Almost lacunary strong (D, μ)- convergence of order α

Ekrem Savaş ${ }^{a}$
Communicated by Stefano De Marchi

Abstract

In this paper we present a new almost strong sequence space of order α generated by real matrix D and also we examine some properties of this sequence space.

1 Introduction and Background

Let s denote the set of all real and complex sequences $\xi=\left(\xi_{k}\right)$. By l_{∞} and c, we denote the Banach spaces of bounded and convergent sequences $\xi=\left(\xi_{k}\right)$ normed by $\|\xi\|=\sup _{n}\left|\xi_{n}\right|$, respectively. We now quote the definition of Banach limits.

A Banach limit is a functional (see, Banach [1]) $L: l_{\infty} \rightarrow R$ which satisfies the following properties:

1. $L(\xi) \geq 0$ if $n \geq 0$ (i.e. $\xi_{n} \geq 0$ for all n),
2. $L(e)=1$ where $e=(1,1, \ldots)$,
3. $L(S \xi)=L(\xi)$,
where S denotes the shift operator on l_{∞}, that is, $S: l_{\infty} \rightarrow l_{\infty}$ defined by $S\left(\xi_{n}\right)=\left\{\xi_{n+1}\right\}$.
Let B be the set of all Banach limits on l_{∞}. A sequence $\xi \in \ell_{\infty}$ is said to be almost convergent if all Banach limits of ξ coincide. Let \hat{c} denote the space of almost convergent sequences. Lorentz [5] has shown that

$$
\hat{c}=\left\{\xi \in l_{\infty}: \lim _{m} t_{m, n}(\xi) \text { exists uniformly in } n\right\}
$$

where

$$
t_{m, n}(\xi)=\frac{\xi_{n}+\xi_{n+1}+\xi_{n+2}+\cdots+\xi_{n+m}}{m+1}
$$

By a lacunary $\theta=\left(k_{r}\right) ; r=0,1,2, \ldots$ where $k_{0}=0$, we shall mean an increasing sequence of non-negative integers with $k_{r}-k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. The intervals determined by θ will be denoted by $I_{r}=\left(k_{r-1}, k_{r}\right]$ and $h_{r}=k_{r}-k_{r-1}$. Freedman at al [4] defined the space of lacunary strongly convergent sequences N_{θ} as follows:

$$
N_{\theta}=\left\{\xi=\left(\xi_{k}\right): \lim _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left|\xi_{k}-L\right|=0, \text { for some } L\right\} .
$$

There is a strong connection between N_{θ} and the space w of strongly Cesàro summable sequences which is defined by, (see, Maddox [8])

$$
w=\left\{\xi=\left(\xi_{k}\right): \lim _{n} \frac{1}{n} \sum_{k=0}^{n}\left|\xi_{k}-L\right|=0, \text { for some } L\right\} .
$$

In the special case where $\theta=\left(2^{r}\right)$, we have $N_{\theta}=w$.
The space $A C_{\theta}$ of lacunary almost convergent sequences and the space $\left|A C_{\theta}\right|$ of lacunary strongly almost convergent sequences were introduced by Das and Mishra[3] as follows:

$$
A C_{\theta}=\left\{\xi=\left(\xi_{k}\right): \lim _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left(\xi_{k+i}-L\right)=0 \text {, for some } L \text { uniformly in } i\right\} .
$$

[^0]and
$$
\left|A C_{\theta}\right|=\left\{\xi=\left(\xi_{k}\right): \lim _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left|\xi_{k+i}-L\right|=0 \text {, for some } L \text { uniformly in } i\right\} .
$$

Note that in the special case where $\theta=2^{r}$, we have $A C_{\theta}=\hat{c}$ and $\left|A C_{\theta}\right|=[\hat{c}]$. which is defined by Maddox [6].

A modulus function ψ is a function from $[0, \infty)$ to $[0, \infty)$ such that
(i) $\psi(\xi)=0$ if and only if $\xi=0$,
(ii) $\psi(\xi+\rho) \leq \psi(\xi)+\psi(\rho)$ for all $\xi, \rho \geq 0$,
(iii) ψ increasing,
(iv) ψ is continuous from the right at zero.

