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Strongly convex squared norms
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Abstract

Normed spaces for which the squared norm is strongly conves are intensively studied in literature. This
note is motivated by the fact that a strongly convex squared norm plays a role in quantitative Korovkin
approximation. We are concerned especially with the strong convexity of ∥ · ∥2p on R2, 1< p < 2.

1 Introduction

Let (E,∥·∥) be a real normed space. For 0< ϵ ≤ 2 let δE(ϵ) := inf{1− ∥x+y∥
2 : ∥x∥= ∥y∥= 1, ∥x − y∥= ϵ}.

(E,∥·∥) is called uniformly convex if δE(ϵ)> 0 for all ϵ ∈ (0, 2]. It is called strictly convex if the unit sphere does not contain
segments; equivalently, if δE(2) = 1.

Let c > 0. ∥·∥2 is called c-strongly convex if

(x , a, y;∥·∥2) := (1− a)∥x∥2 + a ∥y∥2 − ∥(1− a)x + a y∥2

≥ ca(1− a)∥x − y∥2 , ∀x , y ∈ E, a ∈ [0, 1].

Normed spaces and norms with such properties are intensively studied in literature (see, e.g., [1, 2, 4, 6]) and the references
therein. This note is motivated by a result from [5], according to which if ∥ · ∥2 is c-strongly convex then it is useful in quantitative
Korovkin approximation.

The elementary proof of the main result (Th. 3.2) was given by Andrzej Komisarski in [3]. At the end of the paper, a conjecture
with geometric flavor is presented.

2 Preliminaries

Remark 1. (i) ∥·∥2 is a convex function.

(ii) (E,∥·∥) is strictly convex iff ∥·∥2 is strictly convex.

(iii) If ∥·∥2 is c-strongly convex, then c ≤ 1 and δE(ϵ)≥ 1−
Ç

1− c ϵ
2

4 > 0, and consequently (E,∥·∥) is uniformly convex.

(iv) If (E,∥·∥) is an inner-product space, then ∥·∥2 is 1-strongly convex. Conversely, if ∥·∥2 is 1-strongly convex, then according
to (iii) and the Day-Nordlander Theorem,

1−

√

√

1−
ϵ2

4
≤ δE(ϵ)≤ 1−

√

√

1−
ϵ2

4
,

and thus (E,∥·∥) is an inner-product space (see [2, p. 60]).

Remark 2. (R2,∥·∥p) with p > 2 is strictly convex and finite dimensional, hence uniformly convex. However, ∥·∥2p is not strongly
convex.

Indeed, lim
x↘0

x−2(1− (1− x p)2/p) = 0, hence

∀n ∈ N ∃xn ∈ (0, 1) : 1− (1− x p
n)

2/p <
1
n

x2
n.
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Let yn =
�

1− x p
n

�1/p
. Set un = (−xn, yn), vn = (xn, yn). Then

�

un,
1
2

, vn;∥·∥2p

�

<
1
n

1
4
∥un − vn∥

2 , n ∈ N, which shows that

∥·∥2p is not strongly convex.

Remark 3. In relation with the above definitions, let us recall that (E,∥·∥) is said to be q-convex for some q ≥ 2 if ∃d > 0 :









x + y
2










q

≤
1
2
(∥x∥q + ∥y∥q)−

d
2
∥x − y∥q , x , y ∈ E.

See [7], [6, p. 86].

3 Main result

So, for p = 1 or p > 2, ∥·∥2p is not strongly convex as a norm on R2, while ∥·∥22 is 1-strongly convex. It remains to study the case
when 1< p < 2.

Theorem 3.1. Let 1< p < 2 and f : R2→ R,

f (x , y) :=
� |x |p + |y|p

2

�2/p

− (p− 1)
x2 + y2

2
, (x , y) ∈ R2,

Then f is convex and f (x , y)> 0 for (x , y) ̸= (0,0).

Proof. Let us remark that

21−
2
p > e1−

2
p > 1+

�

1−
2
p

�

> p− 1. (1)

On the other hand, the function x 7−→ x
p
2 is subadditive on [0,∞), so that

f (x , y) =

 
�

x2
�p/2
+
�

y2
�p/2

2

!2/p

− (p− 1)
x2 + y2

2
≥

≥

 
�

x2 + y2
�p/2

2

!2/p

− (p− 1)
x2 + y2

2
=

=
x2 + y2

2

�

21− 2
p − (p− 1)

�

> 0,

for all (x , y) ̸= (0,0). Now let’s prove that f is convex on (R+)2 . Let x > 0, y > 0, u :=
2x p

x p + y p
, v :=

2y p

x p + y p
. Then

u> 0, v > 0, u+ v = 2. By a straightforward computation we find that the Hesse matrix of f is H with

H11 =
2− p

2
u2−

2
p + (p− 1)

�

u1−
2
p − 1

�

,

H22 =
2− p

2
v2−

2
p + (p− 1)

�

v1−
2
p − 1

�

,

H12 = H21 =
2− p

2
u1−

1
p v1−

1
p .

