

Dolomites Research Notes on Approximation

Special Issue ICOMSS'22, Volume 16 · 2023 · Pages 52-56

Almost lacunary strong (**D**, μ)- convergence of order α

Ekrem Savaş^a

Communicated by Stefano De Marchi

Abstract

In this paper we present a new almost strong sequence space of order α generated by real matrix *D* and also we examine some properties of this sequence space.

1 Introduction and Background

Let *s* denote the set of all real and complex sequences $\xi = (\xi_k)$. By l_{∞} and *c*, we denote the Banach spaces of bounded and convergent sequences $\xi = (\xi_k)$ normed by $||\xi|| = \sup_n |\xi_n|$, respectively. We now quote the definition of Banach limits.

A Banach limit is a functional (see, Banach [1]) $L: l_{\infty} \to R$ which satisfies the following properties:

- 1. $L(\xi) \ge 0$ if $n \ge 0$ (i.e. $\xi_n \ge 0$ for all n),
- 2. L(e) = 1 where e = (1, 1, ...),
- 3. $L(S\xi) = L(\xi)$,

where *S* denotes the shift operator on l_{∞} , that is, $S : l_{\infty} \to l_{\infty}$ defined by $S(\xi_n) = \{\xi_{n+1}\}$. Let *B* be the set of all Banach limits on l_{∞} . A sequence $\xi \in \ell_{\infty}$ is said to be almost convergent if all Banach limits of ξ coincide. Let \hat{c} denote the space of almost convergent sequences. Lorentz [5] has shown that

$$\hat{c} = \left\{ \xi \in l_{\infty} : \lim_{m} t_{m,n}(\xi) \text{ exists uniformly in } n \right\}$$

where

$$t_{m,n}(\xi) = \frac{\xi_n + \xi_{n+1} + \xi_{n+2} + \dots + \xi_{n+m}}{m+1}$$

By a lacunary $\theta = (k_r)$; r = 0, 1, 2, ... where $k_0 = 0$, we shall mean an increasing sequence of non-negative integers with $k_r - k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. The intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$ and $h_r = k_r - k_{r-1}$. Freedman at al [4] defined the space of lacunary strongly convergent sequences N_{θ} as follows:

$$N_{\theta} = \left\{ \xi = (\xi_k) : \lim_{r} \frac{1}{h_r} \sum_{k \in I_r} |\xi_k - L| = 0, \text{ for some } L \right\}.$$

There is a strong connection between N_{θ} and the space *w* of strongly Cesàro summable sequences which is defined by, (see, Maddox [8])

$$w = \left\{ \xi = (\xi_k) : \lim_{n} \frac{1}{n} \sum_{k=0}^{n} |\xi_k - L| = 0, \text{ for some } L \right\}.$$

In the special case where $\theta = (2^r)$, we have $N_{\theta} = w$.

The space AC_{θ} of lacunary almost convergent sequences and the space $|AC_{\theta}|$ of lacunary strongly almost convergent sequences were introduced by Das and Mishra[3] as follows:

$$AC_{\theta} = \left\{ \xi = (\xi_k) : \lim_{r} \frac{1}{h_r} \sum_{k \in I_r} (\xi_{k+i} - L) = 0, \text{ for some } L \text{ uniformly in } i \right\}.$$

^aDepartment of Mathematics, Uşak University, Turkey, ekremsavas@yahoo.com

and

$$|AC_{\theta}| = \left\{ \xi = (\xi_k) : \lim_{r} \frac{1}{h_r} \sum_{k \in I_r} |\xi_{k+i} - L| = 0, \text{ for some } L \text{ uniformly in } i \right\}.$$

Note that in the special case where $\theta = 2^r$, we have $AC_{\theta} = \hat{c}$ and $|AC_{\theta}| = [\hat{c}]$. which is defined by Maddox [6].

