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Abstract

In real world applications, signals can be suitably reconstructed by nonlinear procedures; this justifies the
study of nonlinear approximation operators. In this paper, we prove some quantitative estimates for the
nonlinear sampling Kantorovich operators in the multivariate setting using the modulus of smoothness
of Lp(Rn). The above results have been then extended to the general case of Orlicz spaces Lϕ(Rn), so
obtaining quantitative estimates in several instances of well-known and useful spaces.

1 Introduction
In this paper, we focus our attention on the study of a general family of nonlinear operators, named nonlinear multivariate
sampling Kantorovich operators, which are defined by

(Kw f )(x) :=
∑

k∈Zn

χ



wx − tk,
wn

Ak

∫

Rw
k

f (u)du



 , x ∈ Rn,

where f : Rn→ R is a locally integrable function such that the above series is convergent for every x ∈ Rn, and χ : Rn ×R→ R is
a (nonlinear) kernel function. Here

Rw
k :=

� tk1

w
,

tk1+1

w

�

×
� tk2

w
,

tk2+1

w

�

× · · · ×
� tkn

w
,

tkn+1

w

�

, w> 0,

where (tk)k∈Zn is a suitable sequence, with Ak :=∆k1
·∆k2
· · ·∆kn

, and ∆ki
:= tki+1 − tki

> 0.
The interest in this topic is due to the fact that nonlinear operators play an important role in Signal Processing. In fact, the above
operators are suitable, e.g., in order to describe nonlinear transformations generated by signals that, during their filtering process,
produce new frequencies.
The pioneer works of the theory of nonlinear integral operators, in connection with approximation problems (see, e.g., [31]-[35]),
can be reconducted to the Polish mathematician Julian Musielak. Further, the theory has been extensively developed in the
monograph of Bardaro, Musielak and Vinti (see [8]), in relation to the abstract setting provided by the modular spaces. Other
approximation results related to nonlinear operators can be found in [9, 42, 29, 4, 10, 5, 41].
The univariate version of nonlinear sampling Kantorovich operators has been introduced firstly in [43], where both uniform and
modular convergence results have been established. The qualitative order of approximation has been studied in [20] considering
functions in suitable Lipschitz classes both in the space of uniformly continuous and bounded functions and in Orlicz spaces.
Results concerning the multidimensional case have been obtained in [19, 23]. As concerns inverse and saturation results and
simultaneous approximation see [24, 25, 1, 12].
Concerning the problem of the order of approximation, quantitative estimates have been recently established in [13] in the
one-dimensional case.
In the present paper, we prove some quantitative estimates in the multivariate setting using the modulus of smoothness of the
Lebesgue space Lp(Rn). Here, a crucial role is played by basical properties of the modulus of smoothness. As a consequence of
the previous estimates, the qualitative order of approximation is established for functions belonging to suitable Lipschitz classes.
Further, the above results have been extended to the general frame of Orlicz spaces Lϕ(Rn), which include the Lp-spaces as a
particular case, besides the Zygmund spaces, the exponential spaces and others, therefore obtaining a unifying approach for the
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above approximation results.
Note that, in this setting, since the modulus of smoothness in Lϕ(Rn) can not benefit from the same properties of the Lp-modulus
of smoothness (used in Theorem 4.1), the quantitative estimates obtained are less sharp than those ones reached in Lp(Rn).
In the last part of the paper, we also give some concrete examples of nonlinear multivariate sampling Kantorovich operators
constructed by using Fejér and B-spline kernels, establishing some particular results in these instances.

2 Preliminary notions

In this article we consider, on the multivariate space Rn, the usual Euclidean norm ∥·∥2, defined by




x






2 :=
�

x2
1 + · · ·+ x2

n

�1/2
,

where x = (x1, · · · , xn) ∈ Rn.
Let now ϕ : R+0 → R

+
0 be a function. It is well-known that ϕ is said to be a ϕ-function if it satisfies the following conditions:

(Φ1) ϕ is a non decreasing and continuous function;

(Φ2) ϕ(0) = 0, ϕ(u)> 0 for every u> 0;

(Φ3) ϕ(u)→ +∞ if u→ +∞.

Now, in order to recall the definition of Orlicz spaces, we introduce the notion of the modular functional Iϕ associated to the
ϕ-function ϕ, defined by

Iϕ[ f ] :=

∫

Rn

ϕ(
�

� f (x)
�

�)d x ,

for every f ∈ M(Rn), where M(Rn) denotes the set of all Lebesgue measurable functions on Rn. The Orlicz space generated by ϕ
can now be defined by

Lϕ(Rn) := { f ∈ M(Rn) : Iϕ[λ f ]< +∞, for some λ > 0 }.

In Orlicz spaces, different notions of convergence can be introduced. In this paper, we recall the most natural notion of convergence
in this setting, that is called modular convergence. A family (net) of functions ( fw)w>0 ⊂ Lϕ(Rn) is modularly convergent to
f ∈ Lϕ(Rn), if there exists λ > 0 such that

Iϕ [λ( fw − f )] =

∫

Rn

ϕ(λ
�

� fw(x)− f (x)
�

�)d x → 0,

as w→ +∞. For further details concerning these spaces, see, e.g., [36, 30, 38, 28, 39, 8].
Now, in order to establish quantitative estimates for the order of approximation of a family of nonlinear multivariate operators,
we recall the definition of the modulus of smoothness in Orlicz spaces Lϕ(Rn), with respect to the modular Iϕ. For any fixed
f ∈ Lϕ(Rn), we denote

ω( f ,δ)ϕ := sup
∥t∥2≤δ

Iϕ
�

f (·+ t)− f (t)
�

,

with δ > 0. It is well-known that, for f ∈ Lϕ(Rn) there exists λ > 0 such that ω(λ f ,δ)ϕ → 0, as δ→ 0+ (see [8], Theorem 2.4).

