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Abstract

The paper deals with the approximation of integrals of the type

I( f , y) =:

∫ +∞

0
f (x)k(x , y)ρ(x) d x , ρ(x) := e−x xγ,

where f is a sufficiently smooth function and the kernel k collects criticisms of many different types
(highly oscillating, weakly singular, "nearly" singular, etc.). We propose an extended product rule based
on the approximation of f by an extended Lagrange process at Laguerre zeros. We prove that the rule
is stable and convergent with order of the best polynomial approximation in suitable function spaces.
Furthermore, by combining the stated rule with a related product formula, we define a pattern that
allows a significant saving in number of function evaluations. We give details on the construction of the
coefficients of the rule for some selected kernels. Finally, some numerical tests are proposed to show the
efficiency of the compounded quadrature scheme.

1 Introduction
The present paper deals with the approximation of integrals of the type

I( f , y) =:

∫ +∞

0

f (x)k(x , y)ρ(x) d x , y ∈ S (1)

where f is a sufficiently smooth function, ρ(x) := e−x xγ is a Laguerre weight and the kernel function k is defined in (0,+∞)×S
being S a proper range for y. Usually the kernel k collects criticism in the integrand of many different types. Examples of
problematic kernels are for instance k(x , y) = sin(y x), y ∈ R, with |y| "large" or k(x , y) = |x − y|λ, y > 0, with λ > −1.
The first one highly oscillates, while the second one is weakly singular in y for negative λ. It’s well known that in both cases,
Gauss-Laguerre rules and their possible variants provide unsatisfying performances, reason why integration formulas of product
type are mainly used [6, 12, 18]. The efficient computation of integrals (1) is needed in many contexts (see e.g. [22, 23] and the
references therein). In particular we recall the employment of such rules in the numerical treatment of integral (and systems of
integral) equations (see e.g. [14, 13, 9, 8, 10, 11, 27].) For instance, the Marchenko system in [3] is connected to inverse and
direct scattering problems extensively treated in [32, 5].

In [18], a truncated product formula essentially based on the zeros of Laguerre polynomials {pm(wα, x)(4m− x)}m, being
wα(x) = e−x xα, was considered and studied. The authors proved that the rule, to which here we will refer as Ordinary Product
Rule, is stable and convergent in suitable spaces of locally continuous functions over (0,+∞), endowed with weighted norm. In
the present paper first we construct and study a truncated Extended Product Rule, based on the zeros of the extended polynomials
{pm(wα, x)pm+1(wα, x)(4m− x)}m. We will prove that under suitable assumptions, both rules, Ordinary and Extended, are stable
and convergent with the same rate. As second step, following an idea in [26, 28], we propose an algorithm obtained combining
both rules. Once the Ordinary rule has been computed, its function samples are "recycled" in order to achieve the Extended one.
By doing so, this 2m order rule is obtained with only m new samples of the function f . A repeated application of this scheme
for increasing values of m defines an operative pattern sparing one third of function evaluations with respect to those needed
by a sequence based on the only Ordinary rule. Such save can turn useful in some numerical methods for Fredholm Integral
Equations, where the number of samples needed in the quadrature corresponds to the dimension of the final linear system (see
e.g. [29, 21, 26]). An additional strong reduction of function evaluations is also realized by means of the "truncation" techniques
[15], applied to both the ordinary and the extended formulas [26].

Although the basic idea follows that in [26], the mixed scheme we introduce here is new, being the extended rule introduced
there based on two different but connected families of orthogonal Laguerre polynomials. Moreover, also the conditions assuring
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stability and convergence proved there are different from those we establish here, and this can turn useful in all the cases where
wα and u are fixed and the quadrature scheme in [26] doesn’t converge.

In the paper we provide also details about the effective computation of the coefficients of both the product rules, crucial to
their success. We point out that in case of ordinary rules the coefficients are usually expressed in terms of the so-called ordinary
modified moments (see e.g. [30, 24, 1, 2]), while those of the extended rule require the computation of the generalized modified
moments (see (17)). Here, we revisit some recurrence relations to compute ordinary modified moments (see [20]), being such
relations depending on the kernel we are dealing with, and provide a unique recurrence relation for computing the generalized
modified moments, to be used once the ordinary moments are known.

The paper is organized as follows: in the next section some preliminary results and notations are collected. Section 3 contains
the ordinary rule and some computational details to implement it. The extended product rule and the mixed quadrature scheme,
their stability and convergence in weighted spaces of continuous functions are stated in Section 4. Some numerical tests which
support the theoretical estimate are proposed in Section 5. Finally, Section 6 contains the proofs of the main results.

2 Preliminaries
In the sequel we will use C in order to denote a positive constant, which may have different values at different occurrences, and
we write C ̸= C(m, f , . . .) to mean that C > 0 is independent of m, f , . . ..
Pm will denote the space of all algebraic polynomials of degree at most m. For any bivariate function g(x , y) we will denote by
g y the function of the only variable x and by gx the function of the only variable y .

2.1 Function Spaces

For the weight u
u(x) := xγ(1+ x)δe−x , x ≥ 0, γ,δ ≥ 0,

let Cu be the following space of functions

Cu =
n

f : f u ∈ C0((0,+∞)) , lim
x→+∞

f (x)u(x) = 0, lim
x→0+

f (x)u(x) = 0, if γ > 0,
o

(2)

equipped with the norm
∥ f ∥Cu

:= ∥ f u∥∞ =max
x≥0
| f (x)|u(x).

In the case γ= δ = 0 we set Cu = C0.
We point out that the limit conditions in (2) are necessary to assure that

lim
m→∞

Em( f )u = 0, ∀ f ∈ Cu,

being
Em( f )u := inf

P∈Pm
∥ f − P∥Cu

the error of best polynomial approximation of f ∈ Cu (see for instance [9]).
For smoother functions, we will consider the Sobolev-type spaces

Wr(u) =
�

f ∈ Cu : f (r−1) ∈ AC(R+), ∥ f (r)ϕru∥∞ <∞
	

, r ∈ N,

where ϕ(x) =
p

x and AC(R+) denotes the set of all absolutely continuous functions in (0,+∞), equipped with the norm

∥ f ∥Wr (u) := ∥ f ∥Cu
+ ∥ f (r)ϕru∥∞.

