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Abstract

The present paper is a continuation of the recent paper "A. Aral, T. Acar, S. Kursun, Generalized Kantorovich
forms of exponential sampling series, Anal. Math. Pyh., 12:50, 1-19 (2022)" in which a new Kantorovich
form of generalized exponential sampling series Kχ,G

w has been introduced by means of Mellin Gauss
Weierstrass singular integrals. In this paper, in order to investigate pointwise convergence of the family
of operators Kχ,G

w , we first obtain an estimate for the remainder of Mellin-Taylor’s formula and by this
estimate we give the Voronovskaya theorem in quantitative form by means of Mellin derivatives.
Furthermore, we present quantitative Voronovskaya theorem for difference of family of operators Kχ,G

w

and generalized exponential sampling series Eχw . The results are examined by illustrative numerical
examples.

1 INTRODUCTION

The sampling type operators are approximate versions of the classical Whittaker-Kotel’nikov-Shannon sampling theorem (see,
e.g., [29]). Such an approximation process aims to exactly reconstruct the target function f from its samples f (k/w) taken on
the set {k/w : k ∈ Z} of equally spaced points on the real line. The operators are given in the form

(Sw f ) (t) :=
∑

k∈Z

f
�

k
w

�

sinc (wt − k) , t ∈ R, w> 0, (1)

where the sin c function is defined by sinc (x) := sin (πx)/ (πx) , for x ̸= 0 sinc (0) = 1.
The family of operators (1) and their Kantorovich forms are very useful from the theoretical point of view and applications

as well. For the most recent results obtained by classical theory based on Fourier transform analysis, we refer the readers to
[10, 18, 19, 25, 26] and references therein. In 1980’s, researchers consisting of optical physicists and engineers introduced a
mathematical method for the study of certain phenomena related to light scattering, diffraction, radio-astronomy (see, e.g.,
[17, 27, 28, 32]). Roughly speaking, their approach aimed to find a solution of integral equations of the type

h (t) =

∞
∫

0

K (ts) f (s) ds,

where h is the data function, K is a kernel and f is the unknown function. The most suitable method for the solution was found
in the theory of Mellin transform in which sampling type series was constructed with exponentially spaced samples. A Mellin
transform theory completely independent of Fourier analysis was developed by Butzer and they introduced and intensively
studied the exponential sampling series

�

Ẽw f
�

(t) :=
∑

k∈Z

f
�

ek/w
�

linc/w

�

e−k tw
�

, t ∈ R+ = (0,+∞) , w> 0, c ∈ R,

where the linc function is defined by linc (x) := x−c sinc (log x) for x ̸= 1 and linc (1) = 1.
In [11], Bardaro et al. constructed a family of linear operators as a generalization of the exponential sampling series using

instead of linc function using by arbitrary χ : R+→ R function satisfying certain assumptions of approximate identities given by
�

Eχw f
�

(t) :=
∑

k∈Z

f
�

ek/w
�

χ
�

e−k tw
�

, t ∈ R+, w> 0 (2)
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for any function f : R+→ R for which the series is absolutely convergent. Then, they investigated essential convergence results
of them. The family of operators (2) has been studied by considering its different forms: Kantorovich forms in [7], Durrmeyer
forms in [14], bivariate forms in [9], multivariate forms in [4, 30]. Another recent study on exponential sampling series is due to
Aral et al. [8] in which authors constructed a new family of operators by generalizing Kantorovich type of exponential sampling
series by replacing integral means over exponentially spaced intervals with its more general analogue, Mellin Gauss Weierstrass
singular integrals. The operators are of the form

�

Kχ,G
w f

�

(t) :=
∑

k∈Z

χ
�

e−k tw
�

∞
∫

0

Gw (z) f
�

zek/w
� dz

z

=
∑

k∈Z

χ
�

e−k tw
�

∞
∫

0

Gw

�

ze−k/w
�

f (z)
dz
z

, t ∈ R+, w> 0, (3)

where function f : R+→ R is an integrable function on R+ such that the above series is convergent for every x ∈ R+ and Gw is
the Mellin-Gauss-Weierstrass kernel in the following form

Gw (z) =
w
p

4π
exp

�

−
�w

2
log z

�2�

, z ∈ R+, w> 0.