3 Nonlinear multivariate sampling Kantorovich type operators
Now, we recall the definition of the class of operators we work with.
Let Πn = (tk)k∈Zn be a sequence of vectors defined by tk = (tk1

, · · · , tkn
), where each (tki

)ki∈Z, i = 1, · · · , n, is a sequence of real
numbers with −∞< tki

< tki+1 < +∞, limki→±∞ tki
= ±∞, for every i = 1, · · · , n and such that there exist ∆,δ > 0 for which

δ ≤∆ki
:= tki+1 − tki

≤∆, for every i = 1, · · · , n. Moreover, we denote by

Rw
k :=

� tk1

w
,

tk1+1

w

�

×
� tk2

w
,

tk2+1

w

�

× · · · ×
� tkn

w
,

tkn+1

w

�

(w> 0),

the n-dimensional parallelepipeds of Rn identified by the sequence Πn. We note that the Lebesgue measure of Rw
k is given by

Ak/w
n, where Ak :=∆k1

·∆k2
· · ·∆kn

.

A function χ : Rn × R → R will be called kernel (for the nonlinear multivariate sampling Kantorovich operators) if it sat-
isfies the following conditions:

(χ1)
�

χ(wx − tk, u)
�

k
∈ ℓ1(Zn), for every x ∈ Rn, u ∈ R and w> 0;

(χ2) χ(x , 0) = 0, for every x ∈ Rn;

(χ3) χ is an (L,ψ)-Lipschitz kernel, i.e., there exist a measurable function L : Rn→ R+0 and a ϕ-function ψ : R→ R such that
�

�χ(x , u)−χ(x , v)
�

�≤ L(x)ψ(|u− v|),

for every x ∈ Rn and u, v ∈ R;
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(χ4) there exists θ0 > 0 such that

Tw(x) := sup
u ̸=0

�

�

�

�

�

1
u

∑

k∈Zn

χ
�

wx − tk, u
�

− 1

�

�

�

�

�

= O
�

w−θ0
�

,

as w→ +∞, uniformly with respect to x ∈ Rn.

Moreover, we assume that the function L of condition (χ3) satisfies the following additional assumptions:

(L1) L ∈ L1(Rn) and is bounded in a neighborhood of 0 ∈ Rn;

(L2) there exists a number β0 > 0 such that

mβ0 ,Πn(L) := sup
x∈Rn

∑

k∈Zn

L(x − tk)




x − tk







β0

2
< +∞,

i.e., the absolute moment of order β0 is finite.

Now, we recall the definition of the family of operators considered in this paper. The nonlinear multivariate sampling Kantorovich
operators for a given kernel χ are defined by

(Kw f )(x) :=
∑

k∈Zn

χ



wx − tk,
wn

Ak

∫

Rw
k

f (u)du



 , x ∈ Rn,

where f : Rn→ R is a locally integrable function such that the series is convergent for every x ∈ Rn.
We now recall the following lemma that will be useful in the next sections. For a proof, see [18].

Lemma 3.1. Let L be a function satisfying conditions (L1) and (L2). We have

m0,Πn(L) := sup
x∈Rn

∑

k∈Zn

L(x − tk)< +∞.

4 Main results
In this section, we establish a quantitative estimate for the nonlinear multivariate sampling Kantorovich operators in Lp(Rn) by
using the modulus of smoothness of Lp(Rn)-spaces. In order to obtain the above mentioned result, we recall, for f ∈ Lp(Rn), the
definition of the first order Lp-modulus of smoothness of f , given by

ω( f ,δ)p := sup
∥h∥2≤δ





 f (·+ h)− f (·)






p = sup
∥h∥2≤δ

�∫

Rn

| f (t + h)− f (t)|pd t

�1/p

,

with δ > 0, f ∈ Lp(Rn), 1≤ p < +∞. From the theory developed in [43], we know that if the function ψ of condition (χ3) is of
the form ψ(u) = u, u ∈ R, (i.e., the case of a strongly Lipschitz condition), the operators Kw map the whole space Lp(Rn) into
itself, i.e., Kw are well-defined in Lp(Rn). Therefore we can prove the following estimate.

Theorem 4.1. Suppose that (χ3) is satisfied with ψ(u) = u, u ∈ R, and

M p(L) :=

∫

Rn

L(u)




u






p

2 du< +∞, (1)

for some 1≤ p < +∞. Then, for every f ∈ Lp(Rn), the following quantitative estimate holds

∥Kw f − f ∥p ≤ Tω
�

f ,
1
w

�

p
+M2 ∥ f ∥p w−θ0 ,

where T := δ−
n
p
�

m0,Πn(L)
�

p−1
p
n

2
p−1

p m0,Πn(τ)1/p [∥L∥1 +M p(L)]
1
p +

�

m0,Πn(L)
�

1
p ∆

n
p (1+

p
n∆)

o

, for sufficiently large w > 0,

where τ denotes the characteristic function of the set [0,1]n, m0,Πn(τ) < +∞ since τ is bounded and with compact support,
m0,Πn(L)< +∞ in view of Lemma 3.1 and M2, θ0 > 0 are the constants of condition (χ4).

Proof. Using the Minkowsky inequality, the concavity (hence the subadditivity) of the function | · |
1
p , and applying condition
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(χ3), we have

∥Kw f − f ∥p =
�∫

Rn

�

�

�

�

Kw f (x)− f (x)

�

�

�

�

p

d x

�1/p

≤
�∫

Rn





∑

k∈Zn

�

�

�

�

�

�

χ



wx − tk,
wn

Ak

∫

Rw
k

f (u)du



−χ



wx − tk,
wn

Ak

∫

Rw
k

f
�

u+ x −
tk

w

�

du





�

�

�

�

�

�





p

d x

�1/p

+

�∫

Rn





∑

k∈Zn

�

�

�

�

�

�

χ



wx − tk,
wn

Ak

∫

Rw
k

f
�

u+ x −
tk

w

�

du



−χ
�

wx − tk, f (x)
�

�

�

�

�

�

�





p

d x

�1/p

+

�∫

Rn

�

�

�

�

�

∑

k∈Zn

χ(wx − tk, f (x))− f (x)

