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Abstract

In this paper, we study weighted approximation by bivariate generalized sampling series. Considering
polynomially weighted spaces of bivariate functions we obtain pointwise and uniform convergence of the
series. A rate of convergence is also presented by means of weighted modulus of continuity. In order to
determine a rate of pointwise convergence, after estimating remainder of Taylor expansion of bivariate
function with weighted modulus of continuity, we present a quantitative Voronovskaja theorem. Some
numerical examples are also given.

1 Introduction

Generalized sampling operators, which represents an approximate version of the classical Whittaker-Kotelnikov-Shannon sampling
theorem, plays a relevant role in approximation theory with its application areas, especially, image processing and signal analysis.
The theory of generalized sampling series was introduced by P, L. Butzer and his school ([24, 25, 26, 29]) in Aachen during
1980 by
(Gjﬁf)(x)=2f(£)x(wx—k), x €R,w>0, )
kezZ w

with the aim of reconstruction of a function f with its sampled values at some discrete points and then developed in various
directions by many researchers, among the others, we refer the readers to [12, 32, 19, 34].

To expand applications areas, P L. Butzer et al. [28] introduced a constructive tool motivating from generalized sampling
series which is the multivariate case of generalized sampling series and defined by

1 k
()0 = gy 2 (3 )rlee-). (eeme wew)
such that y : R" — C is a continuous and bounded kernel function and f is a continuous function. These operators have
applications to box splines [27], signal theory [39], image processing [16, 8]. Here, the bivariate case is more prominent than
the others, as it includes real-life applications. For example, the mentioned references about image processing consider n = 2 for
applications. Also, there are studies just works bivariate case [13, 14]. No doubtly, the series has a crucial role from theoretical
point of view.

There are also other constructive tools motivated by generalized sampling series such as Kantorovich modifications of sampling
series, Durrmeyer modifications of sampling series, exponential sampling series; to enlarge class of corresponding functions and
to study certain phenomena related to light scattering, diffraction, radioastronomy etc. which are introduced by Bardaro et al.
in [12], Bardaro et al. in [15], Bardaro et al. in [18], respectively, and studied by many researchers, see [33, 35, 19, 45, 9],
[17, 20],[48, 46, 5, 6, 47].

Weierstrass approximation theorem characterizes that the space of all continuous functions on a compact interval via uniform
approximation by algebraic polynomials and its most popular proof is given quarter century after theorem stated by Bernstein [22]
based on Bernstein polynomials. Bernstein polynomials sparked off the construction of many other polynomials and operators such
as Szdsz-Mirakyan operators, Baskakov operators, Chlodovsky polynomials, [49, 21, 30]. Since the Weierstrass approximation
theorem is given for the continuous functions defined on compact intervals of R, studies on approximation theory by above
operators were restricted either on compact intervals of R or on the space of uniformly continuous functions on R. This problem
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also exists in case of Bohman-Korovkin theorem, which is a method to determine a family of linear positive operators is an
approximation process [23, 44]. In order to overcome this restrictivity, Gadjiev [37, 38] introduced weighted spaces of functions
and proved Korovkin-type theorem for the functions belonging to these spaces.

The studies of sampling type series generally considered functions belonging to C;, (R) (the space uniformly continuous
and bounded). Since the main aim is to reconstruct a function with its sample values on whole R, uniform continuity and
boundedness are very restrictive conditions. Using the same idea of Gadjiev, Acar et al. [3] studied the weighted approximations
for generalized sampling series, then modifications of generalized sampling series were studied in papers [4, 7, 10].

In this paper, we study bivariate generalized sampling series defined by

ki ky
(@@= 3 F(EE)rween -k, @yeriw>o, @
(ky,kp)€Z2

for functions belonging to polynomial weighted space of bivariate continuous functions. Rate of convergence of the operators
given in (2), was studied in [14] and asymptotic formulae in [13]. We start with some preliminaries in Section 2. Our main
results given in Section 3 and consists of pointwise and uniform convergence of (Gﬁg ), rate of convergence via weighted modulus
of continuity for bivariate function of and quantitative Voronovskaja type theorem. The last section is devoted to numerical

examples of the convergence results belonging to weighted spaces of continuous functions.