We recall that for any function f in Wr(u), the following estimate holds [4]:

Em( f )u ≤ C
∥ f ∥Wr (u)

(
p

m)r
, C ̸= C(m, f ). (3)

For 1≤ p <∞, let Lp(R+) be the space of measurable functions f , equipped with the norm

∥ f ∥Lp(R+) =

�∫ +∞

0

| f (x)|p d x

�

1
p

.

Moreover, let L∞(R+) =: C0.
In the end, setting log+ f (x) = log (max (1, f (x))), we denote by L log+ L the set of all measurable function f defined in (0,+∞)
such that

∫ +∞

0

| f (x)|(1+ log+ | f (x)|) d x < +∞.
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2.2 Orthonormal polynomials and Lagrange interpolation

For a given Laguerre weight
w(x) := wα(x) = xαe−x , α > −1,

let {pm := pm(w)}m∈N be the corresponding sequence of orthonormal polynomials having positive leading coefficients, and let
{xk := xm,k(w) : k = 1, . . . , m} be the zeros of pm(w). Moreover, we denote by

λm,k := λm,k(w) =

�

m−1
∑

i=0

p2
i (xk)

�−1

, k = 1, . . . , m,

the Christoffel numbers of order m related to w. Now, for a fixed 0< θ < 1, we set

j = j(m) ∈ N : x j =min
k
{xk : xk ≥ 4mθ , k = 1, . . . , m} . (4)

Denoted by {yk}m+1
k=1 the zeros of pm+1, since the zeros of pm+1 interlace those of pm, for j defined in (4) we have

C
m
< y1 < x1 < y2 < . . .< x j−1 < y j < x j < 4mθ .

Let L∗2m+2(w, f ) be the truncated extended Lagrange polynomial interpolating a given f at the zeros of pm(x)pm+1(x)(4m− x), i.e.

L∗2m+2(w, f ; x) =
j
∑

k=1

�

ℓ2m+2,k(x) f (xk) + ℓ̂2m+2,k(x) f (yk)
�

, (5)

where

ℓ2m+2,k(x) =















λm,k pm+1(x)
(4m− x)

pm+1(xk)(4m− xk)

m−1
∑

i=0
pi(x)pi(xk), k = 1, . . . , m,

pm(x)pm+1(x)
pm(4m)pm+1(4m)

, k = m+ 1,

ℓ̂2m+2,k(x) = λm+1,k pm(x)
(4m− x)

pm(yk)(4m− yk)

m
∑

i=0

pi(x)pi(yk), k = 1, . . . , m+ 1.

Setting z2i := x i , i = 1 : m, z2i+1 := yi+1, i = 0, 1,2, . . . m, we denote by

{zi}2m+1
i=1 the zeros of Q2m+1 := pmpm+1. (6)

Remark 1. For a fixed 0< θ < 1 and with j defined as in (4), L∗2m+2(w) projects Cu onto P̃∗2m+1, being

P̃∗2m+1 =
�

q ∈ P2m+1 : q(zi) = q(4m) = 0, zi > z2 j

	

⊂ P2m+1,

(see [25, 7]).

3 Ordinary Product integration rules
For the integral in (1), in [18] the following truncated product integration rule was introduced and studied

I( f , y) =

∫ +∞

0

f (x)k(x , y)ρ(x) d x = Im( f , y) + em( f , y), Im( f , y) =
j
∑

k=1

Ck(y) f (xk), (7)

where

Ck(y) = λm,k

j−1
∑

i=0

pi(xk) eMi(y), eMi(y) =

∫ +∞

0

pi(x)(4m− x)k(x , y)ρ(x) d x , i = 0, 1, . . . , j − 1, (8)

and em( f , y) is the quadrature error. In [18] it was proved that the rule preserves polynomials P ∈ P∗m being

P∗m :=
�

q ∈ Pm : q(x i) = q(4m) = 0, x i > x j

	

⊂ Pm.

In the sequel we will refer to (7) as the Ordinary Product Rule (OPR in short) and, we will refer to { eMi(y)}i∈N as Ordinary Modified
Moments (in short OMMs) [6] (see, e.g., [30]). Setting

u(x) = e−x/2 xγ(1+ x)δ, γ,δ ≥ 0, (9)

and assuming f ∈ Cu, where Cu is defined as in (2) by replacing u with u, the following error estimate was proved in a more
general context in [18, Th. 3.2].
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Theorem 1. With ρ defined in (1) and u in (9), under the assumptions

sup
y∈S

ρ
p

wϕ
ky ∈ L log+ L, sup

x≥0

p

w(x)ϕ(x)
u(x)

< +∞, (10)

the rule (7) is stable in Cu, i.e.

sup
y∈S

j
∑

i=1

|Ci(y)|
u(x i)

< +∞, (11)

and for f ∈ Cu the error in (7) is estimated as follows:

sup
y∈S
|em( f , y)| ≤ C
�

EM ( f )u + e−Am∥ f u∥∞
	

, (12)

where M =
�

θ
1+θ m
�

, and 0<A ̸=A(m, f ), C ̸= C(m, f ).
Remark 2. For any f ∈Wr(u), by (12) and taking into account (3), the following error estimate holds:

sup
y∈S
|em( f , y)| ≤ C

∥ f ∥Wr (u)

(
p

m)r
, C ̸= C(m, f ).

About the implementation of the rule (7), the main effort in evaluating the coefficients Ck(y) is due to the exact computation of
{ eMn(y)}n=0,1,..., being them usually deduced by recurrence relations dependent on the kernel k(x , y) (see e. g.[6, 30]). In the
next section we state such recurrence relations for some kernels.