Since $|\psi(\xi)-\psi(\rho)| \leq \psi(|\xi-\rho|)$, it follows from condition (iv) that ψ is continuous on $[0, \infty)$.
Ruckle [10] used the idea of a modulus function ψ to construct a class of FK spaces

$$
L(\psi)=\left\{\xi=\left(\xi_{k}\right): \sum_{k=1}^{\infty} \psi\left(\left|\xi_{k}\right|\right)<\infty\right\}
$$

The space $L(\psi)$ is closely related to the space l_{1} which is an $L(\psi)$ space with $\psi(\xi)=\xi$ for all real $\xi \geq 0$.
Maddox [7] generalized the well-known spaces w_{0}, w and w_{∞} of strongly summable by introducing some properties of the sequence spaces $w_{0}(\psi), w(\psi)$ and $w_{\infty}(\psi)$ using a modulus ψ.

In 1999, E. Savas [11] defined the class of sequences which are strongly almost Cesàro summable with respect to modulus as follows:

$$
[\hat{c}(\psi, p)]=\left\{\xi: \lim _{n} \frac{1}{n} \sum_{k=1}^{n} \psi\left(\left|\xi_{k+i}-L\right|\right)^{p_{k}}=0, \text { for some } L, \text { uniformly in } i\right\}
$$

and

$$
[\hat{c}(\psi, p)]_{0}=\left\{\xi: \lim _{n} \frac{1}{n} \sum_{k=1}^{n} \psi\left(\left|\xi_{k+i}\right|\right)^{p_{k}}=0, \text { uniformly in } i\right\} .
$$

where $p=\left(p_{k}\right)$ is a sequence of strictly positive real numbers and ψ be a modulus.
By a μ-function we understood a continuous non-decreasing function $\mu(u)$ defined for $u \geq 0$ and such that $\mu(0)=0, \mu(u)>0$, for $u>0$ and $\mu(u) \rightarrow \infty$ as $u \rightarrow \infty$, (see, [12], [13]).

On the other hand in [2] a different direction was given to the study of lacunary statistical convergence of order $\alpha, 0<\alpha \leq 1$ where the notion of lacunary statistical convergence was introduced by replacing h_{r} by h_{r}^{α} in the denominator in the definition of lacunary statistical convergence.

In the present paper, we introduce and study some properties of the following sequence space of order α that is defined using the μ-function and modulus.

2 Main Results

Let μ and ψ be given μ-function and modulus function, respectively and $p=\left(p_{k}\right)$ be a sequence of positive real numbers. Moreover, let $D=\left(d_{n k}\right)(n, k=1,2, \ldots)$ be a real matrix, a lacunary sequence $\theta=\left(k_{r}\right)$ and $0<\alpha \leq 1$ be given. Then we define the following sequence space,

$$
\hat{N}_{\theta}^{\alpha}(D, \mu, \psi, p)_{0}=\left\{\xi=\left(\xi_{k}\right): \lim _{r} \frac{1}{h_{r}^{\alpha}} \sum_{n \in I_{r}} \psi\left(\left|\sum_{k=1}^{\infty} d_{n k} \mu\left(\left|\xi_{k+i}\right|\right)\right|\right)^{p_{k}}=0, \text { uniformly in } i\right\},
$$

where h_{r}^{α} denote the α th power $\left(h_{r}\right)^{\alpha}$ of h_{r}, that is $h^{\alpha}=\left(h_{r}^{\alpha}\right)=\left(h_{1}^{\alpha}, h_{2}^{\alpha}, h_{3}^{\alpha}, \ldots.\right)$.
If $\xi \in \hat{N}_{\theta}^{\alpha}(D, \mu, \psi)_{0}$, the sequence ξ is said to be lacunary strong (D, μ) - almost convergent of order α to zero with respect to a modulus ψ. When $\mu(\xi)=\xi$ for all ξ, we obtain

$$
\hat{N}_{\theta}^{\alpha}(D, \psi, p)_{0}=\left\{\xi=\left(\xi_{k}\right): \lim _{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} \psi\left(\left|\sum_{k=1}^{\infty} d_{n k}\left(\left|\xi_{k+i}\right|\right)\right|\right)^{p_{k}}=0, \text { uniformly in } i\right\} .
$$

If we take $\psi(\xi)=\xi$, we write

$$
\hat{N}_{\theta}^{\alpha}(D, \mu, p)_{0}=\left\{\xi=\left(\xi_{k}\right): \lim _{r} \frac{1}{h_{r}} \sum_{n \in I_{r}}\left|\sum_{k=1}^{\infty} d_{n k} \mu\left(\left|\xi_{k+i}\right|\right)\right|^{p_{k}}=0, \text { uniformly in } i\right\} .
$$

If we take $p_{k}=p$, for all k, we have

$$
\hat{N}_{\theta}^{\alpha}(D, \mu, \psi)_{0}=\left\{\xi=\left(\xi_{k}\right): \lim _{r} \frac{1}{h_{r}^{\alpha}} \sum_{n \in I_{r}} f\left(\left|\sum_{k=1}^{\infty} d_{n k} \mu\left(\left|\xi_{k+i}\right|\right)\right|\right)^{p}=0, \text { uniformly in } i\right\}
$$

