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Abstract

A method for the detection of fault lines of a surface only known at scattered data is
presented. In particular, we use a technique for the detection of fault points, picking out
and collecting in a set all the data points close to fault lines. To select these points we use
a cardinal radial basis interpolation formula. Then, applying a powerful refinement tech-
nique, we discuss different methods for accurate approximation of fault lines, considering
procedures based on polygonal line, least squares, and best l∞ approximations. Moreover,
an adaptive method enables us to locally increase (step by step) the number of nodes to be
dealt with in the detection process, reducing considerably the entire number of data points
to be considered. Numerical results point out the efficiency of our approaches.

Keywords: surface discontinuities, fault lines, detection and approximation methods, ra-
dial basis functions, interpolation algorithms, scattered data.
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1 Introduction

We consider the problem of the detection and approximation of fault lines of a surface only
known on a finite number of scattered data. Predicting the location of fault lines and obtaining
accurate approximations of them enable the construction of constrained approximation models
of the surface overcoming common problems such as over-smoothing.

Some applications require only a rough knowledge of faults, in the sense that their number,
position, and behaviour are significant, but accurate approximations of fault lines are not so
important. This may be the case, for example, in the oil industry, where fault detection provides
useful information on the occurrence of oil reservoirs (see, e.g. [23, 20, 21]).

On the other hand, other applications call for accurate approximations of fault lines, as it
happens in the reconstruction of discontinuous surfaces when images are required to be highly
reliable. As an example, we may refer to medical images by magnetic resonance in which
discontinuity lines may indicate the presence of some pathology (see, e.g. [30]). Also in some
geophysical problems, a faithful representation of irregular surfaces by an accurate data fitting
process is of great importance (see, e.g. [22]).

In the last two decades several authors have analyzed the fault detecting and approximating
problem, as well as the discontinuous surface approximating problem, using different techniques
and methodologies (see, for instance, in chronological order, [10, 31, 26, 15, 20, 23, 29, 16, 13,
3, 24, 14, 8, 19]). To get an idea one can see the given references, and, in particular, the
monograph by Arcangéli, López de Silanes and Torrens [9].

Each method has its own performance and range of application, but all of them must
unavoidably match the quantity of information, namely, the number of data and their distribu-
tion. Clearly, none of the existing methods is universally satisfactory, and understanding their
limitations is important in order to apply them successfully.

In [3] the authors proposed a method to detect unknown fault lines, starting from a large
set of points irregularly distributed in a plane region and the corresponding function values.
This procedure is strictly connected with another one they proposed about surface approxima-
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tion [14]. The latter requires the preliminary knowledge of fault points and reconstructs the
discontinuous surface by means of a parallel algorithm.

Here, at first, we improve the technique of detection proposed in [3] (see [6]). Secondly,
we improve the detection scheme, introducing an adaptive detection process (see [7]). Finally,
we discuss different methods for accurate approximation of fault lines considering polygonal
lines, least squares, and best l∞ approximations [6]. However, we remark that we are here only
interested in finding fault lines and not in approximation of discontinuous surfaces.

Hence, the resulting procedure can be divided into two phases:

1. detection of fault lines (to predict as precisely as possible the locations of the fault lines,
possibly using the adaptive technique);

2. approximation of fault lines (to get accurate analytic representations of the fault lines).

For more details see [18].
The paper is organized as follows. In Section 2 the technique to detect fault lines discussed in

[3] is recalled, adding explanations on the choice of the threshold value σ0, a crucial parameter.
As basic tools for detection of fault points, i.e. points close to faults, we use a reliable cell-based
search method and a cardinal radial basis interpolant (see [1, 2]), that is, Shepard’s formula
possibly with suitable modifications. The output of this procedure is first a set of fault points
and then a new set of points, called barycentres, generally closer to the faults than the fault
points themselves. Then the barycentres are processed in various steps in order to handle
complex fault situations. Section 3 is devoted to describe the adaptive scheme. In Section 4 we
point out the different techniques of approximation, outlining in detail the various procedures.
Section 5 contains several numerical results which show the effectiveness of our methods. The
use of conventional approximation tools, if properly adapted to the topic, does not lead to
instability phenomena or undesiderable oscillations which could locally or even globally hinder
the approximation. Finally, in Section 6, we make some conclusions and remarks, giving an
idea of possible developments.

2 Detection of fault lines

To characterize the data points on or close to the fault lines, named fault points, first we
consider a procedure based on local data interpolation by cardinal radial basis interpolants
(CRBIs), where the difference between any known function value and the related value of the
interpolant is computed and compared with a threshold parameter. Then, the set of fault points
must be further manipulated to obtain a new set of points, named barycentres, which supplies
more information on the faults. Finally, after ordering the set of barycentres, we obtain the set
of barycentres of barycentres, which can be further refined.

