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Abstract

We investigate the order of magnitude of the Lebesgue constant of barycentric interpolation on arbitrary
nodes, and explore its role in the order of approximation.
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1 Introduction

For each n = 1, 2, . . . let Xn := {0 = x0n < x1n < · · ·< xnn = 1} be an arbitrary partition of the interval I := [0, 1], and let f (x) be
a function defined on I . The so-called barycentric interpolation operator

Bn,0( f , x) :=

n
∑

k=0

(−1)k f (xk)
x−xk

n
∑

k=0

(−1)k
x−xk

, n= 1, 2, . . . (1)

has been introduced in [1], and extensively investigated by several authors (for a comprehensive survey on the subject, see
J.-P. Berrut and G. Klein [2]). Note that each xk may depend on n; we use this short notation instead of xkn for simplicity of the
formulas.

The most important properties of this linear operator are the order of magnitude of its norm (the Lebesgue constant), and
the convergence-divergence behavior as means of approximation. Of course, everything depends on the choice of the nodes xk.

The error of uniform approximation by this operator is usually measured as a function of the quantity

hn := max
0≤k≤n−1

(xk+1 − xk)≥
1
n

. (2)

The best known error estimate is O(hn), for twice differentiable functions (see Floater and Hormann [6], Theorem 3), which
yields O(1/n) for equidistant nodes. It is conjectured that the latter is the saturation order of the operator Bn,0( f , x) even for
equidistant nodes (cf. Mastroianni and Szabados [8], Conjecture 2).

In order to increase the rate of approximation, Floater and Hormann [6] generalized the operator (1) in the following way:
let d be a fixed nonnegative integer, and let

Bn,d( f , x) :=

n−d
∑

k=0
λi(x)pi( f , x)

D(x)
, n≥ d (3)
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where

D(x) :=
n−d
∑

i=0

λi(x), λi(x) := (−1)i
i+d
∏

k=i

1
x − xk

, i = 0, . . . , n− d , (4)

and

pi( f , x) :=
i+d
∑

k=i

f (xk)`i,k(x), i = 0, . . . , n− d , (5)

is the dth degree Lagrange interpolating polynomial of f (x) based on the nodes {xk}i+d
k=i with the fundamental polynomials

`i,k(x) :=
i+d
∏

s=i
s 6=k

x − xs

xk − xs
, k = i, . . . , i + d; i = 0, . . . , n− d . (6)

Obviously, (1) is the special case d = 0 of (3).

An easy calculation yields that this operator can be written in the form

Bn,d( f , x) =

n
∑

j=0

(−1)d+ j f (x j )
x−x j

min( j,n−d)
∑

i=max(0, j−d)

i+d
∏

s=i
s 6= j

1
|x j−xs |

D(x)
, n≥ d .

When we know some continuity properties of the function or its derivative, the so-called Lebesgue constant, i.e. the operator
norm, plays an important role. For the operators (1) and (3) it is readily seen to be

Λd(Xn) := sup
x∈I

n
∑

j=0

1
|x−x j |

min( j,n−d)
∑

i=max(0, j−d)

i+d
∏

s=i
s 6= j

1
|x j−xs |

|D(x)|
, n≥ d . (7)

(Here the empty product in case d = 0 is defined as 1.)

The purpose of this paper is to give estimates for the Lebesgue constants, as well as error estimates of the approximation by
these barycentric operators.

2 Estimates for the Lebesgue constant

For equidistant nodes Xn = {xk = k/n, k = 0, 1, . . . , n} and d = 0, Len Bos et al. ([3], Theorems 1 and 2), proved the estimates

2n
4+ nπ

log(n+ 1)≤ Λ0(Xn)≤ log n+ 2 .

G. Halász proved that for any system of nodes Xn

Λ0(Xn)≥
1
8

log n, n= 2, 3, . . .

holds (see Vértesi [9], Theorem 3.1).

Using a similar but more involved method, we prove the following generalization of this result.

Theorem 2.1. For any d ≥ 0 and any system of nodes Xn we have

Λd(Xn)≥
1

2(d + 1)!
log

n
4

, n= 5,6, . . . . (8)

Apart from d, this lower estimate is sharp in n, since similar upper estimates are shown for some special nodes (like
quasi-equidistant, extended Chebyshev and Gauss–Lobato nodes); see e.g. [7] and [5].