After investigating basic convergence properties of the above family of operators, new weighted spaces of functions constructed
by logarithmic weight were considered and the convergence properties of operators (3) were obtained for functions belonging to
logarithmic weighted space of functions. In order to determine the rate of convergence, a new modulus of continuity, called
"weighted logarithmic modulus of continuity" was introduced. Here we mention that weighted approximation of sampling type
operators are very recent and active research area, for most recent paper on weighted approximation of classical sampling
operators, we refer the readers to [1, 2, 5, 6]. However, rate of pointwise convergence and an upper estimate for pointwise
convergence were not presented for the operators (3). This paper aims to solve this problem and to present such a results via
weighted logarithmic modulus of continuity. To do this, we first obtain an estimate for the remainder of Mellin-Taylor’s formula.
Using the estimate, we present a quantitative Voronovskaya type result for the operators (3). We also obtain an estimate for the
difference of the operators (3) and (2).

2 PRELIMINARIES

Let C (R+) be the space of all continuous functions defined on R+. We will denote that CB (R+) is the space of all bounded
functions f ∈ C (R+).

We shall use the symbol C (n) (R+) , n ∈ N for a class of functions locally at the point t ∈ R+ if f is (n− 1)-times differentiable
in a neighborhood of t and the derivative f (n) (t) exists.

Moreover, we consider by Lp (R+) for 1≤ p <∞, space of all the Lebesgue measurable and p-integrable functions defined
on R+, endowed with the usual norm ∥ f ∥p.

Let c ∈ R. We consider the space

X c =
�

f : R+→ C : f (·) (·)c−1 ∈ L1
�

R+
�	

endowed with the norm

∥ f ∥Xc
=


 f (·) (·)c−1




1 =

∞
∫

0

| f (u)|uc−1du.

Then, the Mellin transform of f ∈ X c is given by

[ f ]M̂ (s) :=

∞
∫

0

f (u)us−1du, s = c + i t; c, t ∈ R,

where i is the complex unit (see [20]).
The Mellin differential operator Θ or the Mellin derivative of f : R+→ R at the point x ∈ R+ is defined by

Θ f (x) = x f
′
(x)

provided the usual derivative f ′ exists at the point x . Subsequently, the Mellin differential operator of order r ∈ N can be written
as

Θr := Θ
�

Θr−1
�

.

For more details, we refer the readers to [20].
Throughout the paper a continuous function χ : R+→ R is called a kernel, if the following assumptions are satisfied:
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i)
∑

k∈Z

χ
�

e−ku
�

= 1 for every u ∈ R+

and
M0 (χ) := sup

u∈R+

∑

k∈Z

�

�χ
�

e−ku
��

�<∞,

ii) for every r > 0,
lim

r→∞

∑

|k−log u|>r

�

�χ
�

e−ku
��

�= 0

holds uniformly with respect to u ∈ R+.

We will denote by Φ the class of functions satisfying the conditions i) and ii).

Let j ∈ N. The algebraic moments of χ ∈ Φ of order j are defined as

m j (χ, x) :=
∑

k∈Z

χ
�

e−k x
�

log j
�

ek x−1
�

=
∑

k∈Z

χ
�

e−k x
�

(k− log x) j , x ∈ R+. (4)

Similarly, the absolute moments of χ ∈ Φ of arbitrary order α > 0 can be defined by

Mα (χ, x) :=
∑

k∈Z

�

�χ
�

e−k x
��

� |k− log x |α , x ∈ R+.

We will put Mα (χ) := supx∈R+ Mα (χ, x) .

Remark 1. As it is shown in [15], if Mα (ϕ) <∞, then Mβ (ϕ) <∞ for 0 ≤ β < α. Moreover if χ is a kernel with compact
support, then its all absolute moments of any order are finite.

Now, let us consider the following logarithmic weighted space of continuous functions and its natural subspaces considered
in [8]

B2

�

R+
�

: =

�

f : R+→ R : ∃M > 0 such that
| f (x)|

1+ log2 x
≤ M for every x ∈ R+

�

,

C2

�

R+
�

: = C
�

R+
�

∩ B2

�

R+
�

and

C∗2
�

R+
�

: =

�

f ∈ C2

�

R+
�

: lim
x→+∞

| f (x)|
1+ log2 x

∈ R
�

.

The linear space of functions B2 (R+) is normed linear space with the norm

∥ f ∥L := sup
x>0

| f (x)|
1+ log2 x

.

Finally, we recall weighted logarithmic modulus of continuity defined in [8]. For f ∈ C2 (R+) and δ > 0, the weighted
logarithmic modulus of continuity is considered as

Ω ( f ,δ) := sup
|log t|≤δ, x>0

| f (t x)− f (x)|
�

1+ log2 x
� �

1+ log2 t
� . (5)

(5) has the following fundamental properties.