�

�

�

�

�

p

d x

�1/p

≤
�∫

Rn





∑

k∈Zn

L(wx − tk)
wn

Ak

∫

Rw
k

�

�

�

�

f (u)− f
�

u+ x −
tk

w

�

�

�

�

�

du





p

d x

�1/p

+

�∫

Rn





∑

k∈Zn

L(wx − tk)
wn

Ak

∫

Rw
k

�

�

�

�

f
�

u+ x −
tk

w

�

− f (x)

�

�

�

�

du





p

d x

�1/p

+

�∫

Rn

�

�

�

�

�

∑

k∈Zn

χ(wx − tk, f (x))− f (x)

�

�

�

�

�

p

d x

�1/p

=: I1 + I2 + I3,

where
tk

w =
� tk1

w ,
tk2
w , · · · , tkn

w

�

.
Now, we estimate I1. Using Jensen inequality twice (see, e.g., [17]), and Fubini-Tonelli theorem, we obtain

I p
1 =

∫

Rn





∑

k∈Zn

L(wx − tk)
wn

Ak

∫

Rw
k

�

�

�

�

f (u)− f
�

u+ x −
tk

w

�

�

�

�

�

du





p

d x

≤
1

m0,Πn(L)

∫

Rn

∑

k∈Zn

L(wx − tk)





wn

Ak

∫

Rw
k

m0,Πn(L)

�

�

�

�

f (u)− f
�

u+ x −
tk

w

�

�

�

�

�

du





p

d x

≤ m0,Πn(L)p−1
∑

k∈Zn

∫

Rn

L(wx − tk)





wn

Ak

∫

Rw
k

�

�

�

�

f (u)− f
�

u+ x −
tk

w

�

�

�

�

�

p

du



 d x .

Now, denoting by τ(u) the characteristic function of the set [0,1]n, i.e., τ(u) = 1, if u ∈ [0,1]n, and τ(u) = 0 otherwise, the
change of variable y = x − tk/w and Fubini-Tonelli theorem, we get:

I p
1 ≤ m0,Πn(L)p−1

∑

k∈Zn

∫

Rn

L(wx − tk)

�

wn

Ak

∫

Rn

�

�

�

�

f (u)− f
�

u+ x −
tk

w

�

�

�

�

�

p

τ(wu− tk)du

�

d x

= m0,Πn(L)p−1
∑

k∈Zn

∫

Rn

L(wy)

�

wn

Ak

∫

Rn

�

�

� f (u)− f
�

u+ y
�

�

�

�

p
τ(wu− tk)du

�

d y

≤ δ−nm0,Πn(L)p−1

∫

Rn

wn L(wy)





∫

Rn

�

�

� f (u)− f
�

u+ y
�

�

�

�

p ∑

k∈Zn

τ(wu− tk)du



 d y

≤ δ−nm0,Πn(L)p−1m0,Πn(τ)

∫

Rn

wn L(wy)

�∫

Rn

�

�

� f (u)− f
�

u+ y
�

�

�

�

p
du

�

d y

≤ δ−nm0,Πn(L)p−1m0,Πn(τ)

∫

Rn

wn L(wy)ω
�

f ,







y









2

�p

p
d y ,

where the constant m0,Πn(τ)< +∞ since τ is bounded and with compact support (see, e.g., [23]). Exploiting the well-known
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inequality ω( f ,λδ)p ≤ (1+λ)ω( f ,δ)p, with δ,λ > 0, we finally get

I p
1 ≤ δ

−nm0,Πn(L)p−1m0,Πn(τ)

∫

Rn

wn L(wy)
�

1+w







y









2

�p
ω

�

f ,
1
w

�p

p
d y

≤ δ−nm0,Πn(L)p−1 m0,Πn(τ)2p−1ω

�

f ,
1
w

�p

p

∫

Rn

wn L(wy)
�

1+wp







y









p

2

�

d y

= δ−nm0,Πn(L)p−1 m0,Πn(τ)2p−1ω

�

f ,
1
w

�p

p

�∫

Rn

wn L(wy)d y +

∫

Rn

wn L(wy)
�

w







y









2

�p
d y

�

= δ−nm0,Πn(L)p−1 m0,Πn(τ)2p−1ω

�

f ,
1
w

�p

p
{∥L∥1 +M p(L)} ,

for every w> 0, where ∥L∥1 and M p(L) are both finite, in view of (L1) and (1).
Now we estimate I2. Using Jensen inequality twice, the change of variable y = u− tk/w and Fubini-Tonelli theorem, we have

I p
2 =

∫

Rn





∑

k∈Zn

L(wx − tk)
wn

Ak

∫

Rw
k

�

�

�

�

f
�

u+ x −
tk

w

�

− f (x)

�

�

�

�

du





p

d x

≤
∫

Rn





∑

k∈Zn

L(wx − tk)
wn

Ak

∫

eRw
k

�

�

� f
�

x + y
�

− f (x)
�

�

� d y





p

d x

≤
1

m0,Πn(L)

∫

Rn

∑

k∈Zn

L(wx − tk)





wn

Ak

∫

eRw
k

m0,Πn(L)
�

�

� f
�

x + y
�

− f (x)
�

�

� d y





p

d x

≤ δ−nm0,Πn(L)p−1

∫

Rn

∑

k∈Zn

L(wx − tk)

�

wn

∫

∆w

�

�

� f
�

x + y
�

− f (x)
�

�

�

p
d y

�

d x

≤ δ−nm0,Πn(L)p
∫

Rn

wn

∫

∆w

�

�

� f
�

x + y
�

− f (x)
�

�

�

p
d yd x

= δ−nm0,Πn(L)p
∫

∆w

wn

�∫

Rn

�

�

� f
�

x + y
�

− f (x)
�

�

�

p
d x

�

d y

≤ δ−nm0,Πn(L)p
∫

∆w

wn

�

ω

�

f ,
p

n
∆

w

�

p

�p

d y

≤ δ−nm0,Πn(L)p∆nω

�

f ,
p

n
∆

w

�p

p

≤ δ−nm0,Πn(L)p∆n(1+
p

n∆)pω
�

f ,
1
w

�p

p
,

where eRw
k :=

�

0,
∆k1

w

�

× ...×
�

0,
∆kn

w

�

and ∆w :=
�

0, ∆w
�n

.
Finally, denoted by A0 ⊆ Rn, the set of all points of Rn for which f ̸= 0 a.e., we immediately obtain, for sufficiently large w> 0,