Proof. Let k be such that
hn = xk+1 − xk

and let yk =
xk+xk+1

2 . Without loss of generality we may assume that n/2≤ k ≤ n.
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First we give an upper bound for the denominator D(x) in (4) at x = yk:

|D(yk)|=

�

�

�

�

�

n−d
∑

i=0

λi(yk)

�

�

�

�

�

=

�

�

�

�

�

k−d−1
∑

i=0

λi(yk)

�

�

�

�

�

+
min(k+1,n−d)

∑

i=max(0,k−d)

|λi(yk)|+

�

�

�

�

�

n−d
∑

i=min(k+2,n−d+1)

λi(yk)

�

�

�

�

�

=:D1(yk) + D2(yk) + D3(yk) ,

with the understanding that
∑b

a = 0 whenever a < b. Using the fact that in D1(yk) the λi(yk)’s form an alternating sequence
increasing in absolute value when i increases, we get

D1(yk)≤ |λk−d−1(yk)| ≤
1

(yk − xk−1)d+1
≤
�

2
h n

�d+1

(if d + 1≤ k ≤ n− 1) , (9)

while D1(yk) = 0 when 0≤ k ≤ d. Similarly, in D3(yk) the λi(yk)’s form an alternating sequence decreasing in absolute value
when i increases, whence

D3(yk)≤ |λk+2(yk)| ≤
1

(xk+2 − yk)d+1
≤
�

2
h n

�d+1

(if 0≤ k ≤ n− d − 1) , (10)

while D3(yk) = 0 when n− d ≤ k ≤ n− 1. In D2(yk), each λi(yk) contains either the factor yk − xk = hn/2 or xk+1 − yk = h/2,
thus

D2(yk)≤ (d + 2)
�

2
h n

�d+1

. (11)

Summarizing the estimates we obtain

D(yk)≤ (d + 4)
�

2
h n

�d+1

. (12)

Next, we estimate the numerator

N(x) :=
n
∑

j=0

M j

|x − x j |
, where M j :=

min( j,n−d)
∑

i=max(0, j−d)

i+d
∏

s=i
s 6= j

1
|x j − xs|

. (13)

We have
i+d
∏

s=i
s 6= j

1
|x j − xs|

≥

� d
j−i

�

d!hd
n

, 0≤ i ≤ j, d ≤ 0≤ k− 1 . (14)

Using the inequality
|yk − x j | ≤ (k− j)hn (d ≤ j ≤ k− 1)

we obtain from (13) and (14),

N(yk)≥
1

d!hd+1
n

∑

0≤ j≤k−1

1
k− j

j
∑

i=0

�

d
j − i

�

≥
2d

d!hd+1
n

log
k
2
≥

2d

d!hd+1
n

log
n
4

.

This together with (12) yields the statement of the theorem, since by (2), hn ≥ 1/n. �

It is well-known that the O(log n) behavior for the Lebesgue constant in case of equidistant nodes is attained (for d = 0 see
L. Bos et al. [3], Theorem 2, and for d ≥ 1, L. Bos et al. [4], Theorem 1).

From a numerical point of view, the most important case is the equidistant nodes. However, theoretically it is equally
interesting to investigate how large the Lebesgue constant can be for some other systems of nodes. The analogous situation for
Lagrange interpolation is clear: if we move two adjacent nodes arbitrarily close to each other, then the Lebesgue constant can
be arbitrarily large. The following example shows that in case of barycentric interpolation the situation is similar, although the
construction of a system of nodes with arbitrarily large Lebesgue constant is not that simple.

Theorem 2.2. Let an, n = 1, 2, . . . , be an arbitrary sequence of positive numbers. Then there exists a sequence of nodes Xn, n = 1, 2, . . . ,
such that

Λd(Xn)≥ cd an, n= 1,2, . . .

where cd > 0 depends only on d ≥ 0.