Lemma 2.1. ([8]) Let δ > 0. Then
a.) for f ∈ C2 (R+) , the quantity Ω ( f ,δ) is finite,
b.) for all f ∈ C2 (R+) and each λ ∈ R+,

Ω ( f ;λδ)≤ 2 (1+λ)3
�

1+δ2
�

Ω ( f ,δ) , (6)

c.) for all f ∈ C2 (R+) ,

| f (h)− f (x)| ≤ 16
�

1+δ2
�2 �

1+ log2 x
�

�

1+
|log h− log x |

δ5

5�

Ω ( f ,δ) , h, x > 0, (7)

d.) for f ∈ C∗2 (R
+) ,

lim
δ→0
Ω ( f ,δ) = 0.

Remark 2. Ω ( f ,δ) is a monotonically increasing function of δ.
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3 MAIN RESULTS

First of all, we recall the Mellin-Taylor formula. For any f ∈ CB (R+) belonging to C (n) locally at the point x ∈ R+, the Mellin-Taylor
formula with Mellin derivatives is defined by (see [12, 31])

f (t x) = f (x) +Θ f (x) log t +
Θ2 f (x)

2!
log2 t + ...+

Θn f (x)
n!

logn t + h (t) logn t, n ∈ N; t, x > 0, (8)

where h : R+ → R is a bounded function such that limt→1 h (t) = 0. The expression (8) can be rewritten with the variable
substitution t x = u, u ∈ R+ as follows:

f (u) = f (x) +Θ f (x) (log u− log x) +
Θ2 f (x)

2!
(log u− log x)2 + ...

+
Θn f (x)

n!
(log u− log x)n + h

� u
x

�

(log u− log x)n .

Then we have

f (u) =
n
∑

i=0

1
i!
Θi f (x) (log u− log x)i + Rn (u) , (9)

where

Rn (u) =
(Θn f (ξ)−Θn f (x))

n!
(log u− log x)n

is the Lagrange remainder in Mellin-Taylor’s formula at the point x ∈ R+ and ξ is a suitable number lying between u and x .

Proposition 3.1. Let Θn f ∈ C2 (R+). Then we have that

|Rn (u)| ≤
64
n!

�

1+ log2 x
�

Ω (Θn f ,δ)

�

|log u− log x |n +
|log u− log x |n+5

δ5

�

(10)

for u, x > 0 and δ ≤ 1.

Proof. Let Θn f ∈ C2 (R+) . Similar to operations in [3], using the Remark 2, the inequality |logξ− log x | ≤ |log u− log x | and the
inequality (6), from the definition of the weighted logarithmic modulus of continuity, we can easily get the estimates

�

�R̄n (u)
�

� :=
1
n!
|Θn f (ξ)−Θn f (x)|

≤
1
n!
Ω (Θn f , |logξ− log x |)

�

1+ log2 x
� �

1+ (logξ− log x)2
�

≤
1
n!
Ω (Θn f , |log u− log x |)

�

1+ log2 x
� �

1+ (log u− log x)2
�

≤
2
n!

�

1+
|log u− log x |

δ

�3
�

1+δ2
� �

1+ log2 x
� �

1+ (log u− log x)2
�

Ω (Θn f ,δ) .

Now, we obtain
�

�R̄n (u)
�

�≤

¨

16
n!

�

1+δ2
�2 �

1+ log2 x
�

Ω (Θn f ,δ) , |log u− log x | ≤ δ
16
n!

�

1+δ2
�2 �

1+ log2 x
� |log u−log x |5

δ5 Ω (Θn f ,δ) , |log u− log x |> δ
·

Then, by combining the two cases with choise of δ≤ 1 we get desired result (10).

Theorem 3.2. Let χ ∈ Φ and Θ f ∈ C∗2 (R
+) . Supposing that M6 (χ)<∞ and m1 (χ, xw) = m1 (χ) ̸= 0<∞, we have

�

�w
��

Kχ,G
w f

�

(x)− f (x)
�

−Θ f (x)m1 (χ)
�

�

≤ 64
�

1+ log2 x
�

Ω

�

Θ f ,
1
w

��

M0 (χ)
�

2
p
π
+ 3840

�

+M1 (χ) + 32M6 (χ)
�

.