2 Preliminaries
Let us denote by N?,N? and Z” the sets of vectors k = (k;, k,) positive integers, non-negative integers and integers, respectively
and we set | k | := k; +k,. Moreover, by R? we will denote the 2-dimensional Euclidean space consisting of all vectors (x;, x,) € R2,

Let x = (x1,%,),y = (¥1,¥,) € R% We say that x > y if and only if x; > y, for i = 1,2 and we will denote by 0 := (0,0) and

2 7 . 2 3 . .
by R the space of all vectors x > 0. Given x, y € R* and a € R the usual operations are given by
x+ty:= (e +y1,%+ ¥2),
ax :=(ax;, ax,).

We will put by (x) = x;x, and we write k! = k;! - k,!. Further, the product and division of two vectors of R? are

(x1¥1,%2Y2),

(ﬁﬂ) (v, £ 0 foralli=1,2).
Y1 Y2

Xy :
X
}_/.

The norm of a vector x := (x,x,) € R? is given by ||x|| = || (3, x,) || := 4/x? + x2, and the Euclidean distance is d (g,y) =
llx — yll for x, y € R%.
A function w is called a weight function if it is a positive continuous function on the whole R?. Throughout this paper, we

consider the weight function
1

ﬁ, x,y €R.
x4+y

wx,y)=

We denote by B (Rz) , the space of real functions whose product with the weight function # on R? is bounded, that is

BW(R2)={f ‘R > R: sup W/(x,y)|f(x,y)|€]R}.

x,yER
We denote by C°(IR?) the space of continuous functions on the whole R2. We can also consider the following natural subspaces of
By (R?):
(R?) :=c’(R*) nB; (R?),
C:(R?):= {f €Cy;(R?):3 " l)iﬁn w(e,y)f(x,y) € ]R} ,
x,y)||[=Foo

R?) := {f € Cz(R?): Wf is uniformly continuous}.

Ifllg == sup w(x,y)If (x, ¥l
X,YER

see [1, 2, 37, 38, 40].
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The weighted modulus of continuity for bivariate functions was defined in [42] by

If(x+u,y +v)—f(x,y)l
Q(f;61,0,)= su 3)
f301,02 |u|<51,\v\<5£),(x,y)€]]2<2 (I+u2+v2)(1+x2+y?)

for every f € C% (Rz). Here we note that
Q(f;6,,6,) = 0for6, - 0,6,—0 (€]
and for A, > 0, A, > 0, the weighted modulus of continuity follows
Q(f524161,2,6,) <4(1+24,) (1 +24,)(1+62)(1+62)Q(f,5,5,). 5

For more details related to weighted modulus of continuity we refer the readers to [41, 42]. Now, we state an auxiliary results
which will be used in the next section.

Remark 1. In the inequality (5) if we replace A, = %, Ay = %, (x1,y1) €R?,(x,,y,) €R?,6;,5, > 0 and consider the
definition of the weighted modulus of continuity, we have

If (a5 ¥a) = f (1, y1)]

s4(1+ I)Cz_xl|)(1+ lyz_yl')(l+(x2—x1)2+(y2—y1)2)(1+xf+yf)(1+5f)(1+6§)ﬂ(f;51,62)

