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An adaptive algorithm for determining the optimal degree of
regression in constrained mock-Chebyshev least squares quadrature

Francesco Dell’Accio a · Filomena Di Tommaso a · Elisa Francomano b · Federico Nudo a,c

Abstract

In this paper we develop an adaptive algorithm for determining the optimal degree of regression in the
constrained mock-Chebyshev least-squares interpolation of an analytic function to obtain quadrature
formulas with high degree of exactness and accuracy from equispaced nodes. We numerically prove the
effectiveness of the proposed algorithm by several examples.

1 Introduction
Let f be a continuous function in the interval [−1, 1] and let w(x) ∈ L1([−1, 1]) be a nonnegative weight function. A widespread
problem in applied mathematics consists in the approximation of the weighted integral

I[ f ] :=

∫ 1

−1

f (x)w(x)d x , (1)

by using a quadrature formula. If the function f is known in the whole interval [−1, 1], one can use a Gauss–Christoffel quadrature
rule [10]

Q[ f ] :=
m
∑

k=1

wk f (ξk), (2)

where ξ1, . . . ,ξm ∈ (−1,1) are the nodes and w1, . . . , wm ≥ 0 are the weights of the quadrature formula, which has algebraic
degree of exactness 2m− 1, that is it integrates exactly polynomials of degree up to 2m− 1. In many practical applications,
however, the function f is not known on the whole interval [−1,1], but only on a finite set of points

Xn = {x0, . . . , xn},

which are often equispaced, that is

x i = −1+
2
n

i, i = 0, . . . , n.

In these cases, composite trapezoidal or composite Simpson rules, of degree of exactness 1,3, respectively, are widely used,
since all Newton–Cotes rules of higher order (greater than 7 for w(x) = 1) have weights which differ in sign and become
rapidly unstable [14]. A possible approach to overcome this problem is based on the use of interpolation techniques which
mitigate the Runge and the Gibbs phenomena and allow to obtain efficient quadrature formulas based on equidistant points
(see [6, 8, 14, 15, 16] and references therein). Two interesting approaches to get quadrature formulas from equispaced nodes
have been presented in [15, 16] and are based on the idea that it is possible to obtain quadrature rules by using Gauss–Christoffel
formulas in combination with local polynomial interpolants or global rational interpolants, respectively. To describe the approach
proposed by Majidian [16], we fix s ∈ N and we select the s−tubes

N s
k = {x jk , . . . , x jk+s−1} ⊂ Xn, k = 1, . . . , m,

such that x jk ≤ ξk ≤ x jk+s−1, k = 1, . . . , m. The key point is to substitute the exact values f (ξk) in (2) with the values, at ξk, of
the Lagrange polynomial interpolants on the s−tube N s

k . Consequently, the quadrature formula (2) becomes

Qs[ f ] =
m
∑

k=1

jk+s−1
∑

i= jk

wk f (x i)ℓi(N s
k ,ξk), (3)

where ℓi(N s
k , ·) is the Lagrange fundamental polynomial relative to the nodes in N s

k . Since the nodes are surrounding Christoffel
abscissas ξk, accurate approximation of integral (1) by means of quadrature formula (3) are expected, at least for local polynomial
interpolants of low degree. A different approach is proposed by De Marchi et al. in [6] based on the so-called mapped bases or
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fake nodes [5], which requires the definition of a bijective differentiable function S : [−1, 1]→ R which maps the set Xn onto the
set of Chebyshev–Lobatto nodes

X C L
n =
§

xC L
i = − cos
�

iπ
n

�

, i = 0, . . . , n
ª

, (4)

that is S(x i) = xC L
i , i = 0, . . . , n. Therefore, by using the function S−1 as a change of variable, the integral (1) can be approximated

by the well-known Gauss–Chebyshev quadrature formula. This method allows to mitigate the Gibbs phenomenon without
resampling the given function.