3.1 Modified Moments recurrence relations for some kernels

First we recall the well-known three-term recurrence relation to generate the sequence of orthonormal Laguerre polynomials
{pn}n w.r.t. the weight w(x) = e−x xα (see e.g. [31]):















p−1(x) = 0,

p0(x) =
1
p

Γ (α+ 1)
,

an+1pn+1(x) = (x − bn)pn(x)− anpn−1(x), n= 0,1, . . . ,

(13)

where Γ (z) is the Euler’s Gamma function and

an =
Æ

n(n+α), bn = 2n+α+ 1, n= 0, 1, . . . .

Using (13), it’s not difficult to prove that { eMn(y)}n=0,1,... are related to the moments {Mn(y)}n=0,1,...

Mn(y) :=

∫ +∞

0

pn(x)k(x , y)ρ(x) d x , (14)

through the following relation:
(

eM0(y) = (4m− b0)M0(y)− a1M1(y),

eMn(y) = (4m− bn)Mn(y)− an+1Mn+1(y)− anMn−1(y).

Hence, we focus now on the computation of {Mi(y)}i∈N. They are generated via recurrence relations essentially based on (13),
the repeated application of the integration by part rule and the relation

x
d

d x
pn(x) = npn(x) + anpn−1(x).

We have selected kernels which occur more frequently in the applications, determining recurrence relations that the related
moments {Mi(y)}i∈N satisfy. Such relations, already found in [20], are here revisited, according to the initial assumptions on the
orthonormal sequence.

3.2 Recurrence relations for k(x , y) = sin(y x), k(x , y) = cos(y x), γ= 0, S= R

Denoted by MSin
n (y) =
∫ +∞

0
pn(x) sin(y x)e−x d x and M Cos

n (y) =
∫ +∞

0
pn(x) cos(y x)e−x d x , they satisfy the following relations:







































MSin
−1 (y) = 0, MSin

0 (y) = c0
y

1+ y2
,

M Cos
−1 (y) = 0, M Cos

0 (y) = c0
1

1+ y2
,

an+1MSin
n+1(y) = −
�

τnMSin
n (y)− dnM Cos

n (y) + enMSin
n−1(y)− fnM Cos

n−1(y)
�

,

an+1M Cos
n+1(y) = −
�

τnM Cos
n (y) + dnMSin

n (y) + enM Cos
n−1(y) + fnMSin

n−1(y)
�

,

where c0 =
1
p

Γ (α+ 1)
, τn = bn −

n+ 1
1+ y2

, dn = (n+ 1)
y

1+ y2
, en = an

y2

1+ y2
, fn = an

y
1+ y2

, n= 0,1, . . ..
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3.3 Recurrence relation for k(x , y) = (x + y)µ, S= R+

For the function k(x , y) = (x + y)µ, we set Mn(y) =
∫ +∞

0
pn(x)(x + y)µρ(x) d x and M n(y) =

∫ +∞
0

pn(x)(x + y)µ+1ρ(x) d x , so
that we obtain the following recurrence formula:











































M−1(y) = 0,

M0(y) = c0Γ (γ+ 1)yγ+µ+1U(γ+ 1,γ+µ+ 2, y),

M0(y) = c0Γ (γ+ 1)yγ+µ+2U(γ+ 1,γ+µ+ 3, y),

an+1Mn+1(y) = M n(y)− (y + bn)Mn(y)− anMn−1(y),

an+1M n+1(y) = gnM n(y)− y(µ+ 1)Mn(y),

where U(a, b, y) is the Tricomi’s confluent hypergeometric function and c0 =
1
p

Γ (α+ 1)
, gn = γ+µ− n−α+1, n = 0, 1, . . ..

3.4 Recurrence relation for k(x , y) = log(x + y), γ= 0, S= R+ \ {0}
To construct the modified moments Mn(y) first we need to know the modified moments {Cn(y)}n=0,1,... w.r.t. the kernel ξ(x , y) :=

1
x + y

, i.e. Cn(y) =
∫ +∞

0
pn(x)ξ(x , y)e−x d x . They satisfy the recurrence formula:















C−1(y) = 0,

C0(y) = −c0 (e yEi(−y)) ,

an+1Cn+1(y) = cn − (y + bn)Cn(y)− anCn−1(y),

where Ei(y) is the exponential integral function and the coefficients {cn}n=0,1,... are so defined:

c0 =
1
p

Γ (α+ 1)
, cn+1 = −

α+ n
an+1

cn = (−1)n+1 α(α+ 1) . . . (α+ n)
a1a2 . . . an+1

c0, n= 0, 1, . . . .

Hence, the modified moments Mn(y) satisfy the recurrence relation:














M−1(y) = 0,

M0(y) = c0 (log(y)− e yEi(−y)) ,

an+1Mn+1(y) = cn − yCn(y)− (n+α)Mn(y).

3.5 Recurrence relation for k(x , y) = log |x − y|, γ= 0, S= R+∖{0}
To construct the modified moments Mn(y) first we need to know the modified moments {An(y)}n=0,1,... w.r.t. the kernel ξ(x , y) :=

1
x − y

, i.e. An(y) =
∫ +∞

0
pn(x)ξ(x , y)e−x d x . They satisfy the recurrence formula:















A−1(y) = 0,

A0(y) = −c0e−yEi(y),

an+1An+1(y) = cn + (y − bn)An(y)− anAn−1(y),

where Ei(y) is the exponential integral function and and the coefficients {cn}n=0,1,... are so defined:

c0 =
1
p

Γ (α+ 1)
, cn+1 = −

α+ n
an+1

cn = (−1)n+1 α(α+ 1) . . . (α+ n)
a1a2 . . . an+1

c0, n= 0, 1, . . . .

