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DISC: an adaptive numerical Differentiator by local polynomial
Interpolation on multivariate SCattered data*

Francesco Dell’Accio a · Filomena Di Tommaso a · Najoua Siar b · Marco Vianello c

Abstract

We present an adaptive pointwise numerical differentiator on multivariate scattered data, based on local
polynomial interpolation in the Taylor basis at discrete Leja points. We also provide the corresponding
Matlab code for bivariate differentiation and a demo with the computation of first and second partial
derivatives of Franke’s test function.

1 Differentiation via local interpolation on scattered data
In the recent paper [7] we have proposed a multivariate numerical differentiation method, based on local polynomial interpolation
in the Taylor basis at discrete extremal sets [2] extracted from multivariate scattered data. Such an approach, which complements
other techniques that adopt least-square approximation or different function spaces (cf. e.g. [1, 4, 10]), has shown a very good
accuracy on smooth functions with uniform or quasi-uniform samples.

In order to clarify the theoretical foundations, we state the following result that summarizes the relevant error estimates.
In what follows, we shall denote by Pd(Rs) the space of s-variate polynomials with total degree not exceeding d, by Bh(x) the
Euclidean ball of radius h centered at x, by Dα = ∂ α1

x1
· · ·∂ αs

xs
the differentiation operator with multi-index α = (α1, . . . ,αs) of

length |α| = α1 + · · ·+αs, and by C d,1(Ω) the space of C d functions with Lipschitz-continuous derivatives of order d on a convex
body Ω, equipped with the seminorm ∥ f ∥Cd,1(Ω) = sup

¦

|Dα f (u)−Dα f (v)|
∥u−v∥2

: u,v ∈ Ω, u ̸= v, |α|= d
©

. Moreover, we consider the
graded lexicographical ordering of multi-indices.

Theorem 1.1. Let Ω ⊂ Rs be a convex body, x ∈ Ω, f ∈ C d,1(Ω), and pd[y, X ] ∈ Pd(Rs) the interpolating polynomial at a unisolvent
subset X = {x1, . . . ,xmd

} ⊂ Nh = Bh(x) ∩ Ω, where md =
�s+d

s

�

= dim(Pd(Rs)) and y = {yi} = f (X ) = { f (xi)}. Moreover, let
ỹ = { ỹi} be a perturbed sample of f at X , where ∥y − ỹ∥∞ ≤ ϵ.

Then the following pointwise differentiation error estimate holds
�

�

�

�

Dν f (x)− Dνpd[ ỹ , X ](x)

�

�

�

�

≤ λν,h,d(x)

�

sd

(d − 1)!
∥ f ∥Cd,1(Nh) h

d+1 + ϵ

�

, |ν| ≤ d , (1)

λν,h,d(x) = ν1! . . .νs! h−|ν|∥ρν,h,d(x)∥1 ,

where ρν,h,d(x) denotes the row indexed by ν of the inverse Vandermonde matrix (Vd,h(X ))−1, with Vd,h(X ) =
��

xi−x
h

�α�

, 1≤ i ≤ md ,
|α| ≤ d.

For the reader’s convenience we sketch now the proof, that can be found in [7], to which we refer for all the necessary
definitions and full details. For the sake of concision, we adopt the usual notation with multi-indices where factorials and powers
are interpreted as componentwise products, e.g. α!= α1! . . .αs! and xα = xα1

1 . . . xαs
s .

Proof. First, we recall that the interpolating polynomial can be written as

pd[y, X ](x) =
md
∑

i=1

yiℓi(x)

in the Lagrange cardinal basis {ℓi(x)}, and that each ℓi(x) can be written in a scaled Taylor-like basis (originally proposed in [5])
as

ℓi(x) =
∑

|α|≤d

uαi

�

x− x
h

�α
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where {uαi} is the i-th column of the inverse Vandermonde matrix in such a basis. Then,

Dνpd[y, X ](x) =
md
∑

i=1

yi D
νℓi(x) =

md
∑

i=1

yi

∑

α j≥ν j ∀ j

uαi
α!

(α− ν)!
h−|α| (x− x)α−ν ,

so that for any vector η of approximate function values we get the estimate

�

�

�

�

Dνpd[y, X ](x)− Dνpd[η, X ](x)

�

�

�

�

≤
md
∑

i=1

|yi −ηi |
�

�

�

�

Dνℓi(x)

�

�

�

�

=
md
∑

i=1

|yi −ηi |
�

�

�

�

∑

α j≥ν j ∀ j

uαi
α!