Among all techniques known to defeat the Runge phenomenon, it is included the mock-Chebyshev subset interpolation,
which produces a polynomial that interpolates f only on the proper subset X ′m of Xn, constituted by nodes which best mimic the
behavior of the Chebyshev–Lobatto nodes of order m. The accuracy of this interpolant can be improved by using the remaining
nodes Xn \X ′m for a simultaneous regression [4, 7]. This is the idea of the constrained mock-Chebyshev least squares interpolant.
More in details, by fixing m= ⌊π

p
n/
p

2⌋, an integer r such that m< r ≤ n and a polynomial basis B = {u0(x), . . . , ur(x)}, the
constrained mock-Chebyshev least squares interpolant is defined by

P̂r,n[ f ](x) =
r
∑

i=0

âiui(x), (5)

where [â0, . . . , âr]T is the solution of the Karush-Kuhn-Tucker linear system, or simply KKT system [7]. To take advantage of the
good properties of the approximant (5), in [8] has been introduced a quadrature formula which makes use of the constrained
mock-Chebyshev least squares interpolant of degree

r⋆ = m+ p, p =
�

π
p

2

s

n
6

�

,

in combination with the Gaussian-Christoffel quadrature formula. In particular, the exact values f (ξ j) j = 1, . . . , m, are
approximated by the evaluations of the constrained mock-Chebyshev least squares interpolant at the same points, that is

f (ξ j)≈ P̂r⋆ ,n[ f ](ξ j).

The constrained mock-Chebyshev least squares quadrature formula [8] is defined as follows

Q̂ r⋆ ,n[ f ] =
m
∑

j=1

w j P̂r⋆ ,n[ f ](ξ j). (6)

By setting

ŵ j =
m
∑

i=1

wi P̂r⋆ ,n[ℓ j](ξi), j = 0, . . . , n,

and

ℓi(x) =
n
∏

j=0
j ̸=i

x − x j

x i − x j
, i = 0, . . . , n, x ∈ [−1, 1],

the formula (6) can be rewritten as

Q̂ r⋆ ,n[ f ] =
n
∑

i=0

ŵi f (x i),

in order to make evident the dependence of this formula on the evaluations of the function f in all nodes of Xn [8]. The goal of
this paper is to increase the accuracy of the constrained mock-Chebyshev least squares quadrature formula (6) by considering the
family of quadrature formulas

¨

Q̂ r,n[ f ] :=
m
∑

i=1

wi P̂r,n[ f ](ξi), r = m, . . . , 2m− 1

«

. (7)

More precisely, we propose an adaptive algorithm for numerically determining the “optimal" degree r⋆opt of the constrained

mock-Chebyshev least-squares interpolation which produces a more accurate quadrature formula Q̂ r⋆opt ,n[ f ].
The overview of the paper is the following. In Section 2 we develop the adaptive algorithm for determining the “optimal"

degree of regression r⋆opt and we analyze its computational cost. In Section 3 we show how to generalize the algorithm for
approximating integrals of bivariate analytic functions on the square [−1,1]2. Finally, in Section 4, numerical experiments
demonstrate the effectiveness of the proposed algorithm.
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Figure 1: Sequence of approximations Q̂r,n[ f ] (left) and sequence of approximate relative errors Êr [ f ] (center) versus sequence of exact relative
errors Er [ f ] (right) with f (x) = 1

x2−1.1 , w(x) = 1, n= 100 and m= 22.

2 Computing accurate quadrature formulas with high degree of exactness from equispaced
nodes

The main goal of this section is the determination of a procedure for the choice of the “optimal" value of r which guarantees the
“best approximation accuracy" of the quadrature formula Q̂ r,n[ f ], measured through the exact relative error

Er[ f ] =

�

�Q̂ r,n[ f ]− I[ f ]
�

�

|I[ f ]|
,

where we assume |I[ f ]|> 0. We denote this value by r⋆opt = r⋆opt( f ). To this aim, we analyze the trend of approximate relative
errors

Êr[ f ] =

�

�Q̂ r+1,n[ f ]− Q̂ r,n[ f ]
�

�

�

�Q̂ r,n[ f ]
�

�

, m≤ r ≤ 2m− 2, (8)

computed by using quadrature formulas of subsequent degrees up to the maximum degree of exactness 2m− 1. At first sight,
it might be thought to choose r⋆opt as the value of r ∈ {m, m+ 1, . . . , 2m− 2} which minimizes the approximate relative error

Êr[ f ]. Unfortunately, in general this choice could be misleading since, even for starting values of r, it could occur that two
successive approximations Q̂ r,n[ f ] and Q̂ r+1,n[ f ] are so close to each other that the approximate relative error Êr[ f ] is very small,
for example less than a tolerance tol, despite the exact relative error Er[ f ] is not, being much greater than tol. An example of
this situation is well illustrated in Figure 1, where the sequence of approximate relative errors assumes values less than 10−14

despite all exact relative errors are not less than 10−6. The approximate relative errors Êr[ f ] less than tol are then outliers and
therefore they have to be discarded in the process of the determination of r⋆opt . Instead of fixing a tolerance tol a priori, we

distinguish outliers from valid values of relative errors Êr[ f ] by analyzing the sequence of consecutive triples

t r =
�

Êr[ f ], Êr+1[ f ], Êr+2[ f ]
	

