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Asymptotic Approximate Fekete Arrays

T. Bloom a · N. Levenberg b

Abstract

The notion of asymptotic Fekete arrays, arrays of points in a compact set K ⊂ Cd which behave asymptot-
ically like Fekete arrays, has been well-studied, albeit much more recently in dimensions d > 1. Here
we show that one can allow a more flexible definition where the points in the array need not lie in K.
Our results, which work in the general setting of weighted pluripotential theory, rely heavily, in the
multidimensional setting, on the ground-breaking work of Berman, Boucksom and Nystrom from [3].

1 Introduction
Let K be a compact set in C. For n= 1,2, ...

δn(K) := max
z0 ,...,zn∈K

∏

j<k

|z j − zk|1/(
n+1

2 )

is called the n− th order diameter of K . Note that

V DM(z0, ..., zn) = det[z j
i ]i, j=0,1,...,n =
∏

j<k

(z j − zk)

= det





1 z0 . . . zn
0

...
...

. . .
...

1 zn . . . zn
n





is a classical Vandermonde determinant; the basis monomials 1, z, ..., zn for the space of polynomials of degree at most n are
evaluated at the points z0, ..., zn. The sequence of numbers {δn(K)} is decreasing and hence the limit

lim
n→∞

�

max
λi∈K
|V DM(λ0, ...,λn)

�1/(n+1
2 ) := δ(K) (1)

exists and is called the transfinite diameter of K . Points zn0, ..., znn ∈ K for which

|V DM(zn0, ...znn)|= |det





1 zn0 . . . zn
n0

...
...

. . .
...

1 znn . . . zn
nn



 |

is maximal are called Fekete points of order n for K . For such Fekete arrays {zn j} j=0,...,n; n=1,2,..., it is classical that if K is not polar,
then

µn :=
1

n+ 1

n
∑

j=0

δzn j
→ µK weak-* (2)

where µK is the equilibrium measure for K; i.e., the probability measure on K of minimal logarithmic energy. In fact, for
asymptotically Fekete arrays {zn j} j=0,...,n; n=1,2,... ⊂ K , i.e., such that

lim
n→∞
|V DM(zn0, ..., znn)|1/(

n+1
2 ) = δ(K), (3)

(2) holds.
There are higher dimensional analogues of asymptotically Fekete arrays and equilibrium measures associated to nonpluripolar

compact sets K in Cd , d > 1; cf., [13] for the definition and properties of transfinite diameter in this setting. A striking
generalization of (2) was achieved by Berman, Boucksom and Nystrom in [3]. There the authors proved a much more general
result, one which, in the setting of the current work, requires weighted pluripotential theory. In both the univariate and multivariate
cases, one regularly encounters situations where “near extremal” arrays contain points lying outside of K; cf., [1] and [11]. It is
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the purpose of this note to show that, by suitably modifying the arguments in [3], one still recovers the appropriate generalization
of (2), even in the weighted setting.

In the next section, we repeat a standard argument from [7] to deal with the weighted, univariate case. Section 3 gives the
necessary definitions and background in weighted pluripotential theory, and section 4 follows the strategy in [3] to prove the
main result on asymptotic, approximate weighted Fekete arrays in Cd , d > 1. Using the notation and terminology from those
sections, here is the statement:

Theorem 1.1. Let K ⊂ Cd be compact and nonpluripolar, let {Kn} be a sequence of compact sets which decrease to K; i.e., Kn+1 ⊂ Kn
for all K and K = ∩nKn, and let w be an admissible weight function on Kn for n≥ n0 whose restriction to K is admissible. For each n,
take points x (n)1 , x (n)2 , · · · , x (n)mn

∈ Kn for which

lim
n→∞

�

|V DM(x (n)1 , · · · , x (n)mn
)|w(x (n)1 )

nw(x (n)2 )
n · · ·w(x (n)mn

)n
�

1
ln = δw(K) (4)

and let µn := 1
mn

∑mn
j=1 δx(n)j

. Then

µn→ µK ,Q := (dd c V ∗K ,Q)
d weak− ∗.