(α− ν)!
h−|α| (x− x)α−ν
�

�

�

�

≤ ∥y −η∥∞
md
∑

i=1

�

�

�

�

∑

α j≥ν j ∀ j

uαi
α!

(α− ν)!
h−|α| (x− x)α−ν
�

�

�

�

and in particular for x= x (where only the term of the interior sum with α= ν does not vanish)
�

�

�

�

Dνpd[y, X ](x)− Dνpd[η, X ](x)

�

�

�

�

≤ ∥y −η∥∞ ν!h−|ν|
md
∑

i=1

|uνi | . (2)

In order to estimate the pointwise differentiation error in (1), considering the Taylor polynomial of degree d for f centered at
x, say td(x), and setting τ= {td(xi)}, we can write

�

�

�

�

Dν f (x)− Dνpd[ ỹ , X ](x)

�

�

�

�

≤
�

�

�

�

Dν f (x)− Dν td(x)

�

�

�

�

+

�

�

�

�

Dν td(x)− Dνpd[τ, X ](x)

�

�

�

�

+

�

�

�

�

Dνpd[τ, X ](x)− Dνpd[y, X ](x)

�

�

�

�

+

�

�

�

�

Dνpd[y, X ](x)− Dνpd[ ỹ , X ](x)

�

�

�

�

. (3)

Now, the first summand in (3) vanishes by construction of the Taylor polynomial while the second vanishes since td = pd[τ, X ] (a
polynomial in Pd coincides with its interpolator of the same degree by unisolvency of X ). On the other hand, taking η = ỹ in (2)
we get the following estimate of the fourth summand

�

�

�

�

Dνpd[y, X ](x)− Dνpd[ ỹ , X ](x)

�

�

�

�

≤ ϵ ν!h−|ν|
md
∑

i=1

|uνi | .

Finally, taking η= τ in (2) we can estimate the third summand as
�

�

�

�

Dνpd[τ, X ](x)− Dνpd[y, X ](x)

�

�

�

�

≤max |td(xi)− f (xi)|ν!h−|ν|
md
∑

i=1

|uνi | ,

from which we conclude, by recalling the well-known estimate of the multivariate Taylor formula remainder

|td(x)− f (x)| ≤
sd

(d − 1)!
∥ f ∥Cd,1(Nh) h

d+1 ,

valid for any x in a convex neighborhood of x (cf. [8, 11]). □

It is also worth observing that the approximate derivative with multi-index ν can be conveniently computed as

Dνpd[y, X ](x) = ν!h−|ν|cν ≈ Dν f (x) (4)

where cν is the interpolation coefficient corresponding to
�

x−x
h

�ν
, i.e. the component indexed by ν of the vector c that solves the

linear system Vd,h(X )c = y .
In the next section, we propose an adaptive algorithm that implements pointwise numerical differentiation by local polynomial

interpolation, along the lines given by the error analysis in Theorem 1.1. Key tools are the use of the scaled Taylor-like basis
and the computation of discrete Leja points for local interpolation. In the last section we test the numerical differentiator in
computing first and second partial derivatives of Franke’s test function. The corresponding Matlab implementation is freely
available to the scientific community.
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2 An adaptive numerical differentiator
We describe now an adaptive pointwise differentiation algorithm, starting from a set of scattered sample sites S ⊂ Ω= [0,1]s

(by an affine change of variables, it works on a general box). Following the approach we have proposed in [7], given a local
interpolation degree d and a ball Bh(x) such that card(S∩Bh(x))≥ md =

�s+d
s

�

, we choose in Sh = S∩Bh(x) a set X of md discrete
Leja points as interpolation set. These are found by a greedy maximization of the absolute value of the Vandermonde determinant,
that can be obtained by simply computing a LU factorization with row pivoting of the rectangular Vandermonde matrix for degree
d at Sh; cf. [2].

Clearly, this is possible whenever the local scattered set Sh is Pd -determining, i.e. polynomials in Pd vanishing there vanish
everywhere, or equivalently the Vandermonde matrix for degree d at Sh has full rank, that is Sh contains a unisolvent interpolation
set. Though this property is not valid for an arbitrary scattered distribution, it is almost sure with a uniform distribution.