, r = m, . . . , 2m− 3. (9)

We call the triple t r monotonic if and only if

Êr[ f ]≥ Êr+1[ f ]≥ Êr+2[ f ] or Êr[ f ]≤ Êr+1[ f ]≤ Êr+2[ f ],

otherwise we call the triple t r non monotonic. Note that a triple t r is monotonic if and only if

dr dr+1 ≥ 0,

where we set
dr = log10

�

Êr+1[ f ]
�

− log10

�

Êr[ f ]
�

, r = m, . . . , 2m− 2.

We fix a suitable constant δ > 0 (for example δ = 0.5) and we search the outliers among the elements of non monotonic triples
by assuming that:

• if dr < −δ and dr+1 > δ, then Êr+1 is outlier (see Figure 2 (left));

• if dr > δ and dr+1 < −δ, then Êr is outlier (see Figure 2 (right)).

The process of determining new outliers ends when r = 2m− 2. The tolerance tol is determined adaptively by initializing it with
the epsilon machine eps and by updating it by the rule

tol :=max{tol, Êr} (10)

as soon as we find a new outlier Êr . To avoid under-estimation of the exact relative error we take into account the possible
presence of outliers, by assuming as outliers all approximate relative errors Êr less than or equal to the computed tolerance
tol. The Algorithm 1 computes the tolerance tol. The Algorithm 2 detects the outliers and remove them, providing in output
the increasing sequence {r1, . . . , rp} ⊂ {m, . . . , 2m− 2} of degrees r such that Êr > tol. In Figure 3 we display the effect of the
Algorithm 2, in detecting outliers (left) and removing them (right).
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Figure 2: Approximate relative errors, with respect to the Gauss–Legendre scheme (w(x) = 1), for the function f (x) = 1
x2−1.1 (•) with n = 1200,

m= 76 (left) and n= 1280, m= 79 (right) with related first non monotonic triples (■) and corresponding outliers (◦).

Algorithm 1 Tolerance determination

Require: Êm[ f ], . . . , Ê2m−2[ f ]
Ensure: tol

tol ← eps
for i = m, . . . , 2m− 3 do

di ← log10(Êi+1[ f ])− log10(Êi[ f ])
end for
while j ≤ m− 2 do

if d j ≤ −δ and d j+1 ≥ δ then
tol =max{tol, Ê j+1[ f ]}
j← j + 2

else if d j ≥ δ and d j+1 ≤ −δ then
tol =max{tol, Ê j[ f ]}
j← j + 1

else
j← j + 2

end if
end while

Algorithm 2 Outlier detection

Require: Êm[ f ], . . . , Ê2m−2[ f ]
Ensure: r1, . . . , rp

j← 1
for i = m, . . . , 2m− 2 do

if Êi[ f ]> tol then
r j ← i
j← j + 1

end if
end for
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Figure 3: Significant approximate relative errors (•) and outliers (◦) for the function f (x) = 1
x2−1.1 n = 1000, m = 70 relative to the

Gauss–Legendre scheme (w(x) = 1).

From now on we assume that all outliers in the sequence {(r, Êr)}2m−2
r=m have been removed. We denote by {(r j , Êr j

)}pj=1,
m≤ r1 < · · ·< rp ≤ 2m− 2 the subset of significant data. We consider the sequence of intervals {I j}

p
j=0, defined as follows

I j =







[m, r1), if j = 0,
(r j , r j+1), if j = 1, . . . , p− 1,
(rp, 2m− 2], if j = p.

(11)

By definition, all outliers belong to

I =
p
⋃

j=0

I j .

Let q ≥ 0 be the number of intervals I j in (11) containing at least one outlier.

Case q > 0. We denote by I jk , 0≤ j1 < j2 < · · ·< jq ≤ p the intervals containing at least one outlier and by N jk the number of
outliers in I jk . We set

µ=
1
q

q
∑

k=1

N jk , σ =

√

√

√1
q

q
∑

k=1

(N jk −µ)2.

As well-known, the standard deviation σ tells us the typical amount by which the values {N jℓ} deviate from their average value µ.
We define

R= {r jℓ : ℓ= 1, . . . , q ∧ N jℓ > µ+σ},

and we set

r⋆opt =

�

minR if R ̸= ;,
2m− 2 if R= ;.