In fact this is a special case of a general result on a sequence {µn} of measures, µn supported on Kn, given as Theorem 4.8 in
section 4.

Acknowledgement. We thank Jean-Paul Calvi for an observation which greatly simplified the proof of Proposition 4.3.

2 The univariate case
Let K ⊂ C be compact and let M(K) denote the convex set of probability measures on K . For µ ∈M(K) define the logarithmic
energy

I(µ) :=

∫

K

∫

K

log
1
|z − ζ|

dµ(z)dµ(ζ).

Either infµ∈M(K) I(µ) =: I(µK)< +∞ for a unique µK ∈M(K) or else I(µ) = +∞ for all µ ∈M(K); this latter occurs when K is
polar. Suppose K is nonpolar. Let {εn} be a decreasing sequence of positive numbers with limn→∞ εn = 0; and set

Kn := {z ∈ Cd : dist(z, K)≤ εn}.

These are compact sets decreasing to K (in fact, regular compacta; cf., [9]); thus

lim
n→∞

δ(Kn) = δ(K).

Given an array of points {zn j} j=0,...,n; n=1,2,... where zn0, ..., znn ∈ Kn, it follows from modifying the standard proof for asymptotic
Fekete arrays in K that under the condition

lim
n→∞
|V DM(zn0, ...znn)|

1

(n+1
2 ) = δ(K),

we have

µn :=
1

n+ 1

n
∑

j=0

δzn j
→ µK weak-*.

The idea, utilized in [4], is simply to show that, if one replaces µn by eµn by spreading the point masses to little disks or circles
centered at these points with radii rn → 0 where rn ≤ εn, then the hypothesis on the V DM ’s gives that eµn → µK weak-* (any
weak-* limit of {eµn} has logarithmic energy equal to that of µK , hence it must equal µK). Any weak-* limit of {µn} is supported
on K and coincides with the weak-* limit of {eµn}. In particular, no condition on εn other than limn→∞ εn = 0 is necessary. The
same conclusion holds for any sequence {Kn} of compact sets which decrease to K; i.e., Kn+1 ⊂ Kn for all K and K = ∩nKn, as
follows from Proposition 2.1 below.

A similar result holds for a weighted situation where w is an admissible weight function on Kn for n≥ n0 whose restriction to
K is admissible. We refer the reader to [12] for details of this theory. Let K ⊂ C be compact and let w be an admissible weight
function on K: w is a nonnegative, uppersemicontinuous function with {z ∈ K : w(z)> 0} nonpolar – hence K is not polar. We
write Q := − log w. Associated to K ,Q is a weighted energy minimization problem: for a probability measure τ on K , we consider
the weighted energy

Iw(τ) :=

∫

K

∫

K

log
1

|z − t|w(z)w(t)
dτ(t)dτ(z) = I(τ) + 2

∫

K

Qdτ

and find infτ Iw(τ) where the infimum is taken over all probability measures τ with compact support in K . There exists a unique
minimizer which we denote by µK ,Q. The associated discrete problem leads to the weighted transfinite diameter of K with respect
to w:

δw(K) := lim
n→∞

�

max
λi∈K
|V DM(λ0, ...,λn)|w(λ0)

n · · ·w(λn)
n
�1/(n+1

2 ) := lim
n→∞

δw
n (K). (5)

We have (cf., [12] )
Iw(µK ,Q) = inf

τ∈M(K)
Iw(τ) = − logδw(K). (6)

Dolomites Research Notes on Approximation ISSN 2035-6803



Bloom · Levenberg 12

Proposition 2.1. Let K ⊂ C be compact and nonpluripolar and let {Kn} be any sequence of compact sets which decrease to K;
i.e., Kn+1 ⊂ Kn for all K and K = ∩nKn. Let w = e−Q be any admissible weight function on Kn for n ≥ n0 whose restriction to K is
admissible. Given an array of points {zn j} j=0,...,n; n=1,2,... where zn0, ..., znn ∈ Kn, if

lim
n→∞

[|V DM(zn0, ...znn)|w(zn0)
n · · ·w(znn)

n]
1

(n+1
2 ) = δw(K),

we have

µn :=
1

n+ 1

n
∑

j=0

δzn j
→ µK ,Q weak-*.