Dolomites Research Notes on Approximation ISSN 2035-6803



Szabados 41

Proof. Evidently, we may assume that an ≥ (2n)
d+1

2 , n= 1,2, . . . . Let

xk =
k

a
2

d+1
n

, k = 0,1, . . . , n− 2; xn−1 = 1−
1

a
2

d+1
n

when n− d is odd, and

xk =
k

a
2

d+1
n

, k = 0,1, . . . , n− 1

when n− d is even, and of course xn = 1 in both cases. For the denominator in (7) we obtain

�

with y = n−1

a
2

d+1
n

+ 1

a
1

d+1
n

�

|D(y)| ≤
[ n−d

2 ]−1
∑

k=0

|λ2k(y) +λ2k+1(y)|+
n−d
∑

i=2[ n−d
2 ]
|λi(y)|

≤
[ n−d

2 ]−1
∑

k=0

x2k+d+1 − x2k
2k+d+1
∏

s=2k
(y − xs)

+ cd a
d
d d+1
n ≤

na
d+2
d+1
n

a
2

d+1
n

+ cd a
d

d+1
n ≤ cd na

d
d+1
n .

As for the numerator, we obtain

N(y) =
n−d
∑

j=d

1
|y − x j |

d
∑

i= j−d

i+d
∏

s=i
s 6= j

a
2

d+1
n

| j − s|
≥ cd

n−d
∑

j=d

a
1

d+1
n a

2d
d+1
n ≤ cd na

2d+1
d+1

n

whence

Λd(Xn)≥
N(y)
D(y)

≥ cd an . �

3 Order of approximation

Concerning the order of approximation, Floater and Hormann ([6], Theorems 2 and 3) proved the following. Let

βn =

(

1+ max
1≤i≤n−2

min
�

xi+1−xi
xi−xi−1

, xi+1−xi
xi+2−xi+1

�

if d = 0,

1 if d ≥ 1 .

Then for all f (d+2) ∈ C[0,1] it holds

‖ f − Bn,d( f )‖ ≤ βnhd+1
n

�

‖ f (d+2)‖
d + 2

+ [1+ (−1)n−d]
‖ f (d+1)‖

d + 1

�

. (15)

We intend to give an error estimate where the Lebesgue constant Λd(Xn) of the operator Bn,d appears, and the class of
functions is wider than in the above estimate (15). In fact, in the next theorem we assume only the continuity of f (d) instead of
the boundedness of f (d+2) as above.

Theorem 3.1. For any system of nodes Xn we have

‖ f − Bn,d( f )‖ ≤ hd
nω( f

(d), hn)
�

(d + 1)(d + 2)
2d−1

Λd(Xn) + [1+ (−1)n−d]βn

�

where ω( f (d), ·) is the modulus of continuity of f (d) ∈ C[0, 1].

Proof. Using the formula (14) from [6], as well as the notation (4), we have

E(x) := D(x)| f (x)− Bn,d( f , x)|=

�

�

�

�

�

n−d
∑

i=0

(−1)i f [x i , . . . , x i+d , x]

�

�

�

�

�

(16)

≤
[ n−d−1

2 ]
∑

i=0

| f [x2i , . . . , x2i+d , x]− f [x2i+1, . . . , x2i+d+1, x]|

+
1+ (−1)n−d

2
· | f [xn−d , . . . , xn, x]|
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where f [. . . ] is the divided difference of order d + 1 of f with the corresponding nodes. Here, using the definition of divided
differences we can reduce the order of divided differences to d:

f [x2i , . . . , x2i+d , x] =
f [x2i+1, . . . , x2i+d , x]− f [x2i , . . . , x2i+d]

x − x2i
,

f [x2i+1, . . . , x2i+d+1, x] =
f [x2i+1, . . . , x2i+d , x]− f [x2i+1, . . . , x2i+d+1]

x − x2i+d+1
,

and

f [xn−d , . . . , xn, x] =
f [xn−d+1, . . . , xn, x]− f [xn−d , . . . , xn]

x − xn−d
.

In the second formula we also used the symmetry of the divided differences. Thus

E(x)≤
[ n−d−1

2 ]
∑

i=0

| f [x2i+1, . . . , x2i+d , x]− f [x2i , . . . , x2i+d]|(x2i+d+1 − x2i)
|(x − x2i)(x − x2i+d+1)|

(17)

+
[ n−d−1

2 ]
∑

i=0

| f [x2i , . . . , x2i+d]− f [x2i+1, . . . , x2i+d+1]|
|x − x2i+d+1|

+
1+ (−1)n−d

2
·
| f [xn−d+1, . . . , xn, x]− f [xn−d , . . . , xn]|

|x − xn−d |

≤
1
d!