I p
3 =

∫

A0

�

�

�

�

�

∑

k∈Zn

χ(wx − tk, f (x))− f (x)

�

�

�

�

�

p

d x

=

∫

A0

| f (x)|p
�

�

�

�

�

1
f (x)

∑

k∈Zn

χ(wx − tk, f (x))− 1)

�

�

�

�

�

p

d x

≤
∫

A0

| f (x)|p
�

Tw(x)
�p

d x

≤
∫

A0

| f (x)|p M p
2 w−pθ0 d x

≤ M p
2 w−pθ0

∫

Rn

| f (x)|pd x

= M p
2 w−pθ0 ∥ f ∥pp ,

for the positive constants M2 and θ0 from condition (χ4). This proves the theorem.
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Remark 1. Note that, in the papers [3, 2] quantitative estimates in the L1 and Lp settings respectively, have been established for
the linear and nonlinear univariate versions of the sampling Kantorovich operators. We highlight that the estimates achieved
in the above quoted papers (and then also the related proofs) should be updated with the introduction of the finite constant
m0,Πn(τ), as made in Theorem 4.1.
Remark 2. Note that in condition (χ3), the (L,ψ)-Lipschitz kernel is suitable when one deals with the frame of Orlicz spaces (as
done later), while in the present setting it is natural to assume a strongly Lipschitz condition, i.e., with ψ(u) = u, u ∈ R.
From the above quantitative estimate we can directly deduce the qualitative order of approximation, assuming f in suitable
Lipschitz spaces.
Firstly, we recall that the Lipschitz class of Zygmund-type in Lp-spaces, with 0< α≤ 1, are defined as follows

Lip(α, p) := { f ∈ Lp(Rn) :




 f (·+ t)− f (·)






p = O(




t






α

2 ), as




t






2→ 0}.

Now, we can state the following result.

Corollary 4.2. Under the assumptions of Theorem 4.1, for every f ∈ Lip(α, p), with 0 < α ≤ 1, 1 ≤ p < +∞, the following
qualitative estimate holds

∥Kw f − f ∥p ≤ T C1
1

wα
+M2 ∥ f ∥p w−θ0 ,

for sufficiently large w> 0, where T is the constant of Theorem 4.1, M2, θ0 > 0 are the constants of condition (χ4) and C1 > 0 is the
constant arising from the class Lip(α, p).

Remark 3. We remark that, if χ(x , u) = L(x)u, where L satisfies (L1) and (L2), condition (χ4) becomes

Tw(x) = sup
u̸=0

�

�

�

�

�

1
u

∑

k∈Zn

L(wx − tk)u− 1

�

�

�

�

�

=

�

�

�

�

�

∑

k∈Zn

L(wx − tk)− 1

�

�

�

�

�

= O(w−θ0),

(2)

as w→ +∞, uniformly with respect to x ∈ Rn, for some θ0 > 0, that is we deal with the linear case. Quantitative estimates for
the multivariate sampling Kantorovich operators in the linear case have been considered in details in [2]. For more references,
see, e.g., [6, 7, 27, 40, 37]. In the general theory of sampling type operators, a slightly stronger condition (instead of (2)) is
required, that is

∑

k∈Zn

L(u− tk) = 1, (3)

for every u ∈ Rn. If (3) holds, condition (χ4) turns out to be satisfied for every θ0 > 0. When the uniform spaced sequence tk = k
is considered and L is continuous, it is well known that (3) is equivalent to

bL(2πk) :=

�

0, k ∈ Zn \ {0},
1, k = 0,

where bL(v) :=
∫

Rn L(u)e−iv·udu, v ∈ Rn, denotes the Fourier transform of L (see, e.g., [11]). Such condition is known in literature
with the name of Strang-Fix type condition.
Now, in order to obtain quantitative estimates for Kw in a broader context, we extend the above results to the general setting of
Orlicz spaces.
Now, for our operators to be well-defined in Lϕ(Rn), we need to introduce a growth condition on the composition of the function
ϕ, which generates the Orlicz space, and the function ψ of the (L,ψ)-Lipschitz condition. We assume what follows.

Let ϕ be a fixed ϕ-function; we suppose that there is a ϕ-function η such that, for every λ ∈ (0,1), there exists a constant
Cλ ∈ (0, 1) satisying

ϕ(Cλψ(u))≤ η(λu), (H)

for every u ∈ R+0 , where ψ is the ϕ-function of the condition (χ3). For more details concerning condition (H), see, e.g., [8].
Now we can prove the main result of this section.

Theorem 4.3. Let ϕ be a convex ϕ-function. Suppose that ϕ satisfies condition (H) with η convex, f ∈ Lϕ+η(Rn) and that for any
fixed 0< α < 1, we have

wn

∫








y









2
> 1

wα

L(wy)d y ≤ M1w−α0 , (4)

as w→ +∞, for suitable positive constants M1, α0 depending on α and L. Then, there exist µ > 0, λ > 0 and λ0 > 0 such that

Iϕ[µ(Kw f − f )]≤
∥L∥1 m0,Πn(τ)

3δnm0,Πn(L)
ω

�

λ f ,
1

wα

�

η

+
M1m0,Πn(τ)Iη[λ0 f ]

3δnm0,Πn(L)
w−α0

+
∆n

3δn
ω

�

λ f ,
p

n
∆

w

�

η

+
Iϕ[λ0 f ]

3
w−θ0 ,
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for sufficiently large w> 0, where m0,Πn(L)< +∞ in view of Lemma 3.1, m0,Πn(τ)< +∞, τ being the characteristic function of
[0,1]n, and θ0 > 0 is the constant of condition (χ4). In particular, for µ > 0 and λ > 0 sufficiently small, the above inequality
implies the modular convergence of nonlinear multivariate sampling Kantorovich operators Kw f to f .

Proof. Let λ0 > 0 such that Iϕ[λ0 f ]< +∞. Further, we also fix λ > 0 such that

λ <min
§

1,
λ0

2

ª

.