Hence, the modified moments Mn(y) satisfy the recurrence relation:














M−1(y) = 0,

M0(y) = c0 (log(y)− e−yEi(y)) ,

an+1Mn+1(y) = cn + yAn(y)− (n+α)Mn(y).
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3.6 Recurrence relations for k(x , y) = |x − y|λ, λ > −1, S = R+

To compute the modified moments for the function k(x , y) = |x − y|λ , we write

Mn(y) =

∫ y

0

pn(x)(y − x)λρ(x) d x +

∫ +∞

y

pn(x)(x − y)λρ(x) d x

=: M−n (y) +M+
n (y).

Denoted by ÒM−n (y) =
∫ y

0
pn(x)(y− x)λ+1ρ(x) d x and ÒM+

n (y) =
∫ +∞

y
pn(x)(x− y)λ+1ρ(x) d x , we obtain the following recurrence

formulas:










































M−−1(y) = 0,

M−0 (y) = c0B(λ+ 1,γ+ 1)yγ+λ+1
1F1(γ+ 1,γ+λ+ 2,−y),

ÒM−0 (y) = c0B(λ+ 2,γ+ 1)yγ+λ+2
1F1(γ+ 1,γ+λ+ 3,−y),

an+1M−n+1(y) = −ÒM
−
n (y) + (y − bn)M−n (y)− anM−n−1(y),

an+1
ÒM−n+1(y) = gn
ÒM−n (y)− y(λ+ 1)M−n (y),











































M+
−1(y) = 0,

M+
0 (y) = c0Γ (λ+ 1)e−y U(−γ,−(γ+λ), y),

ÒM+
0 (y) = c0Γ (λ+ 2)e−y U(−γ,−(γ+λ+ 1), y),

an+1M+
n+1(y) = ÒM

+
n (y) + (y − bn)M+

n (y)− anM+
n−1(y),

an+1
ÒM+

n+1(y) = gn
ÒM+

n (y) + y(λ+ 1)M+
n (y),

where 1F1(a, b, y) is the Kummer’s confluent hypergeometric function , B(x , y) the Euler’s Beta function, U(a, b, y) is the Tricomi’s

confluent hypergeometric function and c0 =
1
p

Γ (α+ 1)
, gn = γ+λ− n−α+ 1, n= 0, 1, . . ..

4 A new extended product rule
Now we introduce the following truncated Extended Product Rule (briefly EPR) obtained by approximating f in (1) with the
extended Lagrange polynomial in (5) interpolating f at the zeros of Q2m+1(x)(4m− x)

I( f , y) =

∫ +∞

0

f (x)k(x , y)ρ(x) d x = Σ2m+1( f , y) + E2m+1( f , y),

Σ2m+1( f , y) :=
j
∑

k=1

(Ak(y) f (xk) +Bk(y) f (yk)) , (15)

where

Ak(y) =

∫ +∞

0

ℓ2m+2,k(x)k(x , y)ρ(x) d x ,

Bk(y) =

∫ +∞

0

ℓ̂2m+2,k(x)k(x , y)ρ(x) d x ,

and E2m+1( f , y) is the quadrature error. In view of the Remark 1, the rule is exact in P̃∗2m+1, i.e.

E2m+1( f , y) = 0, ∀ f ∈ P̃∗2m+1.

Note that by (5), the quadrature weights {Ak(y), Bk(y)}
j
k=1 can be rewritten as

Ak(y) =
λm,k

pm+1(xk)(4m− xk)

m−1
∑

j=0

p j(xk)M
(m+1)
j (y),

(16)

Bk(y) =
λm+1,k

pm(yk)(4m− yk)

m
∑

j=0

p j(yk)M
(m)
j (y),
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where

M (h)
j (y) =

∫ ∞

0

ph(x)p j(x)k(x , y)(4m− x)ρ(x) d x (17)

will be called Generalized Modified Moments (shortly GMMs). By (15-16), we finally have

Σ2m+1( f , y) =
j
∑

k=1

�

f (xk)
λm,k

pm+1(xk)(4m− xk)

m−1
∑

j=0

p j(xk)M
(m+1)
j (y) + f (yk)

λm+1,k

pm(yk)(4m− yk)

m
∑

j=0

p j(yk)M
(m)
j (y)

�

. (18)

Given the OMMs
�

eMn(y)
	

n=0,1,...
and using (13), the computation of the GMMs

�

M (h)
n (y)
	

n,h=0,1,...
can be performed through the

following recurrence scheme:















M (0)
n (y) = c0
eMn(y),

a1M (1)
n (y) = anM (0)

n−1(y) + (bn − b0)M (0)
n (y) + an+1M (0)

n+1(y),

ahM (h)
n (y) = anM (h−1)

n−1 (y) + (bn − bh−1)M (h−1)
n (y) + an+1M (h−1)

n+1 (y)− ah−1M (h−2)
n (y),

with n= 0, 1, . . . and h= 2,3, . . ..

The above recurrence relation works regardless of the given kernel k and can be applied once the OMMs are computed,
whether they are of the type (14) or (8). However, despite its simple form, we have tested the algorithm for different kernels
observing a progressive loss of accuracy. To overcome this instability in implementing the algorithm we decided to carry out the
computation of all the moments, including the starting OMMs, by using 32-digits precision (i.e. in quadruple precision), and this
choice has been enough to compensate the aforesaid inaccuracy.
Finally, next theorem provides conditions assuring stability and convergence of the rule in the space Cu:

Theorem 2. Let f ∈ Cu with u(x) = xγ(1+ x)δe−x , ρ(x) = xγe−x , with γ≥ 0,δ > 1, α≥ − 1
2 . Then, under the assumptions

sup
y∈S

ρ

wϕ
ky ∈ L log+ L,

wϕ
u
∈ L∞(R+)∩ L1(R+), (19)

we have

sup
y∈S

j
∑

i=1

� |Ai(y)|
u(x i)

+
|Bi(y)|
u(yi)

�

< +∞. (20)

and
sup
y∈S
|E2m+1( f , y)| ≤ C

�

EM̂ ( f )u + e−Am∥ f u∥∞
�

, (21)

where C ̸= C(m, f ), A ̸=A(m, f ) and M̂ =
�

θ
1+θ (2m+ 1)
�

.