Consider indeed for simplicity a uniform random vector of dimension md in Ω= [0,1]s, that are md independent s-variate
uniform random variables, or equivalently smd independent univariate uniform random variables. Notice that the Vandermonde
determinant, as every determinant, is a polynomial of degree md in the matrix md ×md entries, that here in turn are polynomials
of degree not exceeding d in the {xi}, and thus the Vandermonde determinant is a polynomial of degree k = dmd in t = smd
variables (the interpolation points coordinates). Now, as it is well-known in full generality, the zero set of any polynomial
of degree k ≥ 1 in t variables has Lebesgue measure zero in Rt (cf. e.g. [9]), hence the probability that the Vandermonde
determinant of md uniform random points in Ω vanishes is zero, i.e. md uniform random points in Ω are almost surely unisolvent
for polynomial interpolation of total degree d.

We stress that the choice of discrete Leja points not only ensures unisolvency whenever the local scattered set Sh is Pd -
determining, but is also aimed at keeping small the entries of the inverse Vandermonde matrix (which are cofactors divided by the
Vandermonde determinant), and thus also the relevant row 1-norm in estimate (1). Indeed, it is worth observing that the stability
constant λν,h,d(x) =

∑md
i=1 |D

νℓi(x)| is nothing but the stability function of differentiation by interpolation on X , computed at x
(for ν= 0 it is the Lebesgue function of X at x).

We observe that discrete Leja points are not the only computable point set trying to maximize the absolute value of the
Vandermonde determinant, another relevant set are the approximate Fekete points, corresponding to a QR factorization with
column pivoting of the transposed Vandermonde matrix; cf. [2]. Though approximate Fekete points could show a lower Lebesgue
constant, discrete Leja points have an additional property that makes them appealing from the computational point of view,
namely they form a sequence if the polynomial basis has the lexicographical order. This means that the first

�k+s
s

�

among
�d+s

s

�

discrete Leja points are just the discrete Leja points for interpolation of degree k in s variables, 1≤ k ≤ d, therefore once computed
such points for degree d we can interpolate at any lower degree; notice that this property, which will be used in the algorithm to
construct an a posteriori error estimate, does not hold with the approximate Fekete points that have to be computed separately
for each degree.

We can now sketch a pseudo-code of the differentiation algorithm. The corresponding Matlab code, written for functions of
s = 2 variables, is available at [6].

DISC: adaptive Differentiator by local polynomial Interpolation on SCattered data

• INPUT: the scattered data (S, f (S)), the evaluation point x, the differentiation multi-index ν, the initial degree d0 and the
maximum degree dmax , the degree step σ and the error control step δ (constraint: d0 −δ ≥ |ν|), the maximum allowed
radius hmax < 1

• INIZIALIZATION: d := d0, estmin := realmax , h := 0

• REPEAT

% selecting a suitable interpolation ball

1. find the minimum radius hd such that card(Shd
) = card(S ∩ Bhd

(x))≥ md =
�s+d

s

�

2. h :=max{h, hd}
IF h≤ hmax THEN

REPEAT

3. compute Vd,h(Sh) =
��

ξ−x
h

�α�

∈ Rcard(Sh)×md , ξ ∈ Sh, |α| ≤ d
4. r := rank(Vd,h(Sh))
5. IF r < md THEN h := (1+ h)/2, Sh := S ∩ Bh(x) ENDIF

UNTIL r ≥ md ∨ h> hmax
ENDIF

% differentiating by Leja-like interpolation and estimating the error

IF h≤ hmax THEN

6. extract md discrete Leja points Xd = {x1, . . . ,xmd
} from Sh by the algorithm in [2]

7. compute the Vandermonde matrices Vd,h(Xd) =
��

xi−x
h

�α�

∈ Rmd×md , 1 ≤ i ≤ md , |α| ≤ d and Vd−δ,h(Xd−δ) ∈
Rmd−δ×md−δ , 1≤ i ≤ md−δ, |α| ≤ d −δ, where Xd−δ = {x1, . . . ,xmd−δ

}
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8. compute the interpolation coefficients for degree d and d−δ by solving the couple of linear systems Vd,h(Xd)c = f (Xd)
and Vd−δ,h(Xd−δ)γ= f (Xd−δ)