By the nature of the constrained mock-Chebyshev least-squares interpolation [4, 7], the case r⋆opt < 2m− 2 frequently occurs
as soon as the exact relative error Er⋆opt

[ f ] is near to the machine precision already for values of r ≪ 2m− 2. In such cases, by
increasing the degree of the regression r ≥ r⋆opt , it is also possible that the exact relative error Er[ f ] became worse. In fact, as r

approaches to n, the polynomial P̂r,n[ f ](x) tends to the polynomial interpolant on the set of nodes Xn, P̂n,n[ f ](x), which in its
turn, can suffer the Runge phenomenon. If R ̸= ;, from the definition of r⋆opt , we expect a not increasing trend of significant data

Êr1
[ f ], . . . , Êr⋆opt

[ f ] if r⋆opt > r1 or a non decreasing trend of the significant data Êr⋆opt
[ f ], . . . , Êp[ f ] if r⋆opt = r1. If R= ; nothing

can be said on the trend of the significant data.

Case q = 0. We set r⋆opt = 2m− 2. In this case nothing can be said on the trend of the significant data.

We are now able to determine a value r⋆opt of the degree of regression which produces more accurate quadrature formulas.
The accuracy of Q r⋆opt ,n[ f ] will depend on the quality of approximation of the constrained mock-Chebyshev least-squares to the
function f . We distinguish the following cases:
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• if r⋆opt = r1, we use a linear regression l(r) to model the trend of the data

{log10(Êr⋆opt
[ f ]), . . . , log10(Êrp

[ f ])}

and we set
r⋆opt = rk,

where
log10(Êrk

) = min
s∈{1,...,p}

{log10(Êrs
) : log10(Êrs

)− l(rs)≥ 0};

• if r⋆opt = r j with j = 2, . . . , p− 1, then if log10(Êr j
)− log10(Êr j+1

)> δ, we set r⋆opt = r j+1, else we use a linear regression l(r)
to model the trend of the data

{log10(Êr1
[ f ]), . . . , log10(Êr⋆opt

[ f ])}

and we set
r⋆opt = rk,

where
log10(Êrk

) = min
s∈{1,..., j}

{log10(Êrs
) : log10(Êrs

)− l(rs)≥ 0};

• if r⋆opt = rp, we use a linear regression l(r) to model the trend of the data

{log10(Êr1
[ f ]), . . . , log10(Êr⋆opt

[ f ])}

and we set
r⋆opt = rk,

where
log10(Êrk

) = min
s∈{1,..., j}

{log10(Êrs
) : log10(Êrs

)− l(rs)≥ 0}.

Algorithm 3 Adaptive algorithm for determining a quadrature formulas with high degree of exactness and accuracy from
equispaced nodes

Require: Xn = [x0, . . . , xn]T , f = [ f0, . . . , fn]T

Ensure: Q̂ r⋆opt ,n[ f ]
1: Compute m
2: Compute the mock-Chebyshev subset X ′m
3: Compute X ′′n−m = Xn \X ′m
4: Set Xn = [X ′m,X ′′n−m]
5: Compute the Gauss–Christoffel nodes and weights of order m
6: for r = m : 2m− 1 do
7: Compute P̂r,n[ f ]
8: Compute Q̂ r,n[ f ]
9: end for

10: Compute the approximate relative errors Êm[ f ], . . . , Ê2m−2[ f ]
11: Run Algorithm 1
12: Run Algorithm 2
13: Compute r⋆opt

Computational cost

We determine the computational cost of the Algorithm 3 described above. The computational cost of m = ⌊π
p

n/
p

2⌋ is negligible.
By using the procedure proposed in [1], the selection of the mock-Chebyshev subset from the uniform grid Xn requires about
O(mn) flops. The reordering of the set Xn involves a searching algorithm for the computation of the set X ′′n−m, whose computational
cost is O(m log(n)) flops. Gauss-Christoffel nodes and weights can be computed through the Chebfun package [13]. The function

legpts to compute Legendre nodes and weights, used in the numerical experiments, requires O
�

m(log m)2

log(log m)