If we take $D=I$ and $\mu(\xi)=\xi$ respectively, then we have

$$
\left(\hat{N}_{\theta}^{\alpha}\right)_{0}=\left\{\xi=\left(\xi_{k}\right): \lim _{r} \frac{1}{h_{r}^{\alpha}} \sum_{k \in I_{r}} \psi\left(\left|\xi_{k+i}\right|\right)^{p_{k}}=0, \text { uniformly in } i\right\} .
$$

If we define the matrix $D=\left(d_{n k}\right)$ as follows:

$$
d_{n k}:=\left\{\begin{array}{ccc}
\frac{1}{n}, & \text { if } & n \geq k, \\
0, & & \text { otherwise }
\end{array}\right.
$$

then we have,

$$
\hat{N}_{\theta}^{\alpha}(C, \mu, \psi)_{0}=\left\{\xi=\left(\xi_{k}\right): \lim _{r} \frac{1}{h_{r}^{\alpha}} \sum_{n \in I_{r}} \psi\left(\left|\frac{1}{n} \sum_{k=1}^{n} \mu\left(\left|\xi_{k+i}\right|\right)\right|\right)^{p_{k}}=0 \text {, uniformly in } i\right\} .
$$

In the next theorem we establish inclusion relations between $\hat{w}^{\alpha}(D, \mu, \psi, p)$ and $\hat{N}_{\theta}^{\alpha}(D, \mu, \psi, p)_{0}$. We now have
Theorem 2.1. Let ψ be a any modulus function and let μ-function $\mu, p=\left(p_{k}\right)$ be a sequence of positive real numbers, a real matrix D and the sequence θ be given. If

$$
\hat{w}^{\alpha}(D, \mu, \psi, p)_{0}=\left\{\xi=\left(\xi_{k}\right): \lim _{m} \frac{1}{m} \sum_{n=1}^{m} \psi\left(\left|\sum_{k=1}^{\infty} d_{n k} \mu\left(\left|\xi_{k+i}\right|\right)\right|\right)^{p_{k}}=0 \text {, uniformly in } i\right\} .
$$

then the following relations are true:
(a) If $\liminf _{r} q_{r}>1$ then we have $\hat{w}^{\alpha}(D, \mu, \psi, p)_{0} \subseteq \hat{N}_{\theta}^{\alpha}(D, \mu, \psi, p)_{0}$,
(b) If $\sup _{r} q_{r}<\infty$, then we have $\hat{N}_{\theta}^{\alpha}(D, \mu, \psi, p)_{0} \subseteq \hat{w}^{\alpha}(D, \mu, \psi, p)_{0}$,
(c) $1<\liminf _{r} q_{r} \leq \limsup { }_{r} q_{r}<\infty$, then we have $\hat{N}_{\theta}^{\alpha}(D, \mu, \psi, p)_{0}=\hat{w}^{\alpha}(D, \mu, \psi, p)_{0}$.

Proof. (a) Let us suppose that $\xi \in \hat{w}^{\alpha}(D, \mu, \psi, p)$. There exists $\delta>0$ such that $q_{r}>1+\delta$ for all $r \geq 1$ and we have $h_{r} / k_{r} \geq \delta /(1+\delta)$ for sufficiently large r. Then, for all i,

$$
\begin{aligned}
\frac{1}{k_{r}^{\alpha}} \sum_{n=1}^{k_{r}} \psi\left(\left|\sum_{k=1}^{\infty} d_{n k} \mu\left(\left|\xi_{k+i}\right|\right)\right|\right)^{p_{n}} & \\
& \left.\geq \frac{1}{k_{r}^{\alpha}} \sum_{n \in I_{r}} \psi\left|\sum_{k=1}^{\infty} d_{n k} \mu\left(\left|\xi_{k+i}\right|\right)\right|\right)^{p_{n}} \\
& =\frac{h_{r}^{\alpha}}{k_{r}^{\alpha}} \frac{1}{h_{r}^{\alpha}} \sum_{n \in I_{r}} \psi\left(\left|\sum_{k=1}^{\infty} d_{n k} \mu\left(\left|\xi_{k+i}\right|\right)\right|\right)^{p_{n}} \\
& \geq \frac{\delta^{\alpha}}{(1+\delta)^{\alpha}} \frac{1}{h_{r}^{\alpha}} \sum_{n \in I_{r}} \psi\left(\left|\sum_{k=1}^{\infty} d_{n k} \mu\left(\left|\xi_{k+i}\right|\right)\right|\right)^{p_{n}} .
\end{aligned}
$$