Remark 3. The mixed scheme studied in [26] for integrals similar to (1) is different from that we propose here. Indeed, the
extended rule employed there is based on Laguerre polynomials, orthogonal w.r.t. two different weight functions. Hence, besides
a little more elaborated computation of the rule coefficients, also the conditions assuring the stability and convergence proved
there (see [26, Th. 3.2]) are different from those established here in Theorem 2. This can turn useful in all the cases where wα
and u are fixed and the quadrature scheme in [26] doesn’t converge.

4.1 A compounded sequence of Ordinary and Extended product rules

We start by proving that under suitable assumptions, both sequences {Im( f , y)}m and {Σ2m+1( f , y)}m converge to I( f , y), with
the same rate of convergence. Indeed, observing that Cu ⊂ Cu, the following theorem holds:

Theorem 3. Let f ∈ Cu with u(x) = xγ(1+ x)δe−x , ρ(x) = xγe−x , with 0≤ γ,δ > 1, α≥ − 1
2 . Then, (11-12) and (20-21) hold

true under the assumptions

sup
y∈S

ρ

wϕ
ky ∈ L log+ L,

wϕ
u
∈ L1(R+), max

�

0,α+
1
2
−δ
�

≤ γ≤
α

2
+

1
4

. (22)

The theorem follows by taking into account that the assumptions (22) imply either those in (10) and (19)).
The previous result represents the cornerstone on which it is based the idea of a compounded sequence of ordinary and

extended quadrature rules in order to achieve a saving in the number of function computations, a reduction of the elapsed
time and the overcoming of instability problems arising in the computation of zeros and Christoffel numbers for high degree
orthogonal polynomials.

For a fixed m ≥ 2, and suitably organizing the algorithm, once obtained Im( f , y), by (18) the computation of Σ2m+1( f , y)
requires j additional function evaluations. In the practice, instead of computing I2m+1( f , y) requiring 2 j function evaluations, we
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double the quadrature formula order with only j additional function evaluations. Thus continuing, we consider the sequence
Im( f , y), Σ2m+1( f , y), I4m( f , y),Σ8m+1( f , y), . . . instead of the sequence Im( f , y),I2m+1( f , y),I4m( f , y),I8m+1( f , y), . . . .

In details, for a given q ∈ N, consider the sequences {I22k m( f , y), I22k+1m+1( f , y)}q−1
k=0 , and {I22k m( f , y), Σ22k+1m+1( f , y)}q−1

k=0 .
To perform an analysis of the computational cost, let us assume to implement the formula without truncation, i.e. j = m+ 1 in
both rules. Then, the construction of the first sequence requires m(22q − 1) evaluations of f , while the compounded scheme only
q+ 2

3 m(22q − 1). Hence, almost one third of the function evaluations is spared by using the mixed sequence.

In what follows we will consider the sequence

T2nm( f , y) =
§

I2nm( f , y), n= 0, 2,4, 6, . . . ,
Σ2nm+1( f , y), n odd. (23)

About the stability and the convergence of this mixed scheme we are able to prove the following:

Theorem 4. Let f ∈ Cu and fix n ∈ N. Under the assumptions of Theorem 3we have

sup
y∈S
|T2nm( f , y)| ≤ C∥ f u∥∞

and
sup
y∈S
|I( f , y)− T2nm( f , y)| ≤ CEN ( f )u , (24)

where N =
�

θ
1+θ 2nm
�

, and in both formulas C ̸= C(m, f ).

Remark 4. By (24), and taking into account (3), the following error estimate holds

sup
y∈S
|I( f , y)− T2nm( f , y)| ≤ C

∥ f ∥Wr (u)

(
p

2nm)r
, C ̸= C(n, f ).

5 Numerical tests
In this section we show some numerical tests to highlight the advantages of the compounded sequence by Ordinary and Extended
product quadrature rules. In each example we approximate the given integral for two different values of the parameter y . In the
tables we report the approximated values of the integrals achieved by the Ordinary Sequence (7) and the Compounded Sequence
(23). To be more precise, for increasing values of m we display the exact digits of the corresponding approximation and the
number of the effective function evaluations (# f eval.) by adopting truncation techniques. Finally, for comparison we considered
as exact the values of the integrals attained by the built-in Wolfram Mathematica function NIntegrate.

About the computation, we precise that all the routines have been written in Wolfram Mathematica 13 and run on an M1
MacBook Pro under the macOS operating system. Moreover, once all the Modified Moments (OMMs and GMMs) have been
computed in quadruple precision, all the remaining computation were carried out in double precision. Finally, the truncation
index j has been empirically detected by means of the following condition

j =







min
1≤k≤m
| f (xk)Ck(y)|> 10−20, OP Rule

max
�

min
1≤k≤m
| f (xk)Ak(y)|> 10−20, min

1≤k≤m+1
| f (yk)Bk(y)|> 10−20

�

, EP Rule

being Ck(y) defined in (8) and Ak(y), Bk(y) in (16).

Example 1.

I( f , y) =

∫ +∞

0

sin(x)
|x − y|−

1
10

x2 + 25
x

1
4 e−x d x , α=

1
2

, γ=
1
4

, δ = 2.

Example 2.

I( f , y) =

∫ +∞

0

arctan(1+ x)
sin(y x)
(x + y)2

e−x d x , α=
1
2

, γ= 0, δ =
5
4

.

Example 3.

I( f , y) =

∫ +∞

0

log(3x + 5)
cos(y x)
(1+ x)3

e−x d x , α= −
1
2

, γ= 0, δ =
3
2

.