Proof. Applying the Mellin-Taylor formula (9) to f at x ∈ R+, and considering the equality

∞
∫

0

Gw

�

ze−k/w
� dz

z
=

∞
∫

0

Gw (z)
dz
z
= 1,
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we get

�

Kχ,G
w f

�

(x) =
∑

k∈Z

χ
�

e−k xw
�

∞
∫

0

Gw

�

ze−k/w
�

( f (x) +Θ f (x) (log z − log x))
dz
z

+
∑

k∈Z

χ
�

e−k xw
�

∞
∫

0

Gw (z)R1

�

zek/w
� dz

z

= f (x) +
Θ f (x)

w
m1 (χ) +

∑

k∈Z

χ
�

e−k xw
�

∞
∫

0

Gw (z)R1

�

zek/w
� dz

z
.

Now, let I :=
∑

k∈Z
χ
�

e−k xw
�

∞
∫

0

Gw (z)R1

�

zek/w
�

dz
z . Thanks to inequality (10), we can write that

|I | ≤
∑

k∈Z

�

�χ
�

e−k xw
��

�

∞
∫

0

Gw (z)
�

�R1

�

zek/w
��

�

dz
z

≤ 64
�

1+ log2 x
�

Ω (Θ f ,δ)
∑

k∈Z

�

�χ
�

e−k xw
��

�

×

∞
∫

0

Gw (z)

 

�

�log
�

zek/w
�

− log x
�

�+

�

�log
�

zek/w
�

− log x
�

�

6

δ5

!

dz
z

≤ 64
�

1+ log2 x
�

Ω (Θ f ,δ)
∑

k∈Z

�

�χ
�

e−k xw
��

�

×

∞
∫

0

Gw (z)

�

|log z|+
|k−w log x |

w
+

25

δ5

�

|log z|6 +
|k−w log x |6

w6

��

dz
z

= 64
�

1+ log2 x
�

Ω (Θ f ,δ)
∑

k∈Z

�

�χ
�

e−k xw
��

�

§

2
p
πw
+
|k−w log x |

w
+

25

δ5w6

�

120+ |k−w log x |6
�

ª

≤ 64
�

1+ log2 x
�

Ω (Θ f ,δ)
§

1
w

�

2
p
π

M0 (χ) +M1 (χ)
�

+
25

δ5w6
(120M0 (χ) +M6 (χ))

ª

.

Setting δ = w−1, this completes the proof.

Theorem 3.3. Let χ ∈ Φ and Θ2 f ∈ C∗2 (R
+) . Supposing that M7 (χ)<∞, then we have

�

�w2
��

Kχ,G
w − Eχw

�

( f ) (x)
�

−Θ2 f (x)
�

�

≤ 32
�

1+ log2 x
�

Ω

�

Θ2 f ,
1
w

��

M0 (χ)
�

4+
98304
p
π

�

+ 3M2 (χ) + 129M7 (χ)
�

.
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Proof. Let χ ∈ Φ. Since f
′′

exists at the point x ∈ R+, we have
�

Kχ,G
w − Eχw

�

( f ) (x)

=
∑

k∈Z

χ
�

e−k xw
�

∞
∫

0

Gw

�

ze−k/w
� �

f (z)− f
�

ek/w
�� dz

z

=
∑

k∈Z

χ
�

e−k xw
�

∞
∫

0

Gw

�

ze−k/w
�

�

f (x) +Θ f (x) (log z − log x) +
Θ2 f (x)

2!
(log z − log x)2

− f (x)−Θ f (x)
�

k
w
− log x

�

−
Θ2 f (x)

2!

�

k
w
− log x

�2
�

dz
z

+
∑

k∈Z

χ
�

e−k xw
�

∞
∫

0

Gw

�

ze−k/w
� �

R2 (z)− R2

�

ek/w
�� dz

z

=
∑

k∈Z

χ
�

e−k xw
� Θ2 f (x)

2!

�

�

k
w
− log x

�2

+
2

w2
−
�

k
w
− log x

�2
�

+
∑

k∈Z

χ
�

e−k xw
�

∞
∫

0

Gw (z)
�

R2

�

zek/w
�

− R2

�

ek/w
�� dz

z

=
Θ2 f (x)

w2
+
∑

k∈Z

χ
�

e−k xw
�

∞
∫

0

Gw (z)
�

R2

�

zek/w
�

− R2

�

ek/w
�� dz

z
.

Let I :=
∑

k∈Z
χ
�

e−k xw
�

∞
∫

0

Gw (z)
�

R2

�

zek/w
�

− R2

�

ek/w
��

dz
z . Now, we estimate I . We have

|I | ≤
∑

k∈Z

�

�χ
�

e−k xw
��

�

∞
∫

0

Gw (z)
��

�R2

�

zek/w
��

�+
�

�R2

�

ek/w
��

�

� dz
z

:= I1 + I2.