In correspondence to λ, by condition (H), we know that there exists Cλ ∈ (0, 1) such that ϕ(Cλψ(u))≤ η(λu), u ∈ R+0 , while by
(χ4), there exist constants θ0, M2 > 0 such that

Tw(x)≤ M2w−θ0 ,

uniformly with respect to x ∈ Rn, for sufficiently large w> 0. Now, we choose µ > 0 such that

µ≤min

�

Cλ
3m0,Πn(L)

,
λ0

3M2

�

.

Taking into account that ϕ is convex and non-decreasing, for µ > 0, we can write

Iϕ [µ (Kw f − f )] =

∫

Rn

ϕ
�

µ
�

�(Kw f )(x)− f (x)
�

�

�

d x

≤
1
3

�∫

Rn

ϕ



3µ

�

�

�

�

�

�

(Kw f )(x)−
∑

k∈Zn

χ



wx − tk,
wn

Ak

∫

Rw
k

f
�

u+ x −
tk

w

�

du





�

�

�

�

�

�



 d x

+

∫

Rn

ϕ



3µ

�

�

�

�

�

�

∑

k∈Zn

χ



wx − tk,
wn

Ak

∫

Rw
k

f
�

u+ x −
tk

w

�

du



−
∑

k∈Zn

χ
�

wx − tk, f (x)
�

�

�

�

�

�

�



 d x

+

∫

Rn

ϕ

 

3µ

�

�

�

�

�

∑

k∈Zn

χ
�

wx − tk, f (x)
�

− f (x)

�

�

�

�

�

!

d x

�

=: I1 + I2 + I3.

Now, we estimate I1. Applying condition (χ3), we have

3I1 =

∫

Rn

ϕ



3µ

�

�

�

�

�

�

(Kw f )(x)−
∑

k∈Zn

χ



wx − tk,
wn

Ak

∫

Rw
k

f
�

u+ x −
tk

w

�

du





�

�

�

�

�

�



 d x

≤
∫

Rn

ϕ



3µ
∑

k∈Zn

�

�

�

�

�

�

χ



wx − tk,
wn

Ak

∫

Rw
k

f
�

u
�

du



−χ



wx − tk,
wn

Ak

∫

Rw
k

f
�

u+ x −
tk

w

�

du





�

�

�

�

�

�



 d x

≤
∫

Rn

ϕ



3µ
∑

k∈Zn

L(wx − tk)ψ





�

�

�

�

�

�

wn

Ak

∫

Rw
k

f
�

u
�

− f
�

u+ x −
tk

w

�

du

�

�

�

�

�

�







 d x .
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Using Jensen inequality twice, Fubini-Tonelli theorem, condition (H), and the change of variable y = x −
tk

w , we obtain

3I1 ≤
1

m0,Πn(L)

∫

Rn

∑

k∈Zn

L(wx − tk) ϕ



3µm0,Πn(L)ψ





wn

Ak

∫

Rw
k

�

�

�

�

f
�

u
�

− f
�

u+ x −
tk

w

�

�

�

�

�

du







 d x

=
1

m0,Πn(L)

∑

k∈Zn

∫

Rn

L(wx − tk) ϕ



3µm0,Πn(L)ψ





wn

Ak

∫

Rw
k

�

�

�

�

f
�

u
�

− f
�

u+ x −
tk

w

�

�

�

�

�

du







 d x

≤
1

m0,Πn(L)

∑

k∈Zn

∫

Rn

L(wx − tk) ϕ



Cλψ





wn

Ak

∫

Rw
k

�

�

�

�

f
�

u
�

− f
�

u+ x −
tk

w

�

�

�

�

�

du







 d x

≤
1

m0,Πn(L)

∑

k∈Zn

∫

Rn

L(wx − tk)η



λ
wn

Ak

∫

Rw
k

�

�

�

�

f
�

u
�

− f
�

u+ x −
tk

w

�

�

�

�

�

du



 d x

≤
1

m0,Πn(L)

∑

k∈Zn

∫

Rn

L(wx − tk)
wn

Ak

∫

Rw
k

η

�

λ

�

�

�

�

f
�

u
�

− f
�

u+ x −
tk

w

�

�

�

�

�

�

du d x

=
1

m0,Πn(L)

∑

k∈Zn

∫

Rn

L(wx − tk)
wn

Ak

∫

Rn

η

�

λ

�

�

�

�

f
�

u
�

− f
�

u+ x −
tk

w

�

�

�

�

�

�

τ(wu− tk)du d x

=
1

m0,Πn(L)

∑

k∈Zn

∫

Rn

L(wy)
wn

Ak

∫

Rn

η
�

λ
�

�

� f
�

u
�

− f
�

u+ y
�

�

�

�

�

τ(wu− tk)du d y

≤
δ−n

m0,Πn(L)

∫

Rn

wn L(wy)

∫

Rn

η
�

λ
�

�

� f
�

u
�

− f
�

u+ y
�

�

�

�

�
∑

k∈Zn

τ(wu− tk)dud y

≤
δ−n

m0,Πn(L)
m0,Πn(τ)

∫

Rn

wn L(wy)

∫

Rn

η
�

λ
�

�

� f
�

u
�

− f
�

u+ y
�

�

�

�

�

dud y

=
δ−n

m0,Πn(L)
m0,Πn(τ)

∫

Rn

wn L(wy) Iη
�

λ
�

f (·)− f (·+ y)
��

d y ,

where τ denotes again the characteristic function of the set [0, 1]n. Now, let 0< α < 1 be fixed. We now split the above integral
as follows

wnδ−n

m0,Πn(L)
m0,Πn(τ)

�∫








y









2
≤ 1

wα

+

∫








y









2
> 1

wα

�

L(wy) Iη
�

λ
�

f (·)− f (·+ y)
��

d y =: I1,1 + I1,2.

For I1,1, one has

I1,1 ≤
wnδ−n

m0,Πn(L)
m0,Πn(τ)

∫








y









2
≤ 1

wα

L(wy)ω
�

λ f ,







y









2

�

η
d y

≤
wnδ−n

m0,Πn(L)
m0,Πn(τ)ω

�

λ f ,
1

wα

�

η

∫








y









2
≤ 1

wα

L(wy)d y

≤
δ−n

m0,Πn(L)
m0,Πn(τ)ω

�

λ f ,
1

wα

�

η

∥L∥1 .