A modulus function ψ is a function from $[0, \infty)$ to $[0, \infty)$ such that

- (i) $\psi(\xi) = 0$ if and only if $\xi = 0$,
- (ii) $\psi(\xi + \rho) \le \psi(\xi) + \psi(\rho)$ for all $\xi, \rho \ge 0$,
- (iii) ψ increasing,
- (iv) ψ is continuous from the right at zero.

Since $|\psi(\xi) - \psi(\rho)| \le \psi(|\xi - \rho|)$, it follows from condition (*iv*) that ψ is continuous on $[0, \infty)$. Ruckle [10] used the idea of a modulus function ψ to construct a class of FK spaces

$$L(\psi) = \left\{ \xi = (\xi_k) : \sum_{k=1}^{\infty} \psi(|\xi_k|) < \infty \right\}$$

The space $L(\psi)$ is closely related to the space l_1 which is an $L(\psi)$ space with $\psi(\xi) = \xi$ for all real $\xi \ge 0$.

Maddox [7] generalized the well-known spaces w_0 , w and w_∞ of strongly summable by introducing some properties of the sequence spaces $w_0(\psi)$, $w(\psi)$ and $w_\infty(\psi)$ using a modulus ψ .

In 1999, E. Savas [11] defined the class of sequences which are strongly almost Cesàro summable with respect to modulus as follows:

$$[\hat{c}(\psi,p)] = \left\{ \xi : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \psi(|\xi_{k+i} - L|)^{p_k} = 0, \text{ for some L, uniformly in } i \right\}$$

and

$$[\hat{c}(\psi,p)]_0 = \left\{ \xi : lim_n \frac{1}{n} \sum_{k=1}^n \psi(|\xi_{k+i}|)^{p_k} = 0, \text{ uniformly in } i \right\}.$$

where $p = (p_k)$ is a sequence of strictly positive real numbers and ψ be a modulus.

By a μ -function we understood a continuous non-decreasing function $\mu(u)$ defined for $u \ge 0$ and such that $\mu(0) = 0, \mu(u) > 0$, for u > 0 and $\mu(u) \to \infty$ as $u \to \infty$, (see, [12], [13]).

On the other hand in [2] a different direction was given to the study of lacunary statistical convergence of order α , $0 < \alpha \le 1$ where the notion of lacunary statistical convergence was introduced by replacing h_r by h_r^{α} in the denominator in the definition of lacunary statistical convergence.

In the present paper, we introduce and study some properties of the following sequence space of order α that is defined using the μ - function and modulus.

2 Main Results

Let μ and ψ be given μ -function and modulus function, respectively and $p = (p_k)$ be a sequence of positive real numbers. Moreover, let $D = (d_{nk})(n, k = 1, 2, ...)$ be a real matrix, a lacunary sequence $\theta = (k_r)$ and $0 < \alpha \le 1$ be given. Then we define the following sequence space,

$$\hat{N}^{\alpha}_{\theta}(D,\mu,\psi,p)_{0} = \left\{ \xi = (\xi_{k}) : \lim_{r} \frac{1}{h_{r}^{\alpha}} \sum_{n \in I_{r}} \psi \left(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \right)^{p_{k}} = 0, \text{ uniformly in } i \right\},$$

where h_r^a denote the α th power $(h_r)^a$ of h_r , that is $h^a = (h_r^a) = (h_1^a, h_2^a, h_3^a, ...)$.

If $\xi \in \hat{N}^{\alpha}_{\theta}(D, \mu, \psi)_0$, the sequence ξ is said to be lacunary strong (D, μ) - almost convergent of order α to zero with respect to a modulus ψ . When $\mu(\xi) = \xi$ for all ξ , we obtain

$$\hat{N}^{\alpha}_{\theta}(D,\psi,p)_{0} = \left\{ \xi = (\xi_{k}) : \lim_{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} \psi(\left| \sum_{k=1}^{\infty} d_{nk}(|\xi_{k+i}|) \right|)^{p_{k}} = 0, \text{ uniformly in } i \right\}.$$