Since Θ2 f ∈ C∗2 (R
+) , using the inequality (10), we obtain

I1 ≤ 32
�

1+ log2 x
�

Ω
�

Θ2 f ,δ
�

∑

k∈Z

�

�χ
�

e−k xw
��

�

×

∞
∫

0

Gw (z)

(

�

�log
�

zek/w
�

− log x
�

�

2
+

�

�log
�

zek/w
�

− log x
�

�

7

δ5

)

dz
z

≤ 32
�

1+ log2 x
�

Ω
�

Θ2 f ,δ
�

∑

k∈Z

�

�χ
�

e−k xw
��

�

×

∞
∫

0

Gw (z)

�

2

�

|log z|2 +
|k−w log x |2

w2

�

+
27

δ5

�

|log z|7 +
|k−w log x |7

w7

��

dz
z

= 32
�

1+ log2 x
�

Ω
�

Θ2 f ,δ
�

∑

k∈Z

�

�χ
�

e−k xw
��

�

�

2

�

2+ |k−w log x |2

w2

�

+
27

δ5w7

�

768
p
π
+ |k−w log x |7

�

�

≤ 32
�

1+ log2 x
�

Ω
�

Θ2 f ,δ
�

§

1
w2
(4M0 (χ) + 2M2 (χ)) +

27

δ5w7

�

768
p
π

M0 (χ) +M7 (χ)
�ª

and

I2 ≤ 32
�

1+ log2 x
�

Ω
�

Θ2 f ,δ
�

∑

k∈Z

�

�χ
�

e−k xw
��

�

×

∞
∫

0

Gw (z)

�

|k−w log x |2

w2
+
|k−w log x |7

δ5w7

�

≤ 32
�

1+ log2 x
�

Ω
�

Θ2 f ,δ
�

�

M2 (χ)
w2

+
M7 (χ)
δ5w7

�

,

respectively. Now choosing δ = w−1, this gives the result which is desired.
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4 APPLICATIONS OF CERTAIN KERNELS

In this section, we give numerical applications of certain kernels.

4.1 Mellin-Spline Kernel

For u ∈ R+ and n ∈ N, we recall the Mellin-Spline kernel of order n which is the Mellin version of classical B-Spline given by

Bn (u) :=
1

(n− 1)!

n
∑

i=0

(−1)i
�

n
i

�

�n
2
+ log u− i

�n−1

+
, u ∈ R+,

where r+ denotes the positive part of the numbers r. Note that, Bn is a kernel with compact support. For c ∈ R, the Mellin
transform of Bn is given by

[Bn]M̂ (c + iv) =
�

sin (v/2)
v/2

�n

, v ∈ R\{0}

(see [11]). Using the Mellin-Poisson summation formula (see [22, 23]) which is the form

(i) j
∑

k∈Z

Bn

�

ek t
�

(k− log t) j =
∑

k∈Z

[Bn]
( j)
M (2kπi) t−2kπi , t ∈ R+,

we can show
∑

k∈Z

Bn

�

ek t
�

= 1 for every t ∈ R+,

since

[Bn]M̂ (2kπi) =

�

1, k = 0
0, otherwise

·

Since Bn has the compact support, all the algebraic and absolute moments are finite. m j (Bn, x) are independent of x for j = 1, ..., n
(see [13]). For a particular case, we consider the Mellin-Spline kernel of order 3 given by

B3 (x) =















1
2

�

3
2 + log x

�2
, e−3/2 < x ≤ e−1/2

3
4 − log2 x , e−1/2 < x ≤ e1/2

1
2

�

3
2 − log x

�2
, e1/2 < x < e3/2

0 , otherwise

·

It can be shown the equalities

m1 (B3) = 0 and m2 (B3) =
1
4

hold using the Mellin-Poisson summation formula.
Now, we consider the function f : R+ → R, f (x) = log3 x . Then Θ2 f belongs to space C∗2 (R

+) . Thus supposing that
m1 (χ) = 0, m2 (χ) ̸= 0<∞ and applying similar operations to Theorem 3.2, we obtain

lim
w→∞

w2
��

KB3 ,G
w f

�

(x)− f (x)
�

=
Θ2 f (x)

4

and we have
lim

w→∞
w2
��

KB3 ,G
w − EB3

w

�

( f ) (x)
�

= Θ2 f (x) .