Proof. We follow the argument in [7]. Since Kn↘ K , any weak-* limit µ of {µn} will be a probability measure supported on K .
Take a subsequence {µn j

} of {µn} which converges to µ. It suffices to show Iw(µ) = − logδw(K) since Iw(µK ,Q) = − logδw(K)
and the minimizer µK ,Q is unique.

We take continuous weight functions {wm} on Kn0
with wm↘ w and wm ≥ am > 0. For M ∈ R let

hM ,m(z, t) :=min[M , log
1

|z − t|wm(z)wm(t)
]≤ log

1
|z − t|wm(z)wm(t)

and

hM (z, t) :=min[M , log
1

|z − t|w(z)w(t)
]≤ log

1
|z − t|w(z)w(t)

.

Then hM ,m ≤ hM . Every continuous function F(z, t) on Kn0
× Kn0

can be uniformly approximated by finite sums of the form
∑

j f j(z)g j(t) where f j , g j are continuous on Kn0
. Thus µn j

×µn j
→ µ×µ and hence

Iw(µ) = lim
M→∞

lim
m→∞

∫

K

∫

K

hM ,m(z, t)dµ(z)dµ(t)

= lim
M→∞

lim
m→∞

∫

Kn0

∫

Kn0

hM ,m(z, t)dµ(z)dµ(t)

= lim
M→∞

lim
m→∞

lim
j→∞

∫

Kn0

∫

Kn0

hM ,m(z, t)dµn j
(z)dµn j

(t)

≤ lim
M→∞

lim sup
j→∞

∫

Kn0

∫

Kn0

hM (z, t)dµn j
(z)dµn j

(t),

the last inequality arising since hM ,m ≤ hM .

For convenience in notation, we write z
(n j )
k := zn j k. Then for k ̸= l,

hM (z
(n j )
k , z

(n j )
l )≤ log

1

|z(n j )
k − z

(n j )
l |w(z

(n j )
k )w(z

(n j )
l )

so that
∫

Kn0

hM (z, t)dµn j
(z)dµn j

(t)≤
1
n j

M + (
1

n2
j − n j

)
�

∑

k ̸=l

log
1

|z(n j )
k − z

(n j )
l |w(z

(n j )
k )w(z

(n j )
l )

�

.

By hypothesis, given ε > 0,

(
1

n2
j − n j

)
�

∑

k ̸=l

log
1

|z(n j )
k − z

(n j )
l |w(z

(n j )
k )w(z

(n j )
l )

�

≤ − log[δw(K)− ε]

for n j ≥ n j(ε). Thus we can assume w(z
(n j )
k )> 0 and hence

Iw(µ)≤ lim
M→∞

lim sup
j→∞

1
n j

M − log[δw(K)− ε] = − log[δw(K)− ε].

This holds for all ε > 0 and hence Iw(µ)≤ − logδw(K). Since µ ∈M(K) implies Iw(µ)≥ − logδw(K), equality holds.

We will call arrays as in Proposition 2.1 asymptotic approximate (weighted) Fekete arrays (AAF or AAWF for short).
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3 Weighted pluripotential theory in Cd , d > 1
Let e1(z), ..., e j(z), ... be a listing of the monomials {ei(z) = zα(i) = zα1

1 · · · z
αd
d } in Cd indexed using a lexicographic ordering on the

multiindices α = α(i) = (α1, ...,αd) ∈ Nd , but with degei = |α(i)| nondecreasing. We write |α| :=
∑d

j=1 α j . For ζ1, ...,ζm ∈ Cd , let

V DM(ζ1, ...,ζm) = det[ei(ζ j)]i, j=1,...,m (7)

= det





e1(ζ1) e1(ζ2) . . . e1(ζm)
...

...
. . .