�

flops. For each

r ∈ [m, 2m− 1], the computation of the coefficients of the polynomial P̂r,n[ f ] through the Lagrange multipliers method [7]
requires O(m2n) flops for the construction of the KKT matrix and O(m3) for the solution of the linear system through the QR
factorization [2]. In passing from r to r + 1 the new KKT matrix can be obtained from the previous one by a negligible cost, and
then the computational cost for computing P̂r,n[ f ], r = m, . . . , 2m− 1, is still O(m2n). Since Q̂ r,n[ f ] can be computed by O(m2)
flops, then the total cost of the for loop is O(m2n) flops. The tolerance is computed through the Algorithm 1 and the detection of
the outliers is made by using the Algorithm 2, which both require O(m) flops. Finally, we determine the degree of regression
r⋆opt , which produces accurate quadrature formulas, by using the procedure described in the Section 2. In its turn this procedure
requires O(n) flops. Since m=O(

p
n), the computational cost of the Algorithm 3 is O(n2) flops.
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3 Computing accurate cubature formulas with high degree of exactness from regular grids
of nodes

Let f (x , y) be a sufficiently regular function in the square [−1, 1]2 and let Xnx
×Yny

be the grid of (nx +1)× (ny +1) equispaced

points in the same domain. In analogy with the univariate case, we set mx = ⌊π
p

nx/
p

2⌋, my = ⌊π
p

ny/
p

2⌋ and we fix
rx ,y = (rx , ry) ∈ N×N such that mx ≤ rx ≤ nx and my ≤ ry ≤ ny . We denote by

P̂rx ,y
[ f ] := P̂(rx ,ry ),(nx ,ny )[ f ], (12)

the tensor product extension of the polynominal P̂r,n[ f ] and we consider the quadrature formulas

I[ f ] :=

∫ 1

−1

∫ 1

−1

w(s, t) f (s, t)dsd t ≈
mx
∑

i=1

my
∑

j=1

wiκ j f (ξi ,η j)

≈
mx
∑

i=1

my
∑

j=1

wiκ j P̂rx ,y
(ξi ,η j) =: Q̂ rx ,y

[ f ],

(13)

where ξ1, . . . ,ξmx
and η1, . . . ,ηmy

are nodes of a Gaussian quadrature formula with weights w1, . . . , wmx
and κ1, . . . ,κmy

of order
mx and my , respectively. For a matter of simplicity, we restrict to the case nx = ny = n, then mx = my = m, and we consider the
family of quadrature formulas

Q̂(r,r)[ f ], m≤ r ≤ 2m− 1, (14)

and the approximate relative errors

Êr[ f ] =

�

�Q̂(r+1,r+1)[ f ]− Q̂(r,r)[ f ]
�

�

�

�Q̂(r,r)[ f ]
�

�

, m≤ r ≤ 2m− 1. (15)

In analogy to the univariate case, by using the Algorithm 3, it is possible to determine a value r⋆opt of the degree of regression
which produces accurate quadrature formulas.

4 Numerical experiments

4.1 Univariate case

In this Section, we compute the approximation of the integral (1) by using the quadrature formula (7) with r = r⋆opt , where the

polynomial P̂r⋆opt ,n[ f ] is expressed in the Chebyshev basis BC . To this aim, we consider the grid of 1001 equispaced nodes in
[−1, 1], that is n= 1000, m= 70. The experiments are performed on the following functions

f1(x) =
1

1+ 8x2
, f2(x) =

1
1+ 25x2

, f3(x) =
1

((x + 1)4 + (2/50)2)
,

f4(x) = e−x2
, f5(x) =

1

x4 + (
p

26
5 − 1)x2 + ( 13

50 )2
, f6(x) =

1
x + 1.01

,

by using th Gauss–Legendre weight w(x) = 1.
In Table 1, from left to right, we compare the relative errors obtained by applying the trapezoidal composite rule (ET ),

the Cavalieri–Simpson composite rule (ECS), the quadrature formula proposed in [16] with s = 6 (EM ), the constrained mock-
Chebyshev least squares quadrature formula proposed in [8] a (EMC ) and the proposed here quadrature formula (Er⋆opt

). To
appreciate the accuracy of the estimate of the exact relative error, obtained through the Algorithm 3, in the last column we report
also Êr⋆opt

. To show the efficacy of the Algorithm 3 in computing the optimal regression degree r⋆opt , in Figures 4-9 we display the
sequences of exact relative errors, approximate relative errors (with discarded outliers, in red) and the regression line of the
significant data, for all test functions.