Example 4.

I( f , y) =

∫ +∞

0

cos(x)x
1
3 (x + y)−

7
4 e−x d x , α= 0, γ=

1
3

, δ =
11
10

.

Example 5.

I( f , y) =

∫ +∞

0

(x2 + 1)
7
2

log(x + y)
x2 + y

e−x d x , α= −
1
2

, γ= 0, δ =
13
10

.
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Example 6.

I( f , y) =

∫ +∞

0

arctan(x)
21
4

log |x − y|
(x2 + y2)2

e−x d x , α= 0, γ= 0, δ =
3
2
+

1
100

.

5.1 Comments to the numerical tests

All the reported examples consider different types of kernels, functions and choices of y . The tables show that the Compounded
Sequence is always to be preferred to the Ordinary one since it allows to increase the number of exact digits, reduce the amount
of function evaluations and also decreasing the elapsed time. In some cases, for high values of m the Compounded Sequence kept
fixing even more correct digits, while its Ordinary counterpart experienced a loss of accuracy. This behavior probably depends
on a certain instability arising in the computation of high degree zeros of Laguerre polynomials by means of the Golub-Welsh
algorithm. About the order of convergence, all the obtained results are coherent with our theoretical estimates and in some cases
they are even better than what we expected. Furthermore, it is evident the importance of implementing truncation techniques
that ensure a significant reduction of the function evaluation numbers. For instance, this could be a really determinant factor in
the economy of the construction of the linear system corresponding to a Nyström-type method for the treatment of Fredholm
Integral Equations on the real semi-axis.

y= 1
Rule # f eval. Ordinary Sequence Rule # f eval. Compounded Sequence
I4 4 0.02 I4 4 0.02
I9 9 0.02108 Σ9 4 0.021
I16 14 0.021089 I16 14 0.021089
I33 22 0.02109315 Σ33 14 0.02109315
I64 31 0.0210931521 I64 31 0.0210931521
I129 45 0.021093152190035 Σ129 31 0.021093152190035

y= 6
Rule # f eval. Ordinary Sequence Rule # f eval. Compounded Sequence
I4 4 0.01 I4 4 0.01
I9 9 0.015 Σ9 4 0.015
I16 14 0.0158 I33 14 0.0158
I33 22 0.01589102 Σ33 14 0.015891023
I64 31 0.015891023255 I64 31 0.015891023255
I129 45 0.0158910232558858 Σ129 31 0.0158910232558858

Table 1: Example 1: Evaluation of I( f , y) with y = 1 and y = 6.

y= 15
Rule # f eval. Ordinary Sequence Rule # f eval. Compounded Sequence
I4 4 0.0002 I4 4 0.0002
I9 9 0.00023 Σ9 4 0.00023
I16 14 0.000233 I16 14 0.000233
I33 22 0.0002334783 Σ33 14 0.0002334783
I64 32 0.00023347838 I64 32 0.00023347838
I129 45 0.000233478386382 Σ129 32 0.00023347838638288
I256 64 0.000233478386382 I256 64 0.000233478386382
I513 91 0.00023347838638 Σ513 64 0.000233478386382885

y= 27
Rule # f eval. Ordinary Sequence Rule # f eval. Compounded Sequence
I4 4 0.0000 I4 4 0.0000
I9 9 0.00003 Σ9 4 0.00003
I16 14 0.0000399 I16 14 0.0000399
I33 22 0.00003994 Σ33 14 0.0000399480
I64 31 0.0000399480 I64 31 0.0000399480
I129 45 0.00003994809009 Σ129 31 0.000039948090099180
I256 64 0.00003994809009 I256 64 0.00003994809009
I513 91 0.00003994809009 Σ513 64 0.0000399480900991801

Table 2: Example 2: Evaluation of I( f , y) with y = 15 and y = 27.
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y= 40
Rule # f eval. Ordinary Sequence Rule # f eval. Compounded Sequence
I16 14 0.003 I16 14 0.003
I33 21 0.0035 Σ33 14 0.003598
I64 30 0.003598 I64 30 0.003598
I129 43 0.0035984 Σ129 30 0.003598479953
I256 60 0.003598479953 I256 60 0.003598479953
I513 85 0.00359847995384 Σ513 60 0.003598479953844

y= 90
Rule # f eval. Ordinary Sequence Rule # f eval. Compounded Sequence
I16 14 0.000 I16 14 0.000
I33 21 0.00071 Σ33 14 0.000718
I64 30 0.000718 I64 30 0.000718
I129 43 0.000718713 Σ129 30 0.000718713998
I256 60 0.000718713998 I256 60 0.000718713998
I513 85 0.0007187139985814 Σ513 60 0.0007187139985814

Table 3: Example 3: Evaluation of I( f , y) with y = 40 and y = 90.

y= 1/5
Rule # f eval. Ordinary Sequence Rule # f eval. Compounded Sequence
I4 4 1. I4 4 1.
I9 9 1.26 Σ9 4 1.26
I16 15 1.268 I16 15 1.268
I33 24 1.268838 Σ33 15 1.268838518
I64 34 1.26883851820 I64 34 1.26883851820
I129 48 1.268838518202 Σ129 34 1.268838518202609
I256 68 1.26883851820260 I256 68 1.26883851820260
I513 96 1.2688385182026 Σ513 68 1.2688385182026094

y= 1
Rule # f eval. Ordinary Sequence Rule # f eval. Compounded Sequence
I4 4 0.20 I4 4 0.20
I9 9 0.20 Σ9 4 0.20
I16 15 0.2069 I16 15 0.2069
I33 24 0.2069223 Σ33 15 0.20692235321
I64 34 0.206922353217 I64 34 0.206922353217
I129 48 0.2069223532172 Σ129 34 0.20692235321729
I256 68 0.20692235321729 I256 68 0.20692235321729
I513 96 0.206922353217292 Σ513 68 0.206922353217292

Table 4: Example 4: Evaluation of I( f , y) with y = 1
5 and y = 1.