...
em(ζ1) em(ζ2) . . . em(ζm)





be a generalized Vandermonde determinant. In analogy with the univariate case, for a compact subset K ⊂ Cd let

Vm = Vm(K) := max
ζ1 ,...,ζm∈K

|V DM(ζ1, ...,ζm)|.

Let mn be the number of monomials ei(z) of degree at most n in d variables, i.e., the dimension of Pn, the space of holomorphic
polynomials of degree at most n, and let ln :=

∑mn
j=1 dege j . Define δn(K) := V 1/ln

mn
. Zaharjuta [13] showed that the limit

δ(K) := lim
n→∞

δn(K) (8)

exists; this is the transfinite diameter of K . We remark that ln =
d

d+1 nmn.
The same definition of admissible weight function w is used for K ⊂ Cd compact (of course now {z ∈ K : w(z)> 0} should be

nonpluripolar). For K compact, let w= e−Q be an admissible weight function on K . Given ζ1, ...,ζmn
∈ K , let

W (ζ1, ...,ζmn
) := V DM(ζ1, ...,ζmn

)w(ζ1)
n · · ·w(ζmn

)n

= det







e1(ζ1) e1(ζ2) . . . e1(ζmn
)

...
...

. . .
...

emd
(ζ1) emd

(ζ2) . . . emn
(ζmn

)






·w(ζ1)

n · · ·w(ζmn
)n

be a weighted Vandermonde determinant. Define an n−th order weighted Fekete set for K and w to be a set of mn points ζ1, ...,ζmn
∈ K

with the property that
Wmn

=Wmn
(K) := |W (ζ1, ...,ζmn

)|= sup
ξ1 ,...,ξmn∈K

|W (ξ1, ...,ξmn
)|.

In analogy with the univariate notation, we also set δw
n (K) :=W 1/ln

mn
. Then the limit

δw(K) := lim
n→∞

δw
n (K) (9)

exists [8]; this is the weighted transfinite diameter of K with respect to w.
We define the weighted extremal function or weighted pluricomplex Green function V ∗K ,Q(z) := limsupζ→z VK ,Q(ζ) where

VK ,Q(z) := sup{u(z) : u ∈ L(Cd), u≤Q on K}.

Here, L(Cd) := {u ∈ PSH(Cd) : u(z) − log |z| = 0(1), |z| → ∞} are the psh functions in Cd of minimal growth. We have
V ∗K ,Q ∈ L(Cd) and µK ,Q := (dd c V ∗K ,Q)

d is a well-defined positive measure with support in K. If w ≡ 1; i.e., Q = − log w ≡ 0, we
simply write VK , V ∗K and µK := (dd c V ∗K )

d . In this setting, we say K is regular if VK is continuous. Here we are normalizing our
definition of dd c so that µK ,Q,µK are probability measures.

4 AAF and AAWF in Cd , d > 1
The analogue of Proposition 2.1 in Cd , d > 1 holds but the proof is much more difficult. For E ⊂ Cd , a measure ν on E, and a
weight w on E, we use the notation

Gν,w
n :=

�∫

E

ei(z)e j(z)w(z)
2ndν

�

∈ Cmn×mn (10)

for the weighted Gram matrix of ν of order n with respect to the standard basis monomials {e1, ..., emn
} in Pn. We let

Zn :=

∫

E

· · ·
∫

E

|V DM(z1, ..., zmn
)|2w(z1)

2n · · ·w(zmn
)2ndν(z1) · · · dν(zmn

)

and we have

Bν,w
n (z) :=

mn
∑

j=1

|q(n)j (z)|
2w(z)2n, (11)

the n− th Bergman function of E, w,ν. Here, {q(n)j } j=1,...,mn
is an orthonormal basis for Pn with respect to the weighted L2−norm

p→ ||wnp||L2(ν). The following calculations are straightforward.
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Lemma 4.1. Suppose that ν ∈M(E) and that w is an admissible weight on E. Then

det(Gν,w
n ) = (12)

1
mn!