We present numerical results for Theorem 3.2 and Theorem 3.3 in the following tables, respectively.

TABLE 1

w
�

�

�

KB3 ,G
w f

�

(2)− f (2)
�

�

�

�

�

KB3 ,G
w f

�

(3)− f (3)
�

�

�

�

�

KB3 ,G
w f

�

(5)− f (5)
�

�

5 0.1872730286158768 0.2966524971165803 0.4346417748071320

10 0.0467706244553701 0.0741528628791428 0.1086598131959710

50 0.0018711339217417 0.0029661170806456 0.0043455854803997

100 0.0004679218543695 0.0007415312744427 0.0010863567162908

150 0.0002079420922546 0.0003295709399606 0.0004828408827284

300 0.0000519855279017 0.0000823947392714 0.0001207064596655
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TABLE 2

w
�

�

�

KB3 ,G
w − EB3

w

�

( f ) (2)
�

�

�

�

�

KB3 ,G
w − EB3

w

�

( f ) (3)
�

�

�

�

�

KB3 ,G
w − EB3

w

�

( f ) (5)
�

�

5 0.1663553233343869 0.2636669492803463 0.3862650989841841

10 0.0415888308335967 0.0659167373200866 0.0965662747460460

50 0.0016635532333439 0.0026366694928035 0.0038626509898418

100 0.0004158883083360 0.0006591673732009 0.0009656627474605

150 0.0001848392481493 0.0002929632769782 0.0004291834433158

300 0.0000462098120373 0.0000732408192445 0.0001072958608289

4.2 Translates of Mellin-Spline Kernel

For
c1 + c2 = 1 and c1 log a+ c2 log b = 0,

taking into account that the linear combinations of translates of classical central B-Splines of order n, translates of Mellin-Splines
can be considered as follows (see [16]):

B̄n (u) = c1Bn (au) + c2Bn (bu) , ∀u ∈ R+, a, b ∈ R.

Particularly, for a = e−2, b = e−3 and n= 2, we obtain the combination of the Mellin-Spline of order 2 as the following:

B̄2 (u) = 3B2

�

e−2u
�

− 2B2

�

e−3u
�

.

Using the Mellin-Poisson summation formula, we obtain m0

�

B̄2

�

= 1, m1

�

B̄2

�

= 0 and m2

�

B̄2

�

= 17
3 .

Finally, let us consider the function g : R+ → R, g (x) = cos (4 log t) . Then, we have Θ2 f ∈ C∗2 (R
+) . Thus supposing that

m1 (χ) = 0, m2 (χ) ̸= 0<∞ and applying similar operations to Theorem 3.2, we obtain

lim
w→∞

w2
��

K B̄2 ,G
w g

�

(x)− g (x)
�

=
17
3
Θ2 g (x)

and we have
lim

w→∞
w2
��

K B̄2 ,G
w − E B̄2

w

�

(g) (x)
�

= Θ2 g (x) .

We present numerical results for Theorem 3.2 and Theorem 3.3 in the following tables, respectively.

TABLE 3

w
�

�

�

K B̄2 ,G
w g

�

(1.8)− g (1.8)
�

�

�

�

�

K B̄2 ,G
w g

�

(2.9)− g (2.9)
�

�

�

�

�

K B̄2 ,G
w g

�

(4.4)− g (4.4)
�

�

10 0.0639793630169120 0.2782884244376554 0.0561806829306111

40 0.0091801760237817 0.0123172422229221 0.0154190978988109

90 0.0023870235083690 0.0020476067499788 0.0033124971943863

150 0.0008954759183915 0.0006740868530503 0.0012350835854185

250 0.0003407971636637 0.0002343881464958 0.0004433267727974

300 0.0002275847543150 0.0001569067489326 0.0003080113499111

TABLE 4

w
�

�

�

K B̄2 ,G
w − E B̄2

w

�

(g) (1.8)
�

�

�

�

�

K B̄2 ,G
w − E B̄2

w

�

(g) (2.9)
�

�

�

�

�

K B̄2 ,G
w − E B̄2

w

�

(g) (4.4)
�

�

10 0.1109687160667529 0.1243108626713763 0.1723329865415991

40 0.0071628405967575 0.0045273294149397 0.0095722804428460

90 0.0013957789938270 0.0008703969763847 0.0018593039529166

150 0.0005011018165399 0.0003121677934811 0.0006674485698626

250 0.0001802135891177 0.0001122422564383 0.0002400240938882

300 0.0001251233025652 0.0000779291871146 0.0001666528210387
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