5, o
16(1 +5f)2(1 +5§)2(1 +Xf +)’12)Q(f§51,52), |x; —x;| <6, and |y, —y,1 <6,
16(1+62)* (1+62)* (1 +x2+y2) Q(f;5,,5,) =il Ix, —x,] < &, and |y, —y,| > &,
< 2 2 e |3 .
16(1+62)°(1+62) (1+xf+y12)Q(f;51,52)%, X, —x,| > 6, and |y, —y,| < 8,
2 2 =113 Peg—x;
16(1+62)°(1+62) (1+xf+yf)Q(f;51,52)%%, Xy, —x,| > 6, and |y, —y,|> 8,
Hence, combining these four cases we get
|f (g5 ¥2) = f (x1, y1)
212 212 Py 9 |}’2_J/1|3 |X2_x1|3 |}’2_Y1|3 |x2—x1|3
<16(1+67) (1+85) (1+x7 +37)Q(f38,,8) | 1+ ==+ = 5 5
2 1 2 1

Finally we obtain
|f (XZ:yZ)_f(xlsyl)|
|3

(6)

ly2—x1 |x2_x1|3 |J’2_}'1|3 |Xz_xl|3
52 53 52 5?

1

3256(1+xf+yf)n(f;51,52)[1+

with the choice of 6; <1 and 6, < 1.

A function y : R? — R will be called a kernel function if it satisfies the following assumptions:

(x1) y is continuous on R?,

(x2) the discrete algebraic moment of order 0:

mo (s () o= o (g, up) = (ki k) =1,

(ky,k2)€Z2
for every (u;,u,) € R?,

(x3) there exists § > 0, such that the discrete absolute moments of order f3:

Mp()= sup > |y ((u,u) = ey, ko) Iy, up) — Gy, I,

(u1,u2)€R? () GoNe2
is finite.
Lemma 2.1 ([31]). Let y be a function satisfying (y 1) and (y3) for some 8 > 0. For every 6 > O there holds:

im > W y) =k, k) =0,

w—00
[IC, k2 )—w(e,y)lI>wd

uniformly with respect to x € R.
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3 Main Results

This section is devoted to main results of the paper. Results consist of well definiteness of the operator (Gf, f ), pointwise and
uniform convergence, rate of convergence and at the end a Voronovskaja-type theorem.

3.1 Well definiteness of the operators
We start with the well definiteness of the generalized sampling operators in the weighted spaces of bivariate functions.

Theorem 3.1. Let y be a kernel satisfying (x1),(x2), and (x3) for 3 = 2. Then for a fixed w > 0, the operator G is a linear
operator from B (RZ) to By (RQ) and its operator norm turns out be:

62 1l < 211 { Mo G+ M (0 ™

Proof. Let us fix w > 0. From the definition of the G?, for a function f € By (]Rz) and (x,y) € R%, we have

k k
(G2f)en|< D lrwxy) - (kl,kz))l‘f W)

(k1,ko)€22
1
<Iflls It w (x, ) = (e, k)| =
(kl,kgezz W(Vl 72)
k ky )
=Ilflls . |x(w(x,y)—(k1,kz))|[ ;)]
(ky,kp)EZ2
<Iflls Ix(W(x,y)—(k,k))I{HZ[ ] [—Z—y +y2]}
N o ( of w2 -)
2
<2|fll Ix(W(x,y)—(kl,kz))I{Hx +y2+ 2y }
2 () +(5)
=20flls(1+x2+y%) D lrwle,y)—(ky,ky))l
(ky,kp)e2?
2|If Il 2 2
+ S w(,y) = (kg k) [y —wx) + (ke —wy )]
(ky,kz)€22

S2I|f||v~u(1+xz+y2){Mo(x)+ ! Mzm}

which implies
|(G7£) (x, )]

1
e <20l {Mo00+ S0} ®

for every (x, y) € R2. By the assumptions, we have M, (y) < +0o and M, (y) < +00; hence we conclude that ||G3§f Hw < 400,
thatis, G} f € By (]RZ). Hence, by taking supremum over (x, y) € R? in (8) and the supremum with respect to f € By (]RZ) with
IIf Iz < 1, we have (7). O
3.2 Convergence Results