∫

Emn

|V DM(z1, · · · , zmn
)|2w(z1)

2n · · ·w(zmn
)2ndν(z1) · · · dν(zmn

) =
Zn

mn!

and
Bν,w

n (z) = (13)

mn

Zn

∫

Emn−1

|V DM(z, z2, · · · , zmn
)|2w(z)2nw(z2)

2n · · ·w(zmn
)2ndν(z2) · · · dν(zmn

).

The notion of optimal measure will be useful; see [5] for more information.

Definition 4.1. If a probability measure µ on E has the property that

det(Gµ
′ ,w

n )≤ det(Gµ,w
n ) (14)

for all other probability measures µ′ on E then µ is said to be an optimal measure of order n for E and w.

Let K be a nonpluripolar compact set in Cd , and let {Kn} be any sequence of compact sets which decrease to K; i.e., Kn+1 ⊂ Kn
for all K and K = ∩nKn. Let w be an admissible weight function on Kn for n ≥ n0 whose restriction to K is admissible. In this
setting, an elementary but crucial result is a modification of Proposition 2.10 of [10].

Proposition 4.2. Suppose that, for the diagonal sequence {δw
n (Kn)}n,

lim
n→∞

δw
n (Kn) = δ

w(K). (15)

For n= 1,2, ..., let µn be an optimal measure of order n for Kn and w. Then

lim
n→∞

det(Gµn ,w
n )

1
2ln = δw(K).

Proof. Since µn is a probability measure, it follows from (12) that

det(Gµn ,w
n )≤

1
mn!
(δw

n (Kn))
2ln . (16)

Now if f1, f2, · · · , fmn
∈ Kn are weighted Fekete points of order n for Kn and w, i.e., points in Kn for which

|V DM(z1, · · · , zmn
)|wn(z1)w

n(z2) · · ·wn(zmn
)

is maximal, then the discrete measure

νn =
1

mn

mn
∑

k=1

δ fk (17)

is a candidate for an optimal measure of order n for Kn and w; hence

det(Gνn ,w
n )≤ det(Gµn ,w

n ).

But from (17)

det(Gνn ,w
n ) =

1
mn

mn
|V DM( f1, · · · , fmn

)|2w( f1)
2nw( f2)

2n · · ·w( fmn
)2n

=
�

max
zi∈K
|V DM(z1, · · · , zmn

)|wn(z1)w
n(z2) · · ·wn(zmn

)
�2

=
1

mn
mn
(δw

n (Kn))
2ln

so that
1

mn
mn
(δw

n (Kn))
2ln ≤ det(Gµn ,w

n )

and the result follows from this, (16), and the hypothesis (15).

The bulk of the proof of the analogue of Proposition 2.1 in Cd , d > 1 is to modify the arguments in [3] to show that if (15)
holds; i.e., for the diagonal sequence,

lim
n→∞

δw
n (Kn) = δ

w(K),

then for {µn} a sequence of probability measures on Kn with the property that

lim
n→∞

det(Gµn ,w
n )

1
2ln = δw(K),

we have 1
mn

Bµn ,w
n dµn→ µK ,Q (Theorem 4.8).

We first show that (15) holds in a very general setting, beginning with the unweighted case.
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Proposition 4.3. Let K ⊂ Cd be compact and nonpluripolar and let {Kn} be any sequence of compact sets which decrease to K; i.e.,
Kn+1 ⊂ Kn for all K and K = ∩nKn. Then

lim
n→∞

δn(Kn) = δ(K).

Proof. It is standard that δ is continuous under decreasing limits; i.e.,

lim
n→∞

δ(Kn) = δ(K);

and, by Zaharjuta [13], for each compact set E,
lim

n→∞
δn(E) = δ(E).

We will use these facts.
First, for each n, K ⊂ Kn so that δn(K)≤ δn(Kn). Thus

δ(K) = lim inf
n→∞

δn(K)≤ lim inf
n→∞

δn(Kn).

On the other hand, fixing n0, for all n> n0 we have Kn ⊂ Kn0
so that δn(Kn)≤ δn(Kn0

). Thus

limsup
n→∞

δn(Kn)≤ lim sup
n→∞

δn(Kn0
) = δ(Kn0

).