[ n−d−1
2 ]
∑

i=0

�

| f (d)(ξi)− f (d)(ηi)|(d + 1)hn

|(x − x2i)(x − x2i+d+1)|
+
| f (d)(ηi)− f (d)(ζi)|
|x − x2i+d+1|

�

+
1+ (−1)n−d

2
·
| f (d)(α)− f (d)(β)|

d!|x − xn−d |

≤
1
d!

[ n−d−1
2 ]
∑

i=0

�

(d + 1)hnω( f (d), |ξi −ηi |)
|(x − x2i)(x − x2i+d+1)|

+
ω( f (d), |ηi − ζi |)
|x − x2i+d+1|

�

+
1+ (−1)n−d

2
·
ω( f (d), |α− β |)

d!|x − xn−d |
,

where the ηi , ζi , α, β are intermediate values in the corresponding intervals,

|ξi −ηi | ≤max(x2i , . . . , x2i+d+1, x)−min(x2i , . . . , x2i+d+1, x)

=max((d + 1)hn, |x − x2i |, |x − x2i+d+1|) =: M ,

|ηi − ζi | ≤ x2i+d+1 − x2i ≤ (d + 1)hn

and
|α− β | ≤ 1−min(x , xn−d) .

Now if M = (d + 1)hn, then

(d + 1)hnω( f (d), |ξi −ηi |)
|(x − x2i)(x − x2i+d+1)|

≤ (d + 1)2ω( f (d), hn)
§

1
|x − x2i |

+
1

|x − x2i+d+1|

ª

,

while if M = |x − x2i | ≥ (d + 1)hn then using the inequality

ω( f (d), T )≤ 2Tω( f (d), t)/t (0< t ≤ T ) (18)

we get
(d + 1)hnω( f (d), |ξi −ηi |)
|(x − x2i)(x − x2i+d+1)|

≤
2(d + 1)ω( f (d), hn)
|x − x2i+d+1|

.

Similarly, if M = |x − x2i+d+1| ≥ (d + 1)hn, then

(d + 1)hnω( f (d), |ξi −ηi |)
|(x − x2i)(x − x2i+d+1)|

≤
2(d + 1)ω( f (d), hn)

|x − x2i |
.

Also
ω( f (d), |ηi − ζi |)
|x − x2i+d+1|

≤
(d + 1)ω( f (d), hn)

|x − x2i |
.
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Next, if 0≤ x ≤ xn−d , then |α− β | ≤ 1− x and we obtain

| f (d)(α)− f (d)β)|
|x − xn−d |

≤
ω( f (d), 1− xn−d)

xn−d − x
+
ω( f (d), xn−d − x)

xn−d − x

≤
(d + 1)ω( f (d), hn)

xn−d − x
+
ω( f (d), xn−d − x)

xn−d − x
.

Here we estimate the second term as

ω( f (d), xn−d − x)
xn−d − x

≤

(

ω( f (d) ,hn)
xn−d−x if xn−d − x ≤ hn,

2ω( f (d) ,hn)
hn

if xn−d − x ≥ hn ,

where in the last line we have used the inequality (18) again.

Finally, if 0≤ xn−d ≤ x < 1, then |α− β | ≤ 1− xn−d ≤ (d + 1)hn, and hence

| f (d)(α)− f (d)β)|
|x − xn−d |

≤
(d + 1)ω( f (d), hn)

x − xn−d
.

Collecting these estimates, we obtain in all cases

| f (d)(α)− f (d)β)|
|x − xn−d |

≤
(d + 2)ω( f (d), hn)
|x − xn−d |

+
2ω( f (d), hn)

hn
.

Now substituting the obtained estimates in (17) we get

E(x)≤
(d + 1)(d + 2)

d!
ω( f (d), hn)

[ n−d−1
2 ]
∑

i=0

�

1
|x − x2i |

+
1

|x − x2i+d+1|

�

(19)

+[1+ (−1)n−d]

�

(d + 2)ω( f (d), hn)
d!|x − xn−d |

+
ω( f (d), hn)

d!hn

�

≤
2(d + 1)(d + 2)

d!
ω( f (d), hn)

n
∑

j=0

1
|x − x j |

+ [1+ (−1)n−d]
ω( f (d), hn)

d!hn
.

To estimate M j in (13) we use (2) to get

M j ≥
min( j,n−d)
∑

i=max(0, j−d)

1
( j − i)!(i + d − j)!hd

n

≥
2d

d!hd
n

.