Theorem 3.2. Let y be a kernel satisfying (y1),(x2), and (y3) for f =2 and f € Cy (Rz) be fixed. Then

Jim G2 (x,y)=f (x,7) ©

holds for every (x, y) € R% Moreover, if f € Uy (R?), then

lim ||GZf —f|. = (10)

w—+00

Proof. First of all, for w > 0,k;, k, € Z and x,y € R, by straightforward computations, it can be easily seen that

’f (o) -ren|=o (2 2)lr (53) BTy
+m‘w(%%)f(l; =) me s o, y)‘
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Then, using the definition of (G\f/ f ), (x2) and above inequality we get

(GLf) (x, )= f G, )|
< DL lrwy) =k ko))l

(kq,ko)€22
X{ G Ge) w(%l,’;v_z)_ﬁz(;,y) o Pl ) () -wens ”‘}
=:I+1,.

Let us first consider to estimate I;.

Ll S 1x00Goy) =Gk, ko) ‘(%)2 - (%)Z—ﬁ—yz

(ky,kg)€2?
<|Ifllz Z lx (w(x,y)—(ky, ko))
(kq,ko)€22
k 2 k k 2 k
x[—l—x +20x|| = —x|+|2 -y +2|y|—2—yH
w w w w

e S )= DI [l = + e, —wy ]

(ky,k2)€Z2

200l + yD I g
+ 2B DR g s 4 1k, —

|If|| Wl 0+ 4(|X|+1|j/|)”f”le(x)' an

Now, we consider I,. Since f is continuous at (x, y) € R?, there exists a 6 > 0 such that

(k1 kz)f(&,%)_mx,y)f(x,y)

WW w

5%

<eg (12)

whenever

Hence, we can write

1

1o + >, Z Lt (wx, ) = (ky, k)|

[ Feenfevs (3 enfous | 4

() (55w f )

w w w

=: 12,1 + Iz,z-

Using the inequality (12), we immediately have

hifEnyy 2 e —Guk)

€
< mMo (- (13)

On the other hand, by Lemma 2.1 we have for sufficiently large w > 0 that

2
Iy < ~||f|| € 14

we,y)
Hence by combining the inequalities (11), (13) and (14) we conclude

(GLf) (e, )= f (e, )|

||f|| 0, () + 2(|X|+Iyl)llfllwl\/[l(%)Jr M, () + 2||f||v~u€z‘ 15)
w ( ) w(x,y)

Finally, taking the limit of both sides as w — +00 we have assertion (9).
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At the end, we have to show that the assertion (10). To do this, let f € Uy (Rz). Let us follow the proof of the assertion (9)
and replace the & with the corresponding parameter of the uniform continuity of wf. From the inequality (15) we can write:

w0, Y) If 1l 2w (x, y) (x| + Ly DI1f Il
ST, (1) + - M, () + My () + 21 e,
ILf Il 2|l llw
= 2 M, (x)+ " M, () +eMo (x) + 211 Il &2- (16)
Now, passing supremum in (16) over (x, y) € R? we have (10) for w — +00, which completes the proof. O

3.3 Rate of Convergence

This subsection is devoted to determine rate of convergence the operators G* in the weighted spaces of bivariate functions via
weighted modulus of continuity given in (3).

Theorem 3.3. Let y be a kernel satisfying the assumptions (y1),(x2) and (x3) for f = 6. Then, for f € C; (R) the inequality

G2 f — £, <256 (f;w,w™) [My (1) +2Ms (1) + Mg ()]

holds for w > 1.

Proof. For every (x,y) € R?, using the assumption (2) and (6) we have

bk

>
w w

(G2F) ) —f )< > Ix(W(x,y)—(kl,kz))l‘f(

(ky,kp)€22

)—f(x,y)‘

<256(1+x2+y)Q(f361,6,) . |x (w(x,y)—(ky,ky))l

(ky,ko)ez?
1k P 1l P 1 |k Pk 3]
|1+ = |——x| +=|—=-— ——x| |[=—y
[ &5 | w 53 |w 5363 | w w
<256(1+x3+y2)Q(f:61,5,) Y. Ir(w(x,y)— (ki ky))l
(ky,k2)€Z?