On the other hand, taking into account that η is convex, for I1,2 we can write

I1,2 ≤
wnδ−n

m0,Πn(L)
m0,Πn(τ)

∫








y









2
> 1

wα

L(wy)
1
2

�

Iη[2λ f (·)] + Iη[2λ f (·+ y)]
�

d y .

Now, observing that
Iη[2λ f (·)] = Iη[2λ f (·+ y)],

for every y , using (4), we finally get

I1,2 ≤
wnδ−n

m0,Πn(L)
m0,Πn(τ)

∫








y









2
> 1

wα

L(wy) Iη[2λ f ]d y

≤
δ−n

m0,Πn(L)
m0,Πn(τ)Iη[λ0 f ] M1w−α0 ,
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for w> 0 sufficiently large and for M1 > 0. Now we can proceed estimating I2. Using the assumption (χ3) we immediately have

3I2 =

∫

Rn

ϕ



3µ

�

�

�

�

�

�

∑

k∈Zn

χ



wx − tk,
wn

Ak

∫

Rw
k

f
�

u+ x −
tk

w

�

du



−
∑

k∈Zn

χ
�

wx − tk, f (x)
�

�

�

�

�

�

�



 d x

≤
∫

Rn

ϕ



3µ
∑

k∈Zn

L(wx − tk)ψ





�

�

�

�

�

�

wn

Ak

∫

Rw
k

f
�

u+ x −
tk

w

�

du− f (x)

�

�

�

�

�

�







 d x .

Now, by the change of variable y = u−
tk

w , we have

3I2 ≤
∫

Rn

ϕ



3µ
∑

k∈Zn

L(wx − tk)ψ





wn

Ak

∫

eRw
k

�

�

� f
�

x + y
�

− f (x)
�

�

� d y







 d x ,

where the symbol eRw
k :=

�

0,
∆k1

w

�

× · · ·
�

0,
∆kn

w

�

for every k ∈ Zn and w > 0. Hence, applying Jensen inequality twice as above,
recalling that 3µm0,Πn(L)≤ Cλ and condition (H), we get

3I2 ≤
1

m0,Πn(L)

∫

Rn

∑

k∈Zn

L(wx − tk) ϕ



3µm0,Πn(L)ψ





wn

Ak

∫

eRw
k

�

�

� f
�

x + y
�

− f (x)
�

�

� d y







 d x

≤
1

m0,Πn(L)

∫

Rn

∑

k∈Zn

L(wx − tk) η



λ
wn

Ak

∫

eRw
k

�

�

� f
�

x + y
�

− f (x)
�

�

� d y



 d x

≤
1

m0,Πn(L)

∫

Rn

∑

k∈Zn

L(wx − tk)
wn

Ak

∫

eRw
k

η
�

λ
�

�

� f
�

x + y
�

− f (x)
�

�

�

�

d yd x

≤
δ−n

m0,Πn(L)

∫

Rn

wn
∑

k∈Zn

L(wx − tk)

∫

∆w

η
�

λ
�

�

� f
�

x + y
�

− f (x)
�

�

�

�

d yd x ,

where ∆w :=
�

0, ∆w
�n

. Then, by the Fubini-Tonelli theorem, we get

3I2 ≤
δ−n

m0,Πn(L)

∫

Rn

wnm0,Πn(L)

∫

∆w

η
�

λ
�

�

� f
�

x + y
�

− f (x)
�

�

�

�

d yd x

= δ−nwn

∫

∆w

∫

Rn

η
�

λ
�

�

� f
�

x + y
�

− f (x)
�

�

�

�

d xd y

= δ−nwn

∫

∆w

Iη
�

λ
�

f
�

·+ y
�

− f (·)
��

d y

≤ δ−nwnω

�

λ f ,
p

n
∆

w

�

η

∫

∆w

d y

= δ−n∆nω

�

λ f ,
p

n
∆

w

�

η

.

For I3, denoted by A0 ⊆ Rn the set of all points of Rn for which f ̸= 0 almost everywhere, we obtain

3I3 =

∫

A0

ϕ

 

3µ

�

�

�

�

�

∑

k∈Zn

χ
�

wx − tk, f (x)
�

− f (x)

�

�

�

�

�

!

d x

=

∫

A0

ϕ

 

3µ| f (x)|

�

�

�

�

�

1
f (x)

∑

k∈Zn

χ
�

wx − tk, f (x)
�

− 1

�

�

�

�

�

!

d x

≤
∫

A0

ϕ
�

3µ| f (x)|Tw(x)
�

d x .
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By the convexity of ϕ and condition (χ4), we have

3I3 ≤
∫

A0

ϕ
�

3µM2w−θ0 | f (x)|
�

d x

≤ w−θ0

∫

Rn

ϕ
�

3µM2| f (x)|
�

d x

≤ w−θ0 Iϕ [3µM2 f ]

≤ w−θ0 Iϕ [λ0 f ] ,

for positive constants M2 and θ0. This completes the proof.

Remark 4. Note that, considerations similar to those given in Remark 1, must be given also for the quantitative estimates in the
setting of Orlicz spaces achieved in the following paper [20, 21, 22, 23, 26].
Remark 5. Note that, condition (4) is obviously fullfilled when the kernel χ satisfies condition (χ3) with L having compact
support. Indeed, if supp L ⊂ B(0, R) ⊂ Rn, R> 0, we have

wn

∫








y









2
> 1

wα

L(wy)d y =

∫

∥u∥2>w1−α
L(u)du= 0,

for every w> R1/(1−α). The above consideration implies that the term I1,2 in the proof of Theorem 4.3 is null, for sufficiently large
w> 0. Moreover, in this case, we also have that condition (L2) is satisfied for every β0 > 0.

