +k−N)(mod 2) = 1}

D(1)
2 = {(i, j,k) ∈ D(1) | − i + j +N≥ 0}

DenoteD(1)
1 = D(1)

1,0∪D(1)
1,1, D(2) = q1(D(1)), Q (1)

1 = q1(D(1)
1 ), Q (1)

1,0 = q1(D(1)
1,0), Q (1)

1,1 = q1(D(1)
1,1), Q (1)

2 =

q1(D(1)
2 ), α0 = 0 andα1 = 1

2. We haveQ (1)
1,h = {(i, j,k)∈ Z3 | i +2 j +3k−3N−2αh≤ 0, − j ≤ 0, −k≤



A Space-Time Optimal Systolic Algorithms For The Cholesky Factorization 117

Fig. 3: Array obtained forn = 12

0, 2 j + 2k−N−2αh ≤ 0, i− k+ N < 0} whereh ∈ {0, 1}, andQ (1)
2 = {(i, j,k) ∈ Z3 | j + 2k−N ≤

0, −k≤ 0, − i + 2 j + 3k≤ 0, − j ≤ 0, − i + k+ N≥ 0}. Clearly,Q (1)
1 = E∪F whereE = {(i, j,k) ∈

Z3 | i + 2 j + 3k−3N ≤ 0, − j ≤ 0, − k≤ 0, 2 j + 2k−N ≤ 0, − i + k+ N < 0} andF = {(i, j,k) ∈
Q (1)

1,0 | i + 2 j + 3k−3N = 1 or 2j + 2k−N = 1}. Simple linear algebraic shows that(i, j,k) ∈ E implies

i +2 j +3k−3N≤ 0∧ j +2k−N≤ 0 and that(i, j,k)∈Q (1)
2 impliesi +2 j +3k−3N≤ 0∧ j +2k−N≤ 0.

ThusD(2) = F∪{(i, j,k)∈ Z3 | −k≤ 0, − j ≤ 0, i +2 j +3k−3N≤ 0, 2 j +2k−N≤ 0, − i +2 j +3k≤
0 and j +2k−N≤ 0}.

Let’s now determine the new dependencies induced by the re-indexingq1. For this purpose, we first

partition D(1) into three regionsR1, R2 andR3. FromD(1) = Q(0)
1 ∪Q(0)

2 andD(1) = D(1)
1 ∪D(1)

2 we get

D(1) = (Q(0)
1 ∪Q(0)

2 )∩ (D(1)
1 ∪D(1)

2 ) = (Q(0)
1 ∩D(1)

1 )∪ (Q(0)
2 ∩D(1)

1 )∪ (Q(0)
2 ∩D(1)

2 ) asQ(0)
1 ∩D(1)

2 is empty.

We setR1 = Q(0)
1 ∩D(1)

1 , R2 = Q(0)
2 ∩D(1)

1 andR3 = Q(0)
2 ∩D(1)

2 . Note that in regionRi , the dependencies
are: [z− (1,1,0) −→ z], [z− (1,0,0) −→ z], [z− (1,0,−1) −→ z] if i = 1 and[z− (1,0,1) −→ z] if i =
2 or i = 3, with z∈ Ri . We now explain how these dependencies are transformed per region by the re-
indexingq1.

Case of Region R1. The dependency[z−(1,1,0)−→ z] become[q1(z)−(1,0,0)−→ q1(z)] if z∈D(1)
1,0 and

[q1(z)−(1,1,0)−→ q1(z)] if z∈D(1)
1,1. The dependency[z−(1,0,0)−→ z] become[q1(z)−(1,−1,0)−→

q1(z)] if z∈D(1)
1,0 and[q1(z)−(1,0,0)−→ q1(z)] if z∈D(1)

1,1. The dependency[z−(1,0,−1)−→ z] become
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[q1(z)− (1,0,−1)−→ q1(z)] if z∈ R1.

Case of Region R2. The dependencies[z− (1,1,0) −→ z] and [z− (1,0,0) −→ z] are transformed as
in regionR1, while the dependency[z− (1,0,1)−→ z] is transformed into[q1(z)− (1,−1,1)−→ q1(z)].

Case of Region R3. The dependencies[z− (1,1,0) −→ z], [z− (1,0,0) −→ z] and[z− (1,0,1) −→ z]
become[q1(z)−(1,1,0)−→ q1(z)], [q1(z)−(1,0,0)−→ q1(z)] and[q1(z)−(1,−1,1)−→ q1(z)] respec-
tively.

The resulting dependence vectors on imageq1(Ri) of regionRi by the re-indexingq1 are: (1,1,0),
(1,0,0), (1,−1,0) if i = 1 or i = 2, (1,−1,1) if i = 2 or i = 3, and(1,0,−1) if i = 1.

We are now ready to derive a space-time optimal solution using projection method. For this purpose
we project domainD(2) along direction~p = (1,0,0). The resulting array is illustrated in figure 3. It
corresponds to a triangular hexagonally connected array ofN2/8+ Θ(N) processors which is two times
smaller than the size complexity of the array obtained in phase 2. Moreover this new design is space-
optimal as the potential parallelism of the problem is [5]pp = N2/8+ Θ(N). On the other hand, the
re-indexingq1 maintains the input points on the plane of cartesian equationk = 0 and moves the output
points from planes− j + k = 0 andi−2 j + k−N = 0 to planej = 0. This implies that input and output
points are allocated to processors located at the border of the array. A property which permit to avoid
eventual additional steps for data loading and result unloading. Thus this array solves CF problem in
optimal time 3N + Θ(1). Therefore this new design is space-time optimal.

4 Conclusion
In this paper we have studied various allocation methods and their application to CF. In particular, we
have designed a systolic array with regular nearest-neighbor connections for the CF problem that is both
time-optimal and space-optimal, thereby establishing the “systolic complexity” of the CF problem. We
believe that the design of a space-time optimal array represents an interesting and important contribution
to the knowledge of the systolic model. This space-time optimal solution is obtained from a new alloca-
tion strategy that suggests to first perform index transformations on a dependence graph before applying
the weakest allocation method, the projection method. However, the main difficulty of this allocation
stragegy stemms from the definition of suitable index transformations. On the other hand, we believe that
tools that permit to (semi)automatically generate application specific VLSI processors arrays, research on
the parallelization of algorithms for distributed-memory massively parallel computers [11] and research
on parallelizing compilers [8, 10, 19] could benefit from systolic allocation strategies based on such index
transformations.
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