This holds for each n0; hence
limsup

n→∞
δn(Kn)≤ lim

n0→∞
δ(Kn0

) = δ(K).

We turn to the weighted case, which requires a few more ingredients.

Proposition 4.4. Let K ⊂ Cd be compact and nonpluripolar and let {Kn} be any sequence of compact sets which decrease to K;
i.e., Kn+1 ⊂ Kn for all K and K = ∩nKn. Let w = e−Q be any admissible weight function on Kn for n ≥ n0 whose restriction to K is
admissible. Then

lim
n→∞

δw
n (Kn) = δ(K).

Proof. We claim that
lim

n→∞
δw(Kn) = δ

w(K). (18)

Since, as in the unweighted case, for each compact set E and admissible weight w on E

lim
n→∞

δw
n (E) = δ

w(E),

given (18), we can repeat the proof of Proposition 4.3 in this weighted setting.
To verify (18), we first observe that since K ⊂ Kn, δw(Kn)≥ δw(K) so that

lim inf
n→∞

δw(Kn)≥ δw(K).

For the reverse inequality with limsup, we note that one can define a slightly different weighted transfinite diameter, in the spirit
of Zaharjuta, via

dw(K) := exp
� 1
|Σ|

∫

Σ0

logτw(K ,θ )dθ
�

(cf., [8] for the appropriate definitions and results). There is a relationship between δw(K) and dw(K):

δw(K) =
�

exp[−
∫

K

Q(dd c V ∗K ,Q)
d]
�1/d

dw(K). (19)

Now it is straightforward that for any decreasing family of compact sets {Kn} decreasing to K and w = e−Q any admissible weight
function on Kn for n≥ n0 whose restriction to K is admissible, we have

lim
n→∞

τw(Kn,θ ) = τw(K ,θ )

for θ ∈ Σ0 and hence
lim

n→∞
dw(Kn) = dw(K).

But we also have V ∗Kn ,Q ↗ V ∗K ,Q pointwise on Cd except perhaps a pluripolar set so that (dd c V ∗Kn ,Q)
d → (dd c V ∗K ,Q)

d as measures.
Since Q is lowersemicontinuous,

lim inf
n→∞

∫

Kn

Q(dd c V ∗Kn ,Q)
d ≥
∫

K

Q(dd c V ∗K ,Q)
d .

Hence

lim sup
n→∞

δw(Kn) = exp[− lim inf
n→∞

∫

Kn

Q(dd c V ∗K ,Q)
d]
�1/d

dw(K)
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≤
�

exp[−
∫

K

Q(dd c V ∗K ,Q)
d]
�1/d

dw(K) = δw(K).

This shows that

lim
n→∞

∫

Kn

Q(dd c V ∗Kn ,Q)
d =

∫

K

Q(dd c V ∗K ,Q)
d

so that, from (19), we have (18).

Given a compact set K, let w be an admissible weight function on Kn for n ≥ n0 whose restriction to K is admissible. For
a real-valued, continuous function u on Kn0

, we consider the weight wt(z) := w(z)exp(−tu(z)), t ∈ R, and we let {µn} be a
sequence of probability measures with µn supported on Kn. Define

fn(t) := −
1

2ln
log det(Gµn ,wt

n ). (20)

Note that only the values of u on Kn are needed to define Gµn ,wt
n and hence fn(t). Also note that fn(0) = −

1
2ln

log det(Gµn ,w
n ). We

have the following (see Lemma 6.4 in [2]).

Lemma 4.5. We have

f ′n(t) =
d + 1
dmn

∫

Kn

u(z)Bµn ,wt
n (z)dµn.

In particular,

f ′n(0) =
d + 1
dmn

∫

Kn

u(z)Bµn ,w
n (z)dµn

and if Bµn ,w
n = mn a.e. µn,

f ′n(0) =
d + 1

d

∫

Kn

u(z)dµn. (21)

Before we give the proof, an illustrative example can be given if µn := 1
mn

∑mn
j=1 δx j

. It is easy to see that Bµn ,w
n (x j) = mn for

j = 1, ..., mn so
logdet(Gµn ,wt

n )

= log
�

|W (x1, ..., xmn
)|2e−2ntu(x1) · · · e−2ntu(xmn )

�

implies
d
d t

logdet(Gµn ,wt
n ) =

d
d t

�

−2tn
mn
∑

j=1

u(x j)
�

= −2n
mn
∑

j=1

u(x j) = −2nmn

∫

Kn

u(z)
1

mn
Bµn ,w

n (z)dµn.