Savaş

$$\hat{N}_{\theta}^{a}(D,\mu,p)_{0} = \left\{ \xi = (\xi_{k}) : \lim_{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} \left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right|^{p_{k}} = 0, \text{ uniformly in } i \right\}.$$

If we take $p_k = p$, for all k, we have

$$\hat{N}^{\alpha}_{\theta}(D,\mu,\psi)_{0} = \left\{ \xi = (\xi_{k}) : \lim_{r} \frac{1}{h^{\alpha}_{r}} \sum_{n \in I_{r}} f\left(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \right)^{p} = 0, \text{ uniformly in } i \right\}$$

If we take D = I and $\mu(\xi) = \xi$ respectively, then we have

$$(\hat{N}_{\theta}^{a})_{0} = \left\{ \xi = (\xi_{k}) : \lim_{r} \frac{1}{h_{r}^{a}} \sum_{k \in I_{r}} \psi(|\xi_{k+i}|)^{p_{k}} = 0, \text{ uniformly in } i \right\}.$$

If we define the matrix $D = (d_{nk})$ as follows:

$$d_{nk} := \begin{cases} \frac{1}{n}, & \text{if } n \ge k, \\ 0, & \text{otherwise.} \end{cases}$$

then we have,

$$\hat{N}^{\alpha}_{\theta}(C,\mu,\psi)_{0} = \left\{ \xi = (\xi_{k}) : \lim_{r} \frac{1}{h^{\alpha}_{r}} \sum_{n \in I_{r}} \psi \left(\left| \frac{1}{n} \sum_{k=1}^{n} \mu(|\xi_{k+i}|) \right| \right)^{p_{k}} = 0, \text{ uniformly in } i \right\}$$

In the next theorem we establish inclusion relations between $\hat{w}^{\alpha}(D,\mu,\psi,p)$ and $\hat{N}^{\alpha}_{\mu}(D,\mu,\psi,p)_0$. We now have

Theorem 2.1. Let ψ be a any modulus function and let μ -function μ , $p = (p_k)$ be a sequence of positive real numbers, a real matrix D and the sequence θ be given. If

$$\hat{w}^{a}(D,\mu,\psi,p)_{0} = \left\{ \xi = (\xi_{k}) : \lim_{m} \frac{1}{m} \sum_{n=1}^{m} \psi \left(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \right)^{p_{k}} = 0, \text{ uniformly in } i \right\}.$$

then the following relations are true :

(a) If $\liminf_r q_r > 1$ then we have $\hat{w}^{\alpha}(D, \mu, \psi, p)_0 \subseteq \hat{N}^{\alpha}_{\theta}(D, \mu, \psi, p)_0$,

(b) If $\sup_r q_r < \infty$, then we have $\hat{N}^{\alpha}_{\theta}(D,\mu,\psi,p)_0 \subseteq \hat{w}^{\alpha}(D,\mu,\psi,p)_0$,

(c) $1 < \liminf_r q_r \le \limsup_r q_r < \infty$, then we have $\hat{N}^a_{\theta}(D, \mu, \psi, p)_0 = \hat{w}^a(D, \mu, \psi, p)_0$.

Proof. (a) Let us suppose that $\xi \in \hat{w}^a(D, \mu, \psi, p)$. There exists $\delta > 0$ such that $q_r > 1 + \delta$ for all $r \ge 1$ and we have $h_r/k_r \ge \delta/(1+\delta)$ for sufficiently large r. Then, for all i,

$$\frac{1}{k_r^{\alpha}} \sum_{n=1}^{k_r} \psi \Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^{p_n} \\ \geq \frac{1}{k_r^{\alpha}} \sum_{n \in I_r} \psi \left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^{p_n} \\ = \frac{h_r^{\alpha}}{k_r^{\alpha}} \frac{1}{h_r^{\alpha}} \sum_{n \in I_r} \psi \Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^{p_n} \\ \geq \frac{\delta^{\alpha}}{(1+\delta)^{\alpha}} \frac{1}{h_r^{\alpha}} \sum_{n \in I_r} \psi \Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^{p_n} \Big)^{p_n}$$