Hence, $\xi \in \hat{N}_{\theta}^{\alpha}(D, \mu, \psi, p)_{0}$. (b) If $\limsup _{r} q_{r}<\infty$ then there exist $M>0$ such that $q_{r}<M$ for all $r \geq 1$. Let $\xi \in$ $\hat{N}_{\theta}^{\alpha}(D, \mu, \psi, p)_{0}$ and ε is an arbitrary positive number, then there exists an index j_{0} such that for every $j \geq j_{0}$ and all i,

$$
R_{j}=\frac{1}{h_{j}^{\alpha}} \sum_{n \in I_{r}} \psi\left(\left|\sum_{k=1}^{\infty} d_{n k} \mu\left(\left|\xi_{k+i}\right|\right)\right|\right)^{p_{n}}<\varepsilon .
$$

Thus, we can also find $K>0$ such that $R_{j} \leq K$ for all $j=1,2, \ldots$. Now let m be any integer with $k_{r-1} \leq m \leq k_{r}$, then we obtain, for all i

$$
I=\frac{1}{m^{\alpha}} \sum_{n=1}^{m} \psi\left(\left|\sum_{k=1}^{\infty} d_{n k} \mu\left(\left|\xi_{k}\right|\right)\right|\right)^{p_{n}} \leq \frac{1}{k_{r-1}^{\alpha}} \sum_{n=1}^{k_{r}} \psi\left(\left|\sum_{k=1}^{\infty} d_{n k} \mu\left(\left|\xi_{k+i}\right|\right)\right|\right)^{p_{n}}=I_{1}+I_{2}
$$

where

$$
\begin{aligned}
& I_{1}=\frac{1}{k_{r-1}^{\alpha}} \sum_{j=1}^{j_{0}} \sum_{n \in I_{j}} \psi\left(\left|\sum_{k=1}^{\infty} d_{n k} \mu\left(\left|\xi_{k+i}\right|\right)\right|\right)^{p_{n}} \\
& I_{2}=\frac{1}{k_{r-1}^{\alpha}} \sum_{j=j_{0+1}}^{m} \sum_{n \in I_{j}} \psi\left(\left|\sum_{k=1}^{\infty} d_{n k} \mu\left(\left|\xi_{k+i}\right|\right)\right|\right)^{p_{n}}
\end{aligned}
$$

It is easy to see that,

$$
\begin{aligned}
I_{1} & =\frac{1}{k_{r-1}^{\alpha}} \sum_{j=1}^{j_{0}} \sum_{n \in I_{j}} \psi\left(\left|\sum_{k=1}^{\infty} d_{n k} \mu\left(\left|\xi_{k+i}\right|\right)\right|\right)^{p_{n}} \\
& =\frac{1}{k_{r-1}^{\alpha}}\left(\sum_{n \in I_{1}} \psi\left(\left|\sum_{k=1}^{\infty} d_{n k} \mu\left(\left|\xi_{k+i}\right|\right)\right|\right)^{p_{n}}+\ldots+\sum_{n \in I_{j 0}} \psi\left(\left|\sum_{k=1}^{\infty} d_{n k} \mu\left(\left|\xi_{k+i}\right|\right)\right|\right)^{p_{n}}\right. \\
& \leq \frac{1}{k_{r-1}^{\alpha}}\left(h_{1} R_{1}+\ldots+h_{j_{0}} R_{j_{0}}\right), \\
& \leq \frac{1}{k_{r-1}^{\alpha}} j_{0} k_{j_{0}}^{\alpha} \sup _{1 \leq i \leq j_{0}} R_{i}, \\
& \leq \frac{j_{0} k_{j_{0}}^{\alpha}}{k_{r-1}^{\alpha}} K .
\end{aligned}
$$

Moreover, we have for all i

$$
\begin{aligned}
I_{2} & =\frac{1}{k_{r-1}^{\alpha}} \sum_{j=j_{o}+1}^{m} \sum_{n \in I_{j}} \psi\left(\left|\sum_{k=1}^{\infty} d_{n k} \mu\left(\left|\xi_{k+i}\right|\right)\right|\right)^{p_{n}} \\
& =\frac{1}{k_{r-1}^{\alpha}} \sum_{j=j_{o}+1}^{m}\left(\frac{1}{h_{j}} \sum_{n \in I_{j}} \psi\left(\left|\sum_{k=1}^{\infty} d_{n k} \mu\left(\left|\xi_{k+i}\right|\right)\right|\right)^{p_{n}} h_{j}\right. \\
& \leq \varepsilon \frac{1}{k_{r-1}^{\alpha}} \sum_{j=j_{0}+1}^{m} h_{j} \\
& \leq \varepsilon \frac{k_{r}^{\alpha}}{k_{r-1}^{\alpha}} \\
& =\varepsilon q_{r}^{\alpha}<\varepsilon . M .
\end{aligned}
$$