4.2 Bivariate case

We consider the grid of 151× 151 equispaced nodes in [−1,1]2, that is nx = ny = 150, mx = my = 27. The experiments are
perfomed by using the Gauss–Legendre weight and the well-known Franke’s function

f (x , y) = 0.75 exp
�

−
(9(x + 1)/2− 2)2

4
−
(9(y + 1)/2− 2)2

4

�

+0.75 exp
�

−
(9(x + 1)/2+ 1)2

49
−
(9(y + 1)/2+ 1)

10

�

+0.5 exp
�

−
(9(x + 1)/2− 7)2

4
−
(9(y + 1)/2− 3)2

4

�

−0.2 exp
�

−(9(x + 1)/2− 4)2 − (9(y + 1)/2− 7)2
�

,
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ET ECS EM EMC Er⋆opt
Êr⋆opt

f1(x) 1.33e-04 8.88e-10 7.84e-13 2.55e-16 0 2.55e-16
f2(x) 8.97e-08 1.51e-14 1.02e-12 1.39e-10 4.13e-12 1.98e-12
f3(x) 3.00e-10 4.09e-16 1.06e-10 3.75e-13 1.59e-14 6.34e-15
f4(x) 3.28e-07 8.77e-15 4.44e-16 5.94e-16 5.94e-16 2.97e-16
f5(x) 1.44e-07 5.41e-14 1.24e-13 2.24e-16 7.86e-16 8.99e-16
f6(x) 6.26e-04 6.14e-07 1.52e-06 1.67e-07 8.81e-09 9.26e-10

Table 1: Comparisons among the relative errors in trapezoidal composite rule (ET ), Cavalieri–Simpson composite rule (ECS), quadrature formula
proposed in [16] (EM ), quadrature formula through the constrained mock-Chebyshev interpolant with optimal degree (Er⋆opt

) and the approximate

relative error obtained through Algorithm 3 (Êr⋆opt
).
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Figure 4: From left to right. Exact relative errors, approximate relative errors (•) with discarded outliers (◦) and regression line of the significant
data for the function f1(x).
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Figure 5: From left to right. Exact relative errors, approximate relative errors (•) with discarded outliers (◦) and regression line of the significant
data for the function f2(x).
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Figure 6: From left to right. Exact relative errors, approximate relative errors (•) with discarded outliers (◦) and regression line of the significant
data for the function f3(x).
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Figure 7: From left to right. Exact relative errors, approximate relative errors (•) with discarded outliers (◦) and regression line of the significant
data for the function f4(x).
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Figure 8: From left to right. Exact relative errors, approximate relative errors (•) with discarded outliers (◦) and regression line of the significant
data for the function f5(x).
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Figure 9: From left to right. Exact relative errors, approximate relative errors (•) with discarded outliers (◦) and regression line of the significant
data for the function f6(x).
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ET ECS Er⋆opt
Êr⋆opt

f (x , y) 2.30e-05 1.71e-10 4.69e-12 2.46e-11

Table 2: Comparisons among the relative errors in trapezoidal composite rule (ET ), Cavalieri–Simpson composite rule (ECS), cubature formulas
through the constrained mock-Chebyshev tensor product interpolant with optimal degree (Er⋆opt

) and approximate relative error obtained through

Algorithm 3 (Êr⋆opt
).

where the polynomial P̂rx ,y
[ f ] is expressed in the tensor product Chebyshev basis BC⊗BC . In Table 2, from left to right, we compare

the relative errors obtained by applying the tensor product trapezoidal composite rule (ET ), the tensor product Cavalieri–Simpson
composite rule (ECS) and the proposed here quadrature formula (Er⋆opt

). To appreciate the accuracy of the estimate of the exact

relative error, obtained through the Algorithm 3, in the last column we report also Êr⋆opt
.

5 Conclusions
In this paper, we have developed an adaptive algorithm for determining accurate quadrature formulas with high degree of
exactness from n+ 1 equispaced nodes in the interval [−1,1]. Starting from the mock-Chebyshev interpolant of an analytic
function f (x), the increasing of the degree p of the simultaneous regression allows us to generate a family of quadrature formulas,
with increasing degree of exactness r = m+ p. Infact, we approximate, in a Gauss–Cristoffel quadrature rule with m nodes,
the values of f (x) at the Legendre nodes of order m = ⌊π

p
n/
p

2⌋ through the constrained mock-Chebyshev least-squares
approximant. A data cleanup strategy and a linear regression on the significant relative errors allow us to determine the “optimal"
degree of regression to obtain quadrature formulas as much accurate as possible. The procedure is generalized to obtain cubature
formulas on the square [−1,1]2 through the constrained mock-Chebyshev least-squares tensor product interpolation.
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