1 1 3
g {1 ¥ (ﬁ " ﬁ) [2(1ky —wx* + ke, = wy )

3
+W [2(“{1 —W.)('|2 + |k2 —Wylz)] }

<256(1+x+y*)Q(f;64,5,)

<o+ (5 + g ) 202 0 0.
By choosing §; =w™,5, =w™!,w > 1, and taking the supremum for (x, y) € R? we get
G2 f = £l <2569 (F;w™, w™) [ My () +2v2M, (1) +8Ms ()],
which is the desired. O

Corollary 3.4. If we assume f € C}; in Theorem 3.3, by (4) we have

im ez 71, =o.

w—00

3.4 Voronovskaja Type Theorem

In this section, we state a quantitative Voronovskaja-type theorem for the operators G/ in the weighted spaces of bivariate
functions.
First of all, we recall the Taylor’s formula. Let x = (xq,x,),k = (ki,k,) € ]Ri, |k| =r, for a function f : R? — R, we denote
the r-th order derivatives of f by
a r

D'fi=—f.
ka2
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For r € N, by C) (J) we denote the subspace of C°(J) which consists of all functions f with the derivatives up to the order r in
C°(J). By the Taylor expansion of f (see [43]),

Flty )= £+ (=) L) + (=) 2L Loy a7
1w —x)z—(x )+2(t,—x)(t,—y) of G, 3) + (6, — )Zﬁ(x )
5\t 2x2 >y 1 27 axdy >y 27 Y a2 >y
+Ry(t, t5),
where
1 Zf 82 Zf Zf
R(tl;tz) 25 {(tl_ |:a (&x;gy)_ﬁ(xfy)]+2(t1_x)(t2_y)|:axay (gxfgy) axay(x’y)] (18)
f 3?
+(t2_)’) I:a_(gxrg )_a_yz(x,)’)]}

suchthat §, =x+6(t; —x),§, =y +0(t,—y),and0< 0 < 1.
According to inequality (6), with similar method presented in [1], we have the estimate

[Ry(ty, t5)I

s%{(tl x)’

3 3 3
<L 256 (1 + x% + y2) Q(fuy; 61, 65) (61 — x)? 1410 3y| +|l 3x| L 3y| It 3x|
2 53 5 5 &

a2f

f +2lty —xllt,— v |3 (tl,rz)— (x,7)
dxdy

+(t,— J’)

,y)‘}

S5 (6y)

3 3 3 3
ty — ti—Xx t,— t,—Xx
+512(1+x2+y2)ﬂ(fxy;51,52)|t1—x|Itz—yl[l-i-|2 Y| +| 1 =] +| 2=yl It — x| ]

53 &1 53 &7
|t, }’| +| —x|3+|t2—y|3|t1—x|3
52 53 5; 53

+256(1+x2+y*)Q(f,,:61,6,) (ta—¥)° [1+

S128(1+x2+y2){ﬂ(fxx;51,52)|:(t1 x) +53 [t,— }’|3(t1 x) +53 [t — x[® +5353| 1_X|5|t2__)’|3:|

1 1
+ 29(fxy§61,52)|:|t1_x||t2_J’|+g|t2_}'|4|t1_x|+g'fl_xrwtz Y+t == 5353 | 2—y|4|t1—x|4]
2

1

t,—x (t,—y)? +5353| —-yP Itl—XI3]} (19)

1 1
Q(fyy;61’52)|:(t2_}’)2+§|t2_.)/|5+§| 1
2 1

Now, let h = (hy,h,) €N? and let v = |h| . For (u;,u,) € R? we define the discrete algebraic moments of order h of y as

my ()= D0 2 (g up) = (ky, ko)) (k) — (g, 1))