Thus (19) yields

E(x)≤
(d + 1)(d + 2)

2d−1
hd

nω( f
(d), hn)

n
∑

j=0

M j

|x − x j |
+ [1+ (−1)n−d]

ω( f (d), hn)
d!hn

.

Using the estimate

|D(x)| ≥
1

d!hd+1
n (1+ βn)

(see [6], p. 323 and the inequality (17) there) we finally obtain

| f (x)− Bn,d( f , x)≤
(d + 1)(d + 2)

2d−1
hd

nω( f
(d), hn)

E(x)
D(x)

+[1+ (−1)n−d]βnhd
nω( f

(d), hn)

≤ hd
nω( f

(d), hn)
�

(d + 1)(d + 2)
2d−1

Λd(Xn) + [1+ (−1)n−d]βn

�

.

�
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4 Approximation of piecewise convex/concave functions for equidistant nodes

The presence of the Lebesgue constant in the previous theorem causes an an extra factor in the error estimate which is at least
O(log n). Under some mild restriction on the structure of a continuous function, in case of d = 0 we can eliminate the effect of
the Lebesgue constant as shown in the next theorem.

Theorem 4.1. Let 0= a0 < a1 < · · ·< as = 1 be a fixed partition of the interval [−1, 1], and assume that f ∈ C[0, 1] is convex or
concave in each of the intervals I j := [a j−1, a j], j = 1,2, . . . , s. Then for the equidistant nodes En = {k/n, k = 0,1, . . . , n} we have

‖ f − Bn,0( f )‖ ≤ csω

�

f ,
1
n

�

where the constant cs > 0 depends only on s.

Remark. This theorem has been stated in [8], but in the case s ≥ 2 the proof contained an error.1

Lemma 4.2. Let f (x) be a convex or concave function in the finite interval [a, b], and let Xm = {z0 < · · · < zm} ⊂ [a, b] be an
arbitrary system of nodes. Then we have

�

�

�

�

�

m
∑

k=0

(−1)k f [zk, x]

�

�

�

�

�

≤ | f [z0, x]|+ | f [zm, x]|, x ∈ [a, b] \ Xm . (20)

Proof. Denoting bk := f [zk, x], k = 0, . . . , m, we have
�

�

�

�

�

m
∑

k=0

(−1)k f [zk, x]

�

�

�

�

�

=

�

�

�

�

�

m
∑

k=0

(−1)k bk

�

�

�

�

�

=
1
2

�

�

�

�

�

b0 +
m−1
∑

k=0

(−1)k(bk − bk+1) + (−1)m bm

�

�

�

�

�

≤
1
2

�

|b0|+
m−1
∑

k=0

|bk − bk+1|+ |bm|

�

.

By assumption, f (x) is convex (or concave) on [a, b], therefore the sign of

bk − bk+1 = f [zk, x]− f [zk+1, x] = − f [zk, zk+1, x](zk+1 − zk)

is constant, whence the telescoping sum yields the statement of the lemma. �

Proof of Theorem 4. Using (16) with d = 0 we obtain

| f (x)− Bn,0( f , x)|=
1

D(x)

�

�

�

�

�

n
∑

k=0

(−1)k f [xk, x]

�

�

�

�

�

(21)

where D in (4) takes the form

D(x) :=

�

�

�

�

�

n
∑

k=0

(−1)k

x − xk

�

�

�

�

�

. (22)

Fix an x ∈ [a j−1, a j), and let x i = i/n be a nearest node to x . If x < x i then

D(x)>

�

�

�

�

1
x − x i

−
1

x − x i+1

�

�

�

�

=
1

n(x i − x)(x i − x + 1/n)
≥

2
3(x i − x)

.

Evidently, a similar inequality holds if x > x i , i.e. we have

D(x)≥
2

3|x − x i |
. (23)

Next we give an upper estimate for the sum on the right hand side of (21). Individual terms of this sum can be easily
estimated, since using (18) we get

| f [xk, x]| ≤
ω( f , |x − xk|)
|x − xk|

≤
2ω( f , 1/n)
|x − x i |

, k = 0, . . . , n .

1The author is grateful to Professor Walter F. Mascarenhas (Sao Paolo) for pointing out this mistake.