Corollary 4.4. Let χ be a kernel satisfying condition (χ3) with L having compact support. Let ϕ be a convex ϕ-function satisfying
condition (H) with η convex and f ∈ Lϕ+η(Rn). Then, for every 0< α < 1, there exist constants µ > 0, λ > 0 and λ0 > 0 such that

Iϕ[µ(Kw f − f )]≤
∥L∥1 m0,Πn(τ)

3δnm0,Πn(L)
ω

�

λ f ,
1

wα

�

η

+
∆n

3δn
ω

�

λ f ,
p

n
∆

w

�

η

+
Iϕ[λ0 f ]

3
w−θ0 ,

for sufficiently large w> 0, where m0,Πn(L)< +∞, m0,Πn(τ)< +∞, and θ0 > 0 is the constant of condition (χ4).

Remark 6. Note that, if L has not compact support, we may require the following condition:

Mν(L) :=

∫

Rn

L(u)




u






ν

2 du< +∞, (5)

for ν > 0, which results a sufficient condition for (4). Indeed, for every 0< α < 1, we can write what follows

wn

∫








y









2
> 1

wα

L(wy)d y =

∫

∥u∥2>w1−α
L(u)du≤

1
wν(1−α)

∫

∥u∥2>w1−α





u






ν

2 L(u)du

≤
Mν(L)
wν(1−α)

= O(wν(α−1)),

as w→ +∞. Hence, (4) is satisfied with α0 = (1−α)ν and M1 = Mν(L).
Now, as made in the particular context of Lp(Rn) spaces, we recall the definition of Lipschitz classes in Orlicz spaces Lϕ(Rn). We
define by Lipϕ(ν), 0< ν≤ 1, the set of all functions f ∈ Lϕ(Rn) such that there exists λ > 0 with

Iϕ
�

λ
�

f (·)− f (·+ t)
��

=

∫

Rn

ϕ
�

λ
�

� f (x)− f (x + t)
�

�

�

d x = O(




t






ν

2),

as




t






2→ 0. From Theorem 4.3, we immediately obtain the following corollary.

Corollary 4.5. Under the assumptions of Theorem 4.3 with 0< α < 1 and for any f ∈ Lipη(ν), 0< ν≤ 1, there exist S > 0 and
µ > 0 such that

Iϕ [µ (Kw f − f )]≤ Sw−l ,

for sufficiently large w> 0, where l :=min{αν,α0,θ0}.
Note that the quantitative estimate established in Orlicz spaces (Theorem 4.3) and consequently also the qualitative one achieved
in Corollary 4.5 turns out to be less sharp than that one achieved in Lebesgue spaces, even if we choose Lϕ+η(Rn) = Lp(Rn) (with
ψ(u) = u, u ∈ R). This is the price to pay to get the above generalization, that is due to the fact that, in general, the ϕ-modulus
of smoothness does not satisfy the property ω( f ,λδ)≤ (1+λ)ω( f ,δ), which instead holds for ω( f , ·)p.
Now, we conclude this section recalling other useful examples of spaces Lϕ(Rn). If we consider the convex ϕ-function
ϕα(u) = euα−1, for α > 0, the corresponding Orlicz spaces are the exponential spaces. Other well-known example of Orlicz spaces
are, e.g., the Zygmund (or interpolation) spaces Lα logβ L(Rn) which are generated by the ϕ-functions ϕα,β (u) = uα logβ (u+ e),
with 1≤ α < +∞ and β ∈ R+.
In the particular case of Theorem 4.3 applied to Lp-spaces, if the functionψ of condition (χ3) isψ(u) = uq/p, 1≤ q ≤ p, condition
(H) turns out to be satisfied with η(u) = uq and Cλ = λq/p. So we have Lϕ+η(Rn) = Lp(Rn)∩ Lq(Rn), which is a proper subspace
of Lp(Rn).
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5 Examples of kernels
In this section, we discuss about a suitable procedure in order to construct examples of kernels for the nonlinear multivariate
sampling Kantorovich operators. In general, we consider kernel functions of the form

χ(wx − tk, u) = L(wx − tk) gw(u),

where (gw)w>0, gw : R→ R is a family of functions satisfying gw(u)→ u uniformly as w→ +∞ and such that there exists a
ϕ-function ψ with

|gw(u)− gw(v)| ≤ψ(|u− v|), (6)

for every u, v ∈ R and w> 0.
For a sake of clarity, all the assumptions made in Section 2 on χ and L can be summarized as follows:

(i)
�

L(wx − tk)
�

k
∈ ℓ1(Zn), for every x ∈ Rn and w> 0, L ∈ L1(Rn) is bounded in a neighborhood of 0 ∈ Rn and there exists a

number β0 > 0 such that

mβ0 ,Πn(L) := sup
x∈Rn

∑

k∈Zn

L(x − tk)




x − tk







β0

2
< +∞;

(ii) gw(0) = 0, for every w> 0;

(iii) for every j ∈ N+, there exists θ0 > 0 such that

T w
j (x) = sup

u ̸=0

�

�

�

�

�

gw(u)
u

∑

k∈Zn

L(wx − tk)− 1

�

�

�

�

�

= O(w−θ0),

as w→ +∞, uniformly with respect to x ∈ Rn.

An example of a family (gw)w>0 satisfying all the above assumptions is defined, for w> 0, by gw(u) = u1−1/w for every a < u< 1,
with 0< a < 1/e, and gw(u) = u otherwise (see, e.g., [43, 13]).
If instead gw(u)≡ u for every w> 0, we reduce again to the linear case already studied in [2]. For a sake of simplicity, in what
follows, we will consider only the case of the uniform sequence tk = k, k ∈ Zn.
A first typical example of nonlinear multivariate sampling Kantorovich operator is based on the multivariate Fejér kernel
Fn(x) :=

∏n
i=1 F(x i), where F is the well-known Fejér kernel of one variable

F(x) :=
1
2

sinc2
� x

2

�

, x ∈ R,

where the sinc-function is defined by

sinc(x) :=

� sin(πx)
πx x ∈ R \ {0},

1, x = 0.