(ky,k2)€Z?
= > r () = (ki ko)) (g =)™ (kp — )™
(ky,k2)€Z2

In order to obtain an estimation of the order of approximation under some local regularity assumption on the function f we need
more assumptions on the kernel function y, i.e., there exists [ € N such that h € Ni, |h| <1

(x4 m| | ( x> ) = m,'l | (x) is independent of u.
Theorem 3.5. Let y satisfies the assumptions (x1),(x2),(x3) for p =8 and (y4) for | = 2. Moreover, we also assume that y be a
kernel such that, for every y >0

. 2
Jdm > et —R)l- we kI =0
lwe=kl[>yw

uniformly with respect to t € R% Then, for f € C?(R?) such that f@ € C (R?), there holds

‘W[(Gif)(x,y)—f(x,y)] (w,(x)( L en)- Mm( L)

f 2f

! C Cy) ) () 3 )+ i () 55 f  x, y)]'

- 2 |: (20)(%)
<256(1+x*+y )[Q(fxx;61,52)+2S2(fxy;61,62)+Q(fyy;61,52)]

| 3 01,0+ 845 ) + 814, ()|
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Proof. Let us first consider the Taylor expansion of f € C? (]RZ) at any point (x, y) € R%. That is,

Fltn )= FO0 )+ (6 =) 220 + (=) 2L Ly

O e+ (=7 L ) 20)
oy o F (L —y) ey

1
+3 ((q —x)? ﬁ(x,y) +2(6 =) (=) 5
+R2(tl: tz),
with the remainder R,(¢;, t,) given as in (18). By using the (20) in the definition of the operator (Gv’g f ), we can write

k, k,
(G = > xwton -t ks (2,2)

(k1,kp)€Z?

={ > 2w =Gk f e+ 3 (w0 Z e+ temwn E o)

(ky1,k2)€Z?

212((k1 we? 5L (e, y)+ 20k —w) (g —wy) 5 (x,y)+(k2—wy)2g—y2(x,y)ﬂ}

(ky,kp)ez2

=1, +1,.

Let us first take into account that I,. Easily, by the definition of the discrete algebraic moments and (y2) we have

=1 ) [l 00 (E e ) ey, 0 (5 )
1 2

o (0 2L G )

— el — ()4 () 5 f(x y)]