Recalling that ln =
d

d+1 nmn, this gives

−
1

2ln
log det(Gµn ,wt

n ) =
d + 1
dmn

∫

Kn

u(z)Bµn ,wt
n (z)dµn.

In this case, d
d t logdet(Gµn ,wt

n ) is a constant, independent of t; hence d2

d t2 log det(Gµn ,wt
n )≡ 0 – see Lemma 4.6.

Proof. The proof we offer here is modified from [6] and is based on the integral formulas of Lemma 4.1.
By (12) we may write

fn(t) = −
1

2ln
log(Fn) +

1
2ln

log(mn!)

where

Fn(t) :=

∫

Kmn
n

V exp(−tU)dµ

and
V := V (z1, z2, · · · , zmn

) = |V DM(z1, · · · , zmn
)|2w(z1)

2n · · ·w(zmn
)2n,

U := U(z1, z2, · · · , zmn
) = 2n(u(z1) + · · ·+ u(zmn

)),

dµ := dµn(z1)dµn(z2) · · · dµn(zmn
).

Further, by (13) for w= wt and µ= µn, we have
Bµn ,wt

n (z)
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=
mn

Zn

∫

Kmn−1
n

V (z, z2, z3, · · · , zmn
)exp(−tU)dµn(z2) · · · dµn(zmn

)

where

Zn = Zn(t) := mn! det(Gµn ,wt
n ) =

∫

Kmn
n

V exp(−tU)dµ.

Note that Zn(t) = Fn(t). Now

f ′n(t) = −
1

2ln

F ′n(t)

Fn(t)
and we may compute

F ′n(t) =

∫

Kmn
n

V (−U)exp(−tU)dµn(z1) · · · dµn(zmn
)

= −2n

∫

Kmn
n

(u(z1) + · · ·+ u(zmn
))V exp(−tU)dµn(z1) · · · dµn(zmn

).

Notice that the integrand is symmetric in the variables and hence we may “de-symmetrize” to obtain

F ′n(t)

= −2nmn

∫

Kmn
n

u(z1)V (z1, · · · , zmn
)exp(−tU)dµn(z1) · · · dµn(zmn

)

so that, integrating in all but the z1 variable, we obtain

F ′n(t) = −2nmn

∫

Kn

u(z)Bµn ,wt
n (z)

Zn

n
dµn(z).

Thus, using the fact that Zn(t) = Fn(t), we obtain

f ′n(t) =
d + 1
dmn

∫

Kn

u(z)Bµn ,wt
n (z)dµn(z)

as claimed. In particular,

f ′n(0) =
d + 1
dmn

∫

Kn

u(z)Bµn ,w
n (z)dµn

and if Bµn ,w
n = mn a.e. µn, we recover (21):

f ′n(0) =
d + 1

d

∫

Kn

u(z)dµn.

The next result was proved in a different way in [3], Lemma 2.2, and also in [5], Lemma 3.6. We follow [6].

Lemma 4.6. The functions fn(t) are concave.

Proof. We show that f ′′n (t)≤ 0. With the notation used in the proof of Lemma 4.5,

f ′′n (t) =
1

2ln

(F ′n(t))
2 − F ′′n (t)

F2
n (t)

and

F ′n(t) = −
1

mn!

∫

Kmn
n

UV exp(−tU)dµ,

F ′′n (t) =
1

mn!

∫

Kmn
n

U2V exp(−tU)dµ.

We must show that (F ′n(t))
2 − F ′′n (t)≤ 0. Now, for a fixed t, we may mulitply V by a constant so that

∫

Kmn
n

V exp(−tU)dµ= 1.