We have that Fn is continuous, non-negative and bounded, belongs to L1(Rn) and satisfies all the other required conditions. In
particular, it is possible to see that (3) holds in view of the Strang-Fix condition recalled in Remark 3. In this case, we can assume

χ(wx − k, u) := Fn(wx − k) gw(u),

and therefore, condition (iii) reduces to supu ̸=0

�

�

�

gw(u)
u − 1

�

�

�= O(w−θ0), as w→ +∞, for some θ0 > 0, which is obviously satisfied.

The corresponding nonlinear multivariate sampling Kantorovich operators take now the following form

(KFn
w f )(x) =

∑

k∈Zn

Fn(wx − k) gw





wn

Ak

∫

Rw
k

f (u)du



 ,

for every w> 0, where f : Rn→ R is a locally integrable function such that the above series is convergent for every x ∈ Rn. As
shown in Remark 6, it is easy to see that Fn satisfies (5) for every 0< ν < 1. Hence, for KFn

w , from Theorem 4.3 we can state the
following corollary.

Corollary 5.1. Let ϕ be a convex ϕ-function. Suppose that ϕ satisfies condition (H) with η convex, f ∈ Lϕ+η(Rn). Then, for every
0< ν < 1, 0< α < 1, there exist constants µ > 0, λ > 0 and λ0 > 0, such that

Iϕ[µ(KFn
w f − f )]

≤
1
3

�

m0,Πn(τ)ω
�

λ f ,
1

wα

�

η

+M1m0,Πn(τ)Iη[λ0 f ]w−α0 +ω
�

λ f ,
p

n
w

�

η

+ Iϕ[λ0 f ]w−θ0

�

,

for sufficiently large w> 0, where α0 = (1−α)ν, m0,Πn(τ)< +∞, M1 > 0 and θ0 > 0 is the constant of condition (iii).
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Another useful class of kernels is given by the so-called Jackson type kernels of order s ∈ N, defined in the univariate case by

Js(x) := cs sinc2s
� x

2sπα

�

, x ∈ R,

with α≥ 1 and cs is a non-zero normalization coefficient, given by

cs :=

�∫

R
sinc2s

� u
2sπα

�

du

�−1

.

The multivariate Jackson type kernel is given by the n-fold product of the corresponding univariate function, as follows

J n
s (x) =

n
∏

i=1

Js(x i), x ∈ Rn.

It is easy to prove that all the required assumptions are satisfied and the corresponding multivariate nonlinear sampling Kantorovich
operators are given by

(KJn
w f )(x) =

∑

k∈Zn

Jn(wx − k) gw





wn

Ak

∫

Rw
k

f (u)du



 ,

for every w> 0, where f : Rn→ R is a locally integrable function such that the above series is convergent for every x ∈ Rn. For
KJn

w , we can obtain an analogous result to that one achieved for KFn
w .

For what concerns examples of function L with compact support, we can consider the well-known central B-spline (univariate) of
order s ∈ N, defined by

Ms(x) :=
1

(s− 1)!

s
∑

j=0

(−1) j
�

s
j

�

� s
2
+ x − j

�s−1

+
,

where x+ :=max{x , 0} is the positive part of x . The Fourier transform of Ms is given by

cMs(v) = sincs
� v

2π

�

, v ∈ R,

and then, we have
∑

k∈ZMs(u− k) = 1, for every u ∈ R, by Remark 3, and therefore, condition (iii) is again satisfied. Obviously,
each Ms is bounded on R, with compact support on [−s/2, s/2], and hence Ms ∈ L1(R), for all s ∈ N, with ∥Ms∥1 = 1. Further,
condition (i) is fulfilled for every β0 > 0. Thus we can define the multivariate central B-spline of order s, as follows

Mn
s (x) :=

n
∏

i=1

Ms(x i), x ∈ Rn,

and the corresponding multivariate nonlinear sampling Kantorovich operators are given by

(KMn
s

w f )(x) =
∑

k∈Zn

Mn
s (wx − k) gw





wn

Ak

∫

Rw
k

f (u)du



 ,

for every w> 0, where f : Rn→ R is a locally integrable function such that the above series is convergent for every x ∈ Rn. For

K
Mn

s
w , from Corollary 4.4 we obtain the following.

Corollary 5.2. Let ϕ be a convex ϕ-function. Suppose that ϕ satisfies condition (H) with η convex, f ∈ Lϕ+η(Rn). Then, for every
0< α < 1, there exist constants µ > 0, λ > 0 and λ0 > 0, such that

Iϕ[µ(KMn
s

w f − f )]≤
1
3

�

m0,Πn(τ)ω
�

λ f ,
1

wα

�

η

+ω
�

λ f ,
p

n
w

�

η

+ Iϕ[λ0 f ]w−θ0

�

,

for sufficiently large w> 0, where m0,Πn(τ)< +∞ and θ0 > 0 is the constant of condition (iii).

Finally, an example of non-product kernels can be of radial type, e.g., represented by the so-called Bochner-Riesz kernel of order
s > 0, defined as follows

bn
s (x) :=

2s

p

(2π)n
Γ (s+ 1)





x






−s−n/2

2 Js+n/2(




x






2), x ∈ Rn,

where Jλ is the Bessel function of order λ, with λ > n−1
2 , and Γ is the usual Euler gamma function.

Since it is well-known that Jλ(




x






2) = O(




x






−n/2

2 ), as




x






2 → +∞, hence bn
s (x) = O(





x






−s−n

2 ), as




x






2 → +∞, then
bn

s ∈ L1(Rn). Its Fourier transform is given by:

cbn
s (v) =

¨

(1−




v






2

2)
s,





v






2 ≤ 1,
0,





v






2 > 1,
v ∈ Rn,
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namely, bn
s is bandlimited (i.e., it belongs to the Bernstein class B1

1(R
n) ⊂ L1(Rn)). The corresponding nonlinear multivariate

sampling Kantorovich operators take the following form

(K bn
s

w f )(x) =
∑

k∈Zn

bn
s (wx − k) gw





wn

Ak

∫

Rw
k

f (u)du



 ,

for every w> 0, where f : Rn→ R is a locally integrable function such that the above series is convergent for every x ∈ Rn.
For other examples of kernels, the readers can see, e.g., [14, 15, 16].
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