Now, we estimate I,. By using (19), we have

k 2 1|k, [k 21k P01 |k Pl [
L1 <128(1+x% + y2){ Q(fer; 61,6 (—1—x) + = —2— (—1—x —1— 2yl |2 —x
| 2| ( Y ){ (fxx 1 2)|: W 53 w 53 511”52 w
k, k, 1 k2 k&, 1 k1 1k, 1 |k, [k, [
+ 2Q ;61,0 ——x||==y|+ = |—— ——x —— —=— —=— ——x
(fxy 1 2)[ w ‘ ‘ 63 53 w 6?52 w
k, 2 1k, 1K 3(k2 )2 1 |k, [l |
+Q(f,,:6L6:) || 22—y +=|2- ——x| [Z2-y] + =2 —y| |==x| |,
(fyy ! 2)[(w y) &3 |w 53 w w Y 53683 w
where we consider the following inequalities
2 2 2 2 2
k k k k k k
w—x| < Wl—x‘ +|32 y‘ , =X S‘;—x’ + Wz—y‘
5 2 23 5/2 5 2 23\5/2
k k k k k k
< —x g(wl—x +(2-y ) , 22—y S(Wl—x +|Z—-y )
2 2 4 2 2\4
k k k k k k af |k k
T—x||2-y gz(wl—x +|2-y , L x) ‘Wz—y <2 (;—x +|Z-y )
3 2 2 2\5/2 2 3 2 2\5/2 -
k k o[ |k k k k 2|k k
Lox| |2—yl <2 (j—x +|2—-y ) , L_x| |2—y| <252 |E—x| +|2-Yy )
3 5 2 2 5 3 2 2
k k 3|k k k k 3|k k
woX Ty =2 (vl—x +w Y ) ; WX Ty =2 (;—x Wy )
4 1 2 2\5/2 1 4 2 2\5/2
%—x‘ b_y <23(%—x +2_y ) , b x) by <23(%—x +2_y )
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So, we get
25/2 5/2
1] < 128(1 +x? +J’2) {Q(fxx’61:52)|: (|k1 wx|? + |kz_W}’|2) 53 S (|k1 wx|? + |kz_W}’|2)
1 5/2 28 4
+63 S (|k —wx|? + |ky —wy| ) 6353 2 (|k1—wx|2+|k2—wy|2) ]
28 5/2
+ zn(fxy;él,az)[ﬁ(lkl—wx|2+|kz—wy|2) 5ws (a —wxl”+ Ty —wy )
23 2 5/2 24 , na
+%(|k1—wx| + |k, —wy]| ) 5353W8 (|k1—Wx| +|ky —wyl| )
1 5/2
+ Q(fyy;51552)|:_2 (|k1 —wx|* + |kz_W}'|2) 53 S (|k1 wx|* + |k2_WJ’|2)
25/2 2 21572 23 2 2y4
—+-53 . (Ik1 wx|” + [k, —wy| ) +W(|kl—wx| + |k, —wyl| )
25/2 25/2
=128(1+X2+y2){Q(fxx’61:52)|: Mz(l)"‘ Ms(){)"‘ Ms(l)+5353 SMs(X):|
2 1
2 2 24
(fxy’617 2) Mz(}()+ Ms()()+ MS(X)+5353W8 M (x)
1

25/2 25/2 3
(fyy’51752)|: Mz(}()+ Ms(l)+ Ms(}()+5353 BMS()()]}

Hence choosing 5, = §, = w™! we have

’w[(cgf)(x,y)—f(x,y)] (10)(1)( L en)- (01)(1)( ex)

2 2 2

- [ My () 55 G, )+ () 5 ~Co) iy (05 f(x y)]'
<256(1+x%+y2) [Q(fr;w W™ )+2Q(fxy;w*1,wf )+Q(fyy;w*1,w*1)]
| 5 00, G+ 801, () + 8, ()|
which is desired. O

Corollary 3.6.

1. By similar consideration of Theorem 3.5, if we assume f € C! (]Rz) such that f’ € C, (]Rz) and y satisfies the assumptions
(x1),(x2),(x3) for B =7 and (x4) for | =1, there holds

‘W[(Gif)(x,y)—f(x,y)]— oy 0 (2 () - o () (55 )

S128(1 +x? +y2) (Q(fx;w_l,w_ )+Q(fy;w_ ,w_l))[ﬁMl ()()+6M4(;()+27/2M7 (x)].

2. In addition to the assumptions of Theorem 3.5, if we also assume mgl 0 (x)=m )(x) = 0 then we have

(10,1
2 x _ _ 1 f Zf f
WGP e = f o] =5 | My (1) 525 o)+ iy () 555 o)+ iy (1) 55 (6y)

S256(1 +x? +y2) [Q (fxx;w_l,w_l) + 20 (fxy;w_l,w_ )+ Q(fyy;w_l,w_l)] [M,(x)+8M;s ()() +8Mg (x)].

Corollary 3.7.