Definition 2.1. Let Sn = {xk, k = 1, 2, . . . , n} be a set of distinct and scattered data points in a
domain D ⊂ R

2, and let Fn = {fk = f(xk), k = 1, 2, . . . , n} be a set of corresponding values of
an unknown function f : D → R, which is discontinuous across a set Γ = {Γj , j = 1, 2, . . . ,M}
of fault lines

Γj = {γj(t) : t ∈ [0, 1]} ⊂ D,

page 8



Allasia et al. DRNA Vol. 3 (2010), 7–38

where γj are unknown parametric continuous curves. On D \ Γ the function f is supposed to
be sufficiently smooth. The domain D is bounded, closed, simply connected, and contains the
convex hull of Sn.

The detection algorithm is divided into five steps:

(I) Detection of fault points. Initially, the cell-based search method by Bentley and
Friedman [12] (adopted also by Renka [27]) is applied to find the data point set Nk neighbouring
to each point xk of the data set Sn. This preprocessing phase is a classic nearest neighbour

searching procedure (NNSP), in which we make a subdivision of the domain D in cells and
identify the set Nk for each xk. Then, to locate the fault points of Sn that are close to a fault
line, we propose a local interpolation scheme involving CRBIs, as alternative to the scheme
based on thin plate splines first suggested by Gutzmer and Iske [23], and then reconsidered and
extended by Crampton and Mason [19]. Therefore, considering the global Shepard’s formula

(see, e.g., [4])

F (x;Sn) =
n

∑

i=1

fi

d(x, xi)
−p

∑n
j=1 d(x, xj)−p

, F (xi;Sn) = fi, i = 1, 2, . . . , n,

where d(x, xi) is the Euclidean distance in R
2 and p > 0, we adapt it to our purposes and, in

particular, to the cell structure of the domain D. Thus, we use a local Shepard’s formula on
each set Nk, k = 1, 2, . . . , n, (note that xk /∈ Nk)

F (xk;Nk) =

nk
∑

i=1

fi

d(xk, xi)
−2

∑nk

j=1 d(xk, xj)−2
, (1)

F (xi;Nk) = fi, i = 1, 2, . . . , nk,

nk being the number of points of Nk.
Let us consider now the absolute value of the difference σ(xk) between the function value

f(xk) and the value of the interpolant at xk, i.e.

σ(xk) = |f(xk) − F (xk;Nk)| . (2)

Supposing that the interpolant gives a good approximation to f in D, then σ(xk) gives a
measure of smoothness of the function around xk. Choosing a suitable threshold value σ0 > 0,
we compare the values σ(xk) and σ0: if σ(xk) is less than or equal to σ0 then f is smooth in
a neighbourhood of xk, or else there is a steep variation of f at xk and accordingly xk will
be marked as a fault point. When this procedure has involved all the data points, we have
characterized the set of fault points

F(f ;Sn) = {xk ∈ Sn : σ(xk) > σ0}, (3)

which consists of all the data points which are expected either to belong to the faults or to be
close to them.
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A crucial point is an optimal choice of the threshold value σ0. It is, in general, a difficult
task, because the finite number of function values is the only available information. We start
computing the largest deviation

Smax = max{|fi − fj| : i > j, for all i, j = 1, 2, . . . , n}, (4)

because obviously 0 < σ0 < Smax. An appropriate sorting procedure, included in the prepro-
cessing phase, gives the set of all deviations and, at the same time, supplies some additional
information on the variation of f .

Then we go on to find an optimal value of σ0, introducing a variable threshold parameter,
namely

σ
(t)
0 =

Smax√
2t

, for t = 1, 2, . . . .

Starting up an iterative procedure, we increase the value of t by one unit each time and compare

σ(xk) with σ
(t)
0 . When the number of the found fault points is considered appropriate with

information that we acquire analyzing Shepard’s surface and the contour lines, the process
successfully ends.

In general, a few iterations suffice to determine an optimal threshold value σ
(t∗)
0 and we

assume σ0 ≡ σ
(t∗)
0 . Moreover, in some cases, one can shorten the process, starting with values

of t greater than 1, as suggested by examination of Shepard’s surface.

(II) Shepard’s surface and contour lines. To get information on the surface, its faults,
and the parameter σ0, starting from the set Sn of data points and the corresponding function
values fi, i = 1, 2, . . . , n, we obtain a surface representation by the following local Shepard’s
formula

F (x;Ix) =

nx
∑

i=1

fi

d(x, xi)
−2

∑nx

j=1 d(x, xj)−2
, F (xi;Ix) = fi, i = 1, 2, . . . , nx, (5)

where Ix is the set of the nx data points closest to the point x, contained in a ball centred at x.
In general, a suitable choice of nx is 10. This Shepard’s surface and the relative contour lines
give very useful information about the surface behaviour and the position of possible faults. A
different approach is proposed in [31] to obtain additional information about geological surfaces.