9. compute the approximate derivatives Dνd := ν!h−|ν|cν and Dνd−δ := ν!h−|ν|γν, and the error estimate est := |Dνd −Dνd−δ|
10. IF est < estmin THEN

estmin := est, D̃ν f := Dνd−δ
d∗ := d, h∗ := h
ENDIF

11. d := d +σ

ENDIF

UNTIL d > dmax ∨ h> hmax

• OUTPUT: d > d0 ⇒ D̃ν f , estmin: |D̃ν f − Dν f (x)| ≈ estmin

Some comments on the algorithm are in order. First, we observe that Theorem 1.1 gives qualitatively the effect of h, d and ν
in the error analysis, but is hard to use in practice, since one should have at hand an estimate of the function seminorm, which in
general is out of reach. We have then adopted an a posteriori error bound

est(x) = |Dνd − Dνd−δ| ≈ e(x) = |Dνd−δ − Dν f (x)| (5)

that, though essentially empirical, has shown a good mean accuracy in all the numerical tests (and can be tuned by the error
control step δ). Notice that, being a sequence, the discrete Leja points can be computed once in 6. and then used in 7.− 8. for
different degrees.

Moreover, we stress that the algorithm is adaptive, in the sense that given the scattered data and the maximum allowed
degree and radius, it increases the local interpolation degree by adapting the local radius until possible, updating the best error
estimate and the corresponding derivative approximation during the computational process. That is, it tries to give the best
possible approximation of the required partial derivative given the scattered data, the bounds dmax and hmax , the degree
increase step σ and control step δ.

3 Numerical tests
In the first experiment, we illustrate the performance of the differentiator DISC by applying it to the popular Franke’s test function
on the square [0,1]2

f1 (x , y) = 0.75exp
�

−
(9x − 2)2 + (9y − 2)2

4

�

+ 0.50exp
�

−
(9x − 7)2 + (9y − 3)2

4

�

+0.75exp
�

−
(9x + 1)2

49
−
(9y + 1)2

10

�

− 0.20exp
�

−(9x − 4)2 − (9y − 7)2
�

,
(6)

whose graph is plotted in Figure 1. To this purpose, in Figures 2-3 we plot the absolute error e(x) and its a posteriori estimate
est(x) in (5) for 100 random points x = (x , y) in Ω = [0, 1]2, with differentiation indexes ν = (1, 0), (1, 1), (0, 2), i.e. ∂ /∂ x (top),
∂ 2/∂ x∂ y (central), ∂ 2/∂ y2 (bottom), and three different sets of Halton and random sampling points. The tests have been
carried out with parameters setting d0 = 5, σ = 3, δ = 2, hmax = 0.8 and dmax = ⌊(

p
8N + 1− 3)/2)⌋ that is the maximum

degree d such that md = (d + 1)(d + 2)/2≤ N , where N is the overall number of sampling points. The corresponding demo is
available within the complete package at [6].

Observe that est(x) is close to the true error e(x) in most cases. In very few cases it substantially underestimates or
overestimates the error, by one or seldom two orders of magnitude. The resulting mean estimate (dashed line) is a good
approximation of the mean error (solid line) and, as expected, both decrease by increasing the number of sampling points.

On the other hand, it turns out that the errors over the mean tend to occur near the boundary (but not everywhere). This
fact, already investigated in [7], can be ascribed to a boundary effect, since the neighborhoods Bh(x)∩Ω have less sample points
so that the maximum allowed interpolation degree is smaller and the quality of the extracted interpolation points can be worse,
combined with the local behavior of the sampled function, in particular of the local seminorm ∥ f ∥Cd,1 .

In order to show the perfomance of the method in the case of C k functions, k ∈ N, in the second experiment, we apply the
differentiator DISC to the functions

f j (x , y) = ∥(x , y)− (0.5, 0.5)∥2 j−1
2 , j = 2,3, 4, (7)

which are of class C2 j−2, respectively. To this purpose, in Figures 4-6 we plot the absolute error e(x) and its a posteriori estimate
est(x) in (5) on the uniform grid of 121 points of Ω = [0,1]2, which includes the point (0.5,0.5) which is singular for the
derivatives of order 2 j − 1. We use differentiation indexes ν = (1,0), (1,1), (0,2) and three different sets of Halton sampling
points. The tests have been carried out with the same parameters setting of the first experiment.