Hence, $\xi \in \hat{N}^{a}_{\theta}(D, \mu, \psi, p)_{0}$. (b) If $\limsup_{r} q_{r} < \infty$ then there exist M > 0 such that $q_{r} < M$ for all $r \ge 1$. Let $\xi \in \hat{N}^{a}_{\theta}(D, \mu, \psi, p)_{0}$ and ε is an arbitrary positive number, then there exists an index j_{0} such that for every $j \ge j_{0}$ and all i,

$$R_j = \frac{1}{h_j^{\alpha}} \sum_{n \in I_r} \psi \Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^{p_n} < \varepsilon.$$

Savaş

Thus, we can also find K > 0 such that $R_j \le K$ for all j = 1, 2, ... Now let *m* be any integer with $k_{r-1} \le m \le k_r$, then we obtain, for all *i*

$$I = \frac{1}{m^{\alpha}} \sum_{n=1}^{m} \psi \left(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k}|) \right| \right)^{p_{n}} \le \frac{1}{k_{r-1}^{\alpha}} \sum_{n=1}^{k_{r}} \psi \left(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \right)^{p_{n}} = I_{1} + I_{2}$$
$$I_{1} = \frac{1}{k_{r-1}^{\alpha}} \sum_{j=1}^{j_{0}} \sum_{n \in I_{j}} \psi \left(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \right)^{p_{n}}$$

$$I_{2} = \frac{1}{k_{r-1}^{\alpha}} \sum_{j=j_{0+1}}^{m} \sum_{n \in I_{j}} \psi\Big(\left|\sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|)\right|\Big)^{p_{n}}$$

It is easy to see that,

where

$$\begin{split} I_{1} &= \frac{1}{k_{r-1}^{\alpha}} \sum_{j=1}^{j_{0}} \sum_{n \in I_{j}} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^{p_{n}} \\ &= \frac{1}{k_{r-1}^{\alpha}} \Big(\sum_{n \in I_{1}} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^{p_{n}} + \ldots + \sum_{n \in I_{j_{0}}} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^{p_{n}} \\ &\leq \frac{1}{k_{r-1}^{\alpha}} (h_{1}R_{1} + \ldots + h_{j_{0}}R_{j_{0}}), \\ &\leq \frac{1}{k_{r-1}^{\alpha}} j_{0}k_{j_{0}}^{\alpha} sup_{1 \leq i \leq j_{0}}R_{i}, \\ &\leq \frac{j_{0}k_{j_{0}}^{\alpha}}{k_{r-1}^{\alpha}} K. \end{split}$$

Moreover, we have for all i

$$\begin{split} I_{2} &= \frac{1}{k_{r-1}^{\alpha}} \sum_{j=j_{0}+1}^{m} \sum_{n \in I_{j}} \psi \Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^{p_{n}} \\ &= \frac{1}{k_{r-1}^{\alpha}} \sum_{j=j_{0}+1}^{m} \Big(\frac{1}{h_{j}} \sum_{n \in I_{j}} \psi \Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^{p_{n}} h_{j} \\ &\leq \varepsilon \frac{1}{k_{r-1}^{\alpha}} \sum_{j=j_{0}+1}^{m} h_{j}, \\ &\leq \varepsilon \frac{k_{r}^{\alpha}}{k_{r-1}^{\alpha}}, \\ &= \varepsilon q_{r}^{\alpha} < \varepsilon . M. \end{split}$$

Thus $I \leq \frac{j_o k_{j_o}^a}{k_{r-1}^a} K + \varepsilon . M$. Finally, $\xi \in \hat{w}^a(D, \mu, \psi, p)$. The proof of (*c*) follows from (*a*) and (*b*). This completes the proof.

Theorem 2.2. Let $0 < \alpha \le \beta \le 1$ and p be a positive real number, then $\hat{N}^{\alpha}_{\theta}(D, \mu, \psi)_0 \subseteq \hat{N}^{\beta}_{\theta}(D, \mu, \psi)_0$.