6 The proofs
With Q2m+1 and {zi}2m+1

i=1 defined in (6), in the proof we use the Lagrange expression

L∗2m+2(w, f , x) =
j
∑

k=1

Q2m+1(x)(4m− x)
Q′2m+1(x)(4m− zk)(x − zk)

f (zk),

equivalent to (5).

In the next the following two estimates will be needed:

|Q2m+1(x)|e−x
�

x+
C
m

�α+ 1
2
q

|4m− x |+ Cm
1
3 ≤ C, 0≤ x ≤ C(4m+m

1
3 ), (25)

1
|Q′2m+1(zk)|u(zk)

∼
p

m
w(zk)ϕ(zk)

u(zk)
∆zk, k ≤ j, (26)

with j defined in (4). Their proof is omitted, since deducible by [31] (see also [16, (3.3)]) and [25, (40)].
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y= 3/4
Rule # f eval. Ordinary Sequence Rule # f eval. Compounded Sequence
I16 16 247.719 I16 16 247.719
I33 27 247.7193111 Σ33 16 247.7193111
I64 40 247.719311110 I64 40 247.719311110
I129 57 247.719311109 Σ129 40 247.7193111094
I256 82 247.7193111094 I256 82 247.7193111094
I513 116 247.71931110943 Σ513 82 247.719311109438

y= 100
Rule # f eval. Ordinary Sequence Rule # f eval. Compounded Sequence
I16 16 162.687 I16 16 162.687
I33 27 162.687271 Σ33 16 162.6872713
I64 40 162.68727132 I64 40 162.68727132
I129 57 162.68727132 Σ129 40 162.687271325570
I256 81 162.687271325 I256 81 162.687271325
I513 116 162.6872713255 Σ513 81 162.6872713255708

Table 5: Example 5: Evaluation of I( f , y) with y = 3
4 and y = 100.

y= 2/3
Rule # f eval. Ordinary Sequence Rule # f eval. Compounded Sequence
I16 14 −0.05 I16 14 −0.05
I33 21 −0.059 Σ33 14 −0.059
I64 29 −0.059 I64 29 −0.059
I129 42 −0.0597 Σ129 29 −0.0597
I256 59 −0.05971006 I256 59 −0.05971006
I513 84 −0.059710068504 Σ513 59 −0.05971006850436

y= 5
Rule # f eval. Ordinary Sequence Rule # f eval. Compounded Sequence
I4 4 0.000 I4 4 0.000
I9 9 0.0005 Σ9 4 0.0005
I16 14 0.000574 I16 14 0.000574
I33 21 0.0005742 Σ33 14 0.000574
I64 29 0.00057420 I64 29 0.00057420
I129 42 0.00057420677 Σ129 29 0.0005742067
I256 59 0.0005742067786936 I256 59 0.0005742067786936
I513 84 0.000574206778693 Σ513 59 0.0005742067786936

Table 6: Example 6: Evaluation of I( f , y) with y = 2
3 and y = 5.

Moreover, we recall a formula for the inversion of the integration order related to the Hilbert transform HB(g, t) of a function g
on the compact set B (see, e.g., [33])

HB(g, t) =

∫

B

g(x)
x − t

d x .

Indeed, if G ∈ L∞(B), F log+ F ∈ L1(B), then the following useful estimate holds true

∥GHB(F)∥1 ≤ C +




F log+ F






1 , C ̸= C(F). (27)

Proof of Theorem 2. First of all we prove that for any f ∈ Cu, under the assumptions (19),

sup
y∈S





L∗2m+2(w, f )kyρ






1
≤ C∥ f u∥∞, (28)

with 0< C ̸= C(m, f ).
To prove (28), fixed y ∈ S and set gm = sgn

�

L∗2m+2(w, f )ky

�

, we have





L∗2m+2(w, f )kyρ






1
=

�

∫ 4m

0

+

∫ 8m

4m

+

∫ +∞

8m

�

L∗2m+2(w, f , x)ky(x)gm(x)ρ(x) d x

=: I1(y) + I2(y) + I3(y) (29)
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Defining

Π∗(t) =

∫ 4m

0

Q2m+1(x)(4m− x)q(x)−Q2m+1(t)(4m− t)q(t)
(x − t)

gm(x)ky(x)ρ(x)

q(x)
d x ,

being q an arbitrary polynomial of degree ml, l a fixed integer, by (26) we have

I1(y) =

�

�

�

�

�

j
∑

k=1

f (zk)
Q′2m+1(zk)(4m− zk)

Π∗(zk)

�

�

�

�

�

≤ C
∥ f u∥∞p

m

j
∑

k=1

∆zk

z
α+ 1

2−γ
k

(1+ zk)δ
|Π∗(zk)|.

Taking into account Π∗ ∈ P2m+1+ml , we use [7, Lemma 4.3] (see also [26, Lemma 6.4 ]) with p = 1, and θ1 > θ s.t. 4mθ < z j <
4mθ1. Hence we get

I1(y) ≤ C
∥ f u∥∞p

m

∫ 4mθ1

z1

tα+
1
2−γ

(1+ t)δ
|Π∗(t)| d t

≤ C
∥ f u∥∞p

m

¨

∫ 4mθ1

z1

w(t)ϕ(t)
u(t)

�

�H[0,4m](Fm,y , t)
�

� d t

+

∫ 4mθ1

z1

w(t)ϕ(t)
u(t)

�

�Q2m+1(t)(4m− t)q(t)H[0,4m](Gm,y , t)
�

� d t

«

=: C∥ f u∥∞
�

I1,1(y) + I1,2(y)
	

, (30)

being

Fm,y(t) = Q2m+1(t)e
−t
�

t +
C
m

�α+ 1
2

(4m− t)
gm(t)ky(t)ρ(t)

e−t
�

t + C
m

�α+ 1
2

,

Gm,y(t) =
gm(t)ky(t)ρ(t)

q(t)
.