1. Under the assumption of Corollary 3.6, in view of (4), we have a qualitative form of the asymptotic formula for G?, i.e.,
Jim w[(GEF) ()= )] =iy (0 5 30 =iy (5 L)

2. In addition to the assumptions of Theorem 3.5, if we also assume m(l1 0 ()= m%o H (x) =0 in view of (4), then we have a
qualitative form of the asymptotic formula for G* by f”,

2

lim wz[(GV’if)(x,y)—f(x,y)]=;[ Mo () 2L Gy ety () 2L S Coy) ey (05 f  (x, y)]

w—+00
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4 Numerical Examples

In this section, we provide numerical examples of bivariate generalized sampling series for functions belonging to weighted
spaces. We give an example to show that the family of bivariate generalized sampling operator converges to the function which
generates it. To do this, first, we need a kernel which satisfies the assumptions given Theorem 3.2.

2-dimensional kernels are built up as products of one dimensional ones (see, [28]). By going out this aim, let y,, x, be
one-dimensional kernels, i.e., satisfies the followings:

i. y, and y, are continuous on R,

ii. the discrete algebraic moments of order 0

mo () =1,
foreveryueRandi=1,2.
Now, set y(u) = yx; (u1) x2 (uy). Then y is a kernel satisfying the conditions (y 1) and (¥ 2), since the product of two continuous
function is continuous and
my(x) =mo(x1)me(x2) =1.

As concerns is there any finite absolute moment of kernel y, one can consider f8; and f3, for which makes the absolute moment of
order f3;, and 3, of y; and y,, respectively, are finite. Then the f# > 0, which makes the absolute moment of order f of y is finite,
can be found easily.

Now, we recall central B-spline function as the univariate kernel. The central B-spline of order n € N is defined by:

B, (t) :=F11)!]Zjo:(_1)f (?)(%-}-t—j)fl, teR,

where (t), := max{t,0},t € R. To make everything easier, we take n = 3. Then, applying above procedure, bivariate central

B-splines of order 3 comes out:
3 3 1 1
G-1er)(G-er).  telsges]

(3—|t |2) 1[3—|r |]2 < Loy <3
4 "V \2l2 H] ) THT T
B (ty,t5) =Bs(ty)Bs(ty) = ,

3 3
0, t]> =, |ty > =
61> 5,06l > 2

see, for more, [26, 27, 50].

There are several kernel functions other than B-spline (see [11, 25, 36]), but we do not state them since they are not related
to following examples.

The bivariate generalized sampling series with the kernel bivariate B-spline of order 3, Gi’;3 f, arises as

ky k
(B )= 3 f( 22 )8y — (k)
w’w
(k1,ko)€22
for every (x,y) € R? and w > 0. For example, we apply now fo to the special functions f and g belonging to C; (Rz), defined
by
2 2
cos(%), |x|] <3and |y| <2

x2—4/lyl, Ix|<3and |y|>2

flx,y) =
logx®+y?, |x|>3and |y| <2
i, |x| >3 and |y| =2

and

g(x,y) :=xsin(my).
We present the numerical evaluations of difference of bivariate sampling operators and functions f and g at random variables in
the Table 1 and Table 2, respectively:
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Table 1: |(fo,3 f)(x)— f(x)| at some random values

w | 1(GEf)(—1.2,1.7)— f(=1.2,1.7)| | |(G®£)(—1.9,2.9)— f(1.4,2.1)]
5 0,00784666 0,0102532
20 0,00049493 0,000640821
45 0,0000978565 0,000126582
100 0,0000198176 0,0000256328
w | I(G%f)(3.5,—1.75)— f(3.5,—1.75)| | I(G*f)(3.1,2.55)— f(3.1,2.55)]
5 0,288321 0,00190473
20 0,000548462 0,000116893
45 0,0000877549 0,00002312
100 0,0000219388 0,00000467399
Table 2: |(G§,3g)(x) — g(x)| at some random values
w (G5 ¢)(2,1.55) — g(2,1.55)| | 1(G*¢)(0.2,4.15)— g(0.2,4.15)|
5 0,0959681 0,00403352
100 0,000243682 0,0000112008
500 9.74806 x 107° 4.48069 x 1077
1000 2.43702 x 107° 1.12018 x 1077
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