Proof. Let $\xi = (\xi_k) \in \hat{N}^{\alpha}_{\theta}(D, \mu, \psi)_0$. Then given α and β such that $< \alpha \le \beta \le 1$ and a positive real number p, we write

$$\frac{1}{h_r^{\beta}} \sum_{n \in I_r} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{n \in I_r} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{n \in I_r} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{n \in I_r} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{n \in I_r} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{n \in I_r} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{n \in I_r} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{n \in I_r} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{n \in I_r} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{n \in I_r} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{n \in I_r} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{n \in I_r} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{n \in I_r} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{n \in I_r} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{n \in I_r} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{n \in I_r} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{n \in I_r} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{k=1}^{\infty} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{k=1}^{\infty} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{k=1}^{\infty} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{k=1}^{\infty} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{k=1}^{\infty} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{k=1}^{\infty} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{k=1}^{\infty} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{k=1}^{\infty} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{k=1}^{\infty} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{k=1}^{\infty} \psi\Big(\left| \sum_{k=1}^{\infty} d_{nk} \mu(|\xi_{k+i}|) \right| \Big)^p \le \frac{1}{h_r^{\alpha}} \sum_{k=$$

and we get that $\hat{N}^{\alpha}_{\theta}(D,\mu,\psi)_0 \subseteq \hat{N}^{\beta}_{\theta}(D,\mu,\psi)_0$.

The proof of the following result is a consequence of Theorem 2.2.

Corollary 2.3. Let $0 < \alpha \le \beta \le 1$ and p be a positive real number. Then

i) If
$$\alpha = \beta$$
, then $\hat{N}^{\alpha}_{\theta}(D, \mu, \psi)_0 = \hat{N}^{\beta}_{\theta}(D, \mu, \psi)_0$.

ii) $\hat{N}^{\alpha}_{\theta}(D,\mu,\psi)_0 \subseteq \hat{N}_{\theta}(D,\mu,\psi)_0$ for each $\alpha \in (0,1]$ and 0 .

References

- [1] S. Banach. Theorie des Operations linearies, Warszawa. 1932.
- [2] H. Sengul and M. Et. On lacunary statistical convergence of order α. Acta Math. Scienta, 34B(2):473–482, 2014.
- [3] G. Das and S. K. Mishra. Banach limits and lacunary strong almost convergence. J. Orissa Math. Soc., 2(2):61–70, 1983.
- [4] A. R. Freedman, J.J.Sember, M.Raphel. Some Cesaro-type summability spaces. Proc. London Math. Soc. 37:508–520, 1978 .
- [5] G. G. Lorentz. A contribution to the theory of divergent sequences. Acta. Math., 80:167-190, 1948.
- [6] I. J. Maddox. Spaces of strongly summable sequences. Quart. J. Math., 18:345-355, 1967.
- [7] I. J. Maddox. Sequence spaces defined by a modulus. Math. Proc. Camb. Philos. Soc., 100:161-166, 1986.
- [8] I. J. Maddox. A new type of convergence. Math. Proc. Camb. Philos. Soc., 83(1):61-64, 1978.
- [9] F. Nuray and E. Savas. Some new sequence spaces defined by a modulus function. Indian J. Pure. Appl. Math., 24(11):657–663, 1993.
- [10] W. H. Ruckle. FK Spaces in which the sequence of coordinate vectors in bounded. Canad. J. Math., 25:973–978 1973.
- [11] E. Savaş. On some generalized sequence spaces defined by a modulus. Indian J. Pur. Appl. Math. 30(5):459-464, 1999.
- [12] E. Savaş. On some new sequence spaces defined by infinite matrix and modulus. Advances in Difference Equations 2013, 2013:274 doi:10.1186/1687-1847-2013-274.
- [13] A. Waszak. On the strong convergence in sequence spaces, Fasciculi Math., 33:125–137, 2002.