The behaviour of the error and its estimate is similar to the one of the first experiment for points far from the point (0.5, 0.5).
This is not surprising since in a suitable neighborhood of those points all functions are C∞. As soon as we approach the singular
point (0.5,0.5), we can observe some loss of accuracy, which in any case is never unsatisfactory. In particular, the estimates
relative to the point (0.5, 0.5) correspond to the points of abscissa 0.5 in Figures 4-6.
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In order to show the response of the differentiation algorithm to measurement errors, in Figure 7 we consider the case of a
perturbed sample at a set S of 1000 Halton points. To this purpose, we have taken perturbed values

f̃ (S) = f (S) + ϵ U(−1,1) , (8)

U being a uniform random array in [−1,1]card(S). We see that about two orders of magnitude with respect to ϵ are lost for the
first derivative ∂ /∂ x (top), and up to three orders for the second derivatives ∂ 2/∂ x∂ y (central) and ∂ 2/∂ y2 (bottom). Such
precision losses are partially explained by the size of the pointwise stability constant λν,h∗ ,d∗(x) in (1) for the exit values from
Algorithm DISC of the radius and the degree corresponding to the minimal error estimate. Notice that h∗ and d∗ depend on x, on
the sampling set S and on the function f . The quantity λν,h∗ ,d∗(x) is plotted in Figure 8, ordering again the control points by
distance from the boundary (such an amplification factor, however, is clearly an overestimate of the actual effect).
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Figure 1: Franke’s test function.
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Figure 2: Pointwise differentiation errors (circles) and estimates (asterisks) with Franke’s test function on 100 random points in [0, 1]2 ordered
by distance from the boundary, for ∂ /∂ x (top), ∂ 2/∂ x∂ y (central) and ∂ 2/∂ y2 (bottom), with 500 (left), 1000 (center) and 2000 (right)
Halton sampling points (solid line: mean error; dashed line: mean of the estimate (5)).
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Figure 3: Pointwise differentiation errors (circles) and estimates (asterisks) with Franke’s test function on 100 random points in [0, 1]2 ordered
by distance from the boundary, for ∂ /∂ x (top), ∂ 2/∂ x∂ y (central) and ∂ 2/∂ y2 (bottom), with 500 (left), 1000 (center) and 2000 (right)
random sampling points (solid line: mean error; dashed line: mean of the estimate (5)).
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Figure 4: Pointwise differentiation errors (circles) and estimates (asterisks) with function f2(x , y) on the uniform grid of 121 points of [0, 1]2

ordered by distance from the boundary, for ∂ /∂ x (top), ∂ 2/∂ x∂ y (central) and ∂ 2/∂ y2 (bottom), with 500 (left), 1000 (center) and 2000
(right) Halton sampling points (solid line: mean error; dashed line: mean of the estimate (5)).
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Figure 5: Pointwise differentiation errors (circles) and estimates (asterisks) with function f3(x , y) on the uniform grid of 121 points of [0, 1]2

ordered by distance from the boundary, for ∂ /∂ x (top), ∂ 2/∂ x∂ y (central) and ∂ 2/∂ y2 (bottom), with 500 (left), 1000 (center) and 2000
(right) Halton sampling points (solid line: mean error; dashed line: mean of the estimate (5)).
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Figure 6: Pointwise differentiation errors (circles) and estimates (asterisks) with function f4(x , y) on the uniform grid of 121 points of [0, 1]2

ordered by distance from the boundary, for ∂ /∂ x (top), ∂ 2/∂ x∂ y (central) and ∂ 2/∂ y2 (bottom), with 500 (left), 1000 (center) and 2000
(right) Halton sampling points (solid line: mean error; dashed line: mean of the estimate (5)).
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Figure 7: Pointwise differentiation errors (circles) and estimates (asterisks) with Franke’s test function on 100 random points in [0, 1]2 ordered
by distance from the boundary, for ∂ /∂ x (top), ∂ 2/∂ x∂ y (central) and ∂ 2/∂ y2 (bottom), with 1000 Halton sampling points and perturbed
function values as in (8), where ϵ = 0 (left), ϵ = 10−6 (center) and ϵ = 10−4 (right) (solid line: mean error; dashed line: mean of the estimate
(5)).
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Figure 8: Pointwise values of the stability constant λν,h∗ ,d∗ (x) in (1) for the exit values of h∗ and d∗ from Algorithm DISC on 100 random points
in [0, 1]2 ordered by distance from the boundary, using a sample of 1000 Halton points for ∂ /∂ x (left), ∂ 2/∂ x∂ y (central) and ∂ 2/∂ y2 (right).
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