Dolomites Research Notes on Approximation ISSN 2035-6803



Szabados 45

Based on this estimate, separating the nodes in the 1/n-neighborhood of the a j ’s, we partition the rest of the sum into
several parts according to the position of the nodes:

�

�

�

�

�

n
∑

k=0

(−1)k f [xk, x]

�

�

�

�

�

(24)

≤

�

�

�

�

�

 

j−1
∑

`=1

∑

a`−1+1/n≤xk≤a`−1/n

+
∑

xk∈I j

+
s
∑

`= j+1

∑

a`−1+1/n≤xk≤a`−1/n

!

(−1)k f [xk, x]

�

�

�

�

�

+
4sω( f , 1/n)
|x − x i |

.

To estimate the middle sum here, we use the Lemma on the interval I j (with equidistant nodes). Denoting the smallest and
largest node in I j by xµ and xν, respectively, we get

�

�

�

�

�

∑

xk∈I j

(−1)k f [xk, x]

�

�

�

�

�

≤ | f [xµ, x]|+ | f [xν, x]| (25)

≤ 2 max
0≤k≤n

ω( f , |x − xk|)
|x − xk|

≤
4ω( f , |x − x i |)
|x − x i |

≤
4ω( f , 1/n)
|x − x i |

,

where we used inequality (18) with T = |x − xk| ≥ t = |x − x i |.

Finally, we estimate the rest of the sums in (24). Since f (x) is convex (or concave) in any interval [a`−1+1/n, a`−1/n], 1≤
`≤ j − 1, choosing the largest node xu in this interval and writing y` = xu − 1/(2n) we obtain again by the Lemma

�

�

�

�

�

∑

a`−1+1/n≤xk≤a`−1/n

(−1)k f [xk, y`]

�

�

�

�

�

≤ cs +
ω( f , xu − y`)

y` − xu
≤ csnω( f , 1/n) ,

1≤ `≤ j − 1 . Thus
�

�

�

�

�

∑

a`−1+1/n≤xk<a`−1/n

(−1)k f [xk, x]

�

�

�

�

�

≤

�

�

�

�

�

∑

a`−1+1/n≤xk≤a`−1/n

(−1)k( f [xk, x]− f [xk, y`])

�

�

�

�

�

+ 2csnω( f , 1/n) .

Now
�

�

�

�

�

∑

a`−1+1/n≤xk≤a`−1/n

(−1)k( f [xk, x]− f [xk, y`])

�

�

�

�

�

≤ | f (x)− f (y`)| ·

�

�

�

�

�

∑

a`−1+1/n≤xk≤a`−1/n

(−1)k

x − xk

�

�

�

�

�

+(x − y`)

�

�

�

�

�

∑

a`−1+1/n≤xk≤a`−1/n

(−1)k f [xk, y`]
x − xk

�

�

�

�

�

.

Here

| f (x)− f (y`)| ·

�

�

�

�

�

∑

a`−1+1/n≤xk≤a`−1/n

(−1)k

x − xk

�

�

�

�

�

≤
| f (x)− f (y`)|

x − xu

≤
| f (x)− f (xu)|

x − xu
+
| f (xu)− f (y`)|

xu − y`
≤

2ω( f , 1/n)
|x − x i |

+ 2nω( f , 1/n) .

Denoting the smallest node greater than or equal to a`−1 + 1/n by xv , we get by Abel summation

(x − y`)

�

�

�

�

�

∑

a`−1+1/n≤xk≤a`−1/n

(−1)k f [xk, y`]
x − xk

�

�

�

�

�

≤
x − y`
x − xu

max
v≤t≤u

�

�

�

�

�

t
∑

k=v

(−1)k f [xk, y`]

�

�

�

�

�

≤ | f [xv , y`]|+ max
v≤t≤u

| f [x t , y`]| ≤ 2cs + 2 max
v≤t≤u

ω( f , y` − x t)
y` − x t

≤ 2csnω( f , 1/n) .
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Collecting the above estimates we get
�

�

�

�

�

∑

a`−1≤xk≤a`

(−1)k f [xk, x]

�

�

�

�

�

≤ cs

�

nω( f , 1/n) +
ω( f , 1/n)
|x − x i |

�

, `= 1,2, . . . , j .

Evidently, the same estimates hold for j + 1≤ `≤ s.

Thus we obtain from (21) and (23),

| f (x)− Bn,0( f , x)| ≤
cs

|D(x)|

�

nω( f , 1/n) +
ω( f , 1/n)
|x − x i |

�

≤ csω( f , 1/n), x ∈ I .
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