Let dγ := V exp(−tU)dµ. Then by the above formulas for F ′n and F ′′n , we must show that
∫

Kmn
n

U2dγ≥

�

∫

Kmn
n

U dγ

�2

,

but this is a simple consequence of the Cauchy-Schwarz inequality.
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Define
g(t) = − log(δwt (K))

so that g(0) = − log(δw(K)). From the Berman-Boucksom differentiability result in [2] and their Rumely-type formula (cf.
Theorem 5.1 in [10]), we have

g ′(0) =
d + 1

d

∫

K

u(z)(dd c V ∗K ,Q)
d (22)

(cf., p. 61 of [10]). Note that for each n, µn is a candidate to be an optimal measure of order n for Kn and wt . Thus, if µt
n is an

optimal measure of order n for Kn and wt , we have

det Gµn ,wt
n ≤ det G

µt
n ,wt

n

and, from Proposition 4.2, using (15) for the weight wt ,

lim
n→∞

1
2ln
· logdet G

µt
n ,wt

n = logδwt (K).

Thus with

fn(t) := −
1

2ln
log det(Gµn ,wt

n )

as in (20),
lim inf fn(t)≥ g(t) for all t. (23)

From Lemma 4.5, we have

f ′n(0) =
d + 1
dmn

∫

Kn

u(z)Bµn ,w
n (z)dµn. (24)

We state a calculus lemma, Lemma 3.1 from [3].

Lemma 4.7. Let fn be a sequence of concave functions on R and let g be a function on R. Suppose

lim inf fn(t)≥ g(t) for all t and lim fn(0) = g(0)

and that fn and g are differentiable at 0. Then lim f ′n(0) = g ′(0).

Using Lemma 4.7 along with equations (23), (24) and (22), we have the following general result.

Theorem 4.8. Let K ⊂ Cd be compact and nonpluripolar; let {Kn} be any sequence of compact sets which decrease to K; i.e., Kn+1 ⊂ Kn
for all K and K = ∩nKn; and let w be an admissible weight function on Kn for n≥ n0 whose restriction to K is admissible. Let {µn} be
a sequence of probability measures, µn supported on Kn, with the property that

lim
n→∞

1
2ln

log det(Gµn ,w
n ) = log(δw(K)) (25)

i.e., limn→∞ fn(0) = g(0). Then
1

mn
Bµn ,w

n dµn→ µK ,Q = (dd c V ∗K ,Q)
d weak- ∗ . (26)

In particular, we get Theorem 1.1 on AAWF arrays.

Theorem 1.1 Let K ⊂ Cd be compact and nonpluripolar, let {Kn} be a sequence of compact sets which decrease to K; i.e., Kn+1 ⊂ Kn
for all K and K = ∩nKn, and let w be an admissible weight function on Kn for n≥ n0 whose restriction to K is admissible. For each n,
take points x (n)1 , x (n)2 , · · · , x (n)mn

∈ Kn for which

lim
n→∞

�

|V DM(x (n)1 , · · · , x (n)mn
)|w(x (n)1 )

nw(x (n)2 )
n · · ·w(x (n)mn

)n
�

1
ln = δw(K) (27)

and let µn := 1
mn

∑mn
j=1 δx(n)j

. Then

µn→ µK ,Q weak− ∗.

Proof. As observed before the proof of Lemma 4.5, we have Bµn ,w
n (x (n)j ) = mn for j = 1, ..., mn and hence a.e. µn on Kn. Hence

the result follows immediately from Theorem 4.8, specifically, equation (26). Alternately, if µt
n is an optimal measure of order n

for Kn and wt , we have

det Gµn ,wt
n ≤ det G

µt
n ,wt

n

and hence
lim inf fn(t)≥ g(t) for all t;

finally, by hypothesis,
lim

n→∞
fn(0) = − log(δw(K)) = g(0).

Thus Lemma 4.7 is valid to show µn→ µK ,Q weak-*. Indeed, in this case, as observed earlier, the functions fn(t) are affine in t so
that f ′′n (t) = 0 is immediate and Lemma 4.6 is unnecessary.
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