Thus $I \leq \frac{j_{0} k_{j o}^{a}}{k_{r-1}^{\alpha}} K+\varepsilon . M$. Finally, $\xi \in \hat{w}^{\alpha}(D, \mu, \psi, p)$.
The proof of (c) follows from (a) and (b). This completes the proof.
Theorem 2.2. Let $0<\alpha \leq \beta \leq 1$ and p be a positive real number, then $\hat{N}_{\theta}^{\alpha}(D, \mu, \psi)_{0} \subseteq \hat{N}_{\theta}^{\beta}(D, \mu, \psi)_{0}$.
Proof. Let $\xi=\left(\xi_{k}\right) \in \hat{N}_{\theta}^{\alpha}(D, \mu, \psi)_{0}$. Then given α and β such that $<\alpha \leq \beta \leq 1$ and a positive real number p, we write

$$
\frac{1}{h_{r}^{\beta}} \sum_{n \in I_{r}} \psi\left(\left|\sum_{k=1}^{\infty} d_{n k} \mu\left(\left|\xi_{k+i}\right|\right)\right|\right)^{p} \leq \frac{1}{h_{r}^{\alpha}} \sum_{n \in I_{r}} \psi\left(\left|\sum_{k=1}^{\infty} d_{n k} \mu\left(\left|\xi_{k+i}\right|\right)\right|\right)^{p}
$$

and we get that $\hat{N}_{\theta}^{\alpha}(D, \mu, \psi)_{0} \subseteq \hat{N}_{\theta}^{\beta}(D, \mu, \psi)_{0}$.
The proof of the following result is a consequence of Theorem 2.2.
Corollary 2.3. Let $0<\alpha \leq \beta \leq 1$ and p be a positive real number. Then
i) If $\alpha=\beta$, then $\hat{N}_{\theta}^{\alpha}(D, \mu, \psi)_{0}=\hat{N}_{\theta}^{\beta}(D, \mu, \psi)_{0}$.
ii) $\hat{N}_{\theta}^{\alpha}(D, \mu, \psi)_{0} \subseteq \hat{N}_{\theta}(D, \mu, \psi)_{0}$ for each $\alpha \in(0,1]$ and $0<p<\infty$.

References

[1] S. Banach. Theorie des Operations linearies, Warszawa. 1932.
2] H. Sengul and M. Et. On lacunary statistical converegnec of order α. Acta Math. Scienta, 34B(2):473-482, 2014.
3] G. Das and S. K. Mishra. Banach limits and lacunary strong almost convergence. J. Orissa Math. Soc., 2(2):61-70, 1983
[4] A. R. Freedman, J.J.Sember, M.Raphel. Some Cesaro-type summability spaces. Proc. London Math. Soc. 37:508-520, 1978 .
[5] G. G. Lorentz. A contribution to the theory of divergent sequences. Acta. Math., 80:167-190, 1948.
[6] I. J. Maddox. Spaces of strongly summable sequences. Quart. J. Math., 18:345-355, 1967.
[7] I. J. Maddox. Sequence spaces defined by a modulus. Math. Proc. Camb. Philos. Soc., 100:161-166, 1986.
[8] I. J. Maddox. A new type of convergence. Math. Proc. Camb. Philos. Soc., 83(1):61-64, 1978.
[9] F. Nuray and E. Savas. Some new sequence spaces defined by a modulus funcion. Indian J. Pure. Appl. Math., 24(11):657-663, 1993.
[10] W. H. Ruckle. FK Spaces in which the sequence of coordinate vectors in bounded. Canad. J. Math., 25:973-978 1973.
[11] E. Savaş. On some generalized sequence spaces defined by a modulus. Indian J. Pur. Appl. Math. 30(5):459-464, 1999.
[12] E. Savaş. On some new sequence spaces defined by infinite matrix and modulus. Advances in Difference Equations 2013, 2013:274 doi:10.1186/1687-1847-2013-274.
[13] A. Waszak. On the strong convergence in sequence spaces, Fasciculi Math., 33:125-137, 2002.

[^0]: ${ }^{a}$ Department of Mathematics, Uşak University, Turkey, ekremsavas@yahoo.com