By (25) we deduce for 0≤ t ≤ 4m
|Fm,y(t)|
p

m
≤ C

ρ(t)
w(t)ϕ(t)

|ky(t)| ∈ L log+ L

and under the assumptions in (19), by using (27)

I1,1(y)≤ C + C












kyρ

wϕ
log+
�

kyρ

wϕ

�











1

≤ C.

Hence, we can conclude
sup
y∈S

I1,1(y)≤ C. (31)

In order to estimate I1,2 by a result in [19], we choose the polynomial q ∈ Pml , such that q(x)∼ e−x xα+
1
2 , being α+ 1

2 ≥ 0. By
(25) for x ∈ [z1, 4mθ1], we have

|Q2m+1(t)(4m− t)q(t)| ≤ C
p

4m.

Therefore

I1,2(y) ≤ C
∫ 4mθ1

z1

w(t)ϕ(t)
u(t)

�

�H[0,4m](Gm,y , t)
�

� d t

and taking into account
�

�Gm,y(t)
�

�≤ C
ky(t)ρ(t)

w(t)ϕ(t)
∈ L log+ L,

by (27) once again, under the assumptions (19), we get

sup
y∈S

I1,2(y)≤ C + C sup
y∈S













kyρ

wϕ
log+
�

kyρ

wϕ

�











1

≤ C. (32)

Combining (31),(32) with (30) it follows
sup
y∈S

I1(y)≤ C∥ f u∥∞. (33)
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Now we estimate I2(y). By (26),

I2(y) ≤
∫ 8m

4m

|L∗2m+2(w, f , x)ky(x)|ρ(x) d x

≤ C
∥ f u∥∞p

m

j
∑

k=1

∆zk
w(zk)ϕ(zk)

u(zk)

∫ 8m

4m

�

�Q2m+1(x)ky(x)
�

� (x − 4m)ρ(x)

x − zk
d x

and being x − zk > (1− θ )4m,






wϕ
u







∞ ≤ C and
∑ j

k=1∆zk ≤ 4m, we get

I2(y)≤ C
∥ f u∥∞p

m

∫ 8m

4m

�

�Q2m+1(x)ky(x)
�

� (x − 4m)ρ(x)d x .

Now, by (25)

|Q2m+1(x)|(x − 4m)ρ(x)≤ C
(x − 4m)
Æ

x − 4m+m
1
3

ρ(x)
w(x)ϕ(x)

and using
(x − 4m)
Æ

x − 4m+m
1
3

≤ C
p

m,

it follows

I2(y)≤ C∥ f u∥∞

∫ +∞

0

�

�ky(x)
�

�

ρ(x)
w(x)ϕ(x)

d x ≤ C∥ f u∥∞,

under the first assumption in (19) and hence

sup
y∈S

I2(y)≤ C∥ f u∥∞

∫ +∞

0

�

�ky(x)
�

�

ρ(x)
w(x)ϕ(x)

d x ≤ C∥ f u∥∞, (34)

In the end we estimate I3(y). By (26) we have

I3(y) ≤
∫ +∞

8m

|L∗2m+2(w, f , x)ky(x)|ρ(x) d x

≤ C
∥ f u∥∞p

m

j
∑

k=1

∆zk
w(zk)ϕ(zk)

u(zk)

�

�

�

�

�

∫ +∞

8m

Q2m+1(x)(x − 4m)ky(x)ρ(x)

x − zk
d x

�

�

�

�

�

≤ C
∥ f u∥∞p

m
max
x≥8m
|Q2m+1(x)|w(x)ϕ(x)

p
x − 4m

×
j
∑

k=1

∆zk
w(zk)ϕ(zk)

u(zk)

∫ +∞

8m

|ky(x)|
ρ(x)

w(x)ϕ(x)

p
x − 4m
x − zk

d x .

Since x − zk ≥ C4m, and by using [17, Lemma 2.2]

max
x≥8m

�

�Q2m+1(x)
p

x − 4m w(x)ϕ(x)
�

�≤ Ce−Am max
x≤4mθ

�

�Q2m+1(x)
p

4m− x w(x)ϕ(x)
�

�≤ C,

we get

I3(y) ≤ C
∥ f u∥∞

m

j
∑

k=1

∆zk
w(zk)ϕ(zk)

u(zk)

∫ +∞

8m

�

�ky(x)
�

�ρ(x)

w(x)ϕ(x)
d x ,

and taking into account the assumptions (19), we can conclude

sup
y∈S

I3(y)≤ C∥ f u∥∞

∫ +∞

0

w(t)ϕ(t)
u(t)

d t ≤ C∥ f u∥∞. (35)

Estimate (28) follows by combining (33), (34), (35) with (29).
We omit the proof of (20) since it can be easily deduced by standard arguments by (28). In order to prove (21), let eP ∈ P̃∗2m+1, s.t.

∥( f − eP)u∥∞ = inf
eP∈P̃∗2m+1

∥( f − eP)u∥∞ =: eE2m+1( f )u.
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Then

|E2m+1( f )| ≤
∫ +∞

0

�

�( f (x)− eP(x))ky(x)
�

�ρ(x) d x

+

∫ +∞

0

�

�L∗2m+2(w, f − eP, x)ky(x)
�

�ρ(x) d x

≤ ∥( f − eP)u∥∞

∫ +∞

0

�

�ky(x)
�

�ρ(x)

u(x)
d x + C∥( f − eP)u∥∞

≤ C Ẽ2m+1( f )u

Recalling that [18]

Ẽ2m+1( f )u ≤ C
�

EM ( f )u + e−Am∥ f u∥∞
	

,

where M =
�

2m
�

θ
1+θ

�β
�

and the constants 0< A ̸= A(m, f ), 0< C ̸= C(m, f ), estimate (21) follows.
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