To prove that H11 > 0, let us remark that the function ϕ(t) = ut is convex, and so

ϕ

��

2
p
− 1

��
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2
p

�
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�
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This yields

1≤
�

2
p
− 1

�

u2−
2
p +

�

2−
2
p

�

u1−
2
p ;

now

H11 ≥
2− p

2
u2−

2
p + (p− 1)u1−

2
p − (p− 1)

��

2
p
− 1

�

u2−
2
p +

�

2−
2
p

�

u1−
2
p

�

=
(2− p)2

2p
u2−

2
p +
(p− 1)(2− p)

p
u1−

2
p > 0.

Similarly H22 > 0. It remains to show that det H ≥ 0. A direct calculation reveals that

det H = (p− 1)2
�

1− u1−
2
p − v1−

2
p

�

−
(p− 1)(2− p)

2

�

u2−
2
p + v2−

2
p

�

+ (p− 1)u1−
2
p v1−

2
p .
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Denote det H = g(u), where u ∈ (0,2), v = 2− u. Then

g ′(u) =
(p− 1)2(2− p)

p
(v − u)u−

2
p v−

2
p

�

1
2

�

u
2
p + v

2
p

�

−
1

p− 1

�

.

The function ψ(t) := t
2
p is convex on [0,∞), which implies ψ(u) +ψ(v)≤ψ(0) +ψ(u+ v), i.e., u

2
p + v

2
p ≤ 2

2
p . Now according

to (1),
1
2
(u

2
p + v

2
p )−

1
p− 1

≤ 2
2
p −1 −

1
p− 1

< 0.

It follows that g ′(u)< 0 iff v − u> 0, i.e., iff u ∈ (0,1). Since g(1) = 0, we have det H = g(u)> 0 for u ̸= 1, which shows that
f is a (strictly) convex function on (R+)2. Then it is clearly convex on (R−)2, R+ ×R−, R− ×R+. Consider now the semiaxis
{(0, b)| b ≥ 0}. It is easy to verify that the surface z = f (x , y) has a tangent plane at the point (0, b, f (0, b)), namely the plane of
equation

z = b(21−
2
p + 1− p)(y −

b
2
).

A similar reasoning involving the other semiaxes leads to the conclusion that f is a convex function.

Theorem 3.2. Consider the space (R2,∥·∥p) with 1< p < 2. Then ∥·∥2p is (p− 1)-strongly convex, and p− 1 is the largest constant
with this property.

Proof. From Theorem 3.1 we deduce that
p

f is a norm on R2, and so |·| :=
Ç

2
p−1 f is also a norm. This implies

∥·∥2p = (p− 1)2
2
p −1(|·|2 + ∥·∥22).

Now Lemma 1 shows that

(x , a, y;∥·∥2p)≥ (p− 1)2
2
p −1a(1− a)∥x − y∥22 , x , y ∈ R2.

It is easy to verify that ∥·∥22 ≥ 21−
2
p ∥·∥2p , and so (x , a, y;∥·∥2p)≥ (p− 1)a(1− a)∥x − y∥2p , for all x , y ∈ R2, a ∈ [0, 1]. Therefore,

∥·∥2p is (p− 1)-strongly convex. Suppose that ∥·∥2p is c-strongly convex. Then

2(∥x∥2p + ∥y∥
2
p)− ∥x + y∥2p ≥ c ∥x − y∥2p , x , y ∈ R2.

For x = (1+ ϵ, 1− ϵ), y = (1− ϵ, 1+ ϵ), this leads to

c · 2
2
p ≤ lim

ϵ↘0

[(1+ ϵ)p + (1− ϵ)p]2/p − 22/p

ϵ2
= (p− 1)22/p,

and so c ≤ p− 1.

Conjecture 1. Let ∥·∥ be a norm on R2, and C := {x ∈ R2| ∥x∥ = 1}. Then ∥·∥2 is strongly convex iff ∃M > 0 such that
∀x1, x2, x3 ∈ C with Ox1, Ox2, Ox3 pairwise distinct, the conic with center O and passing through x1, x2, x3 is an ellipse with
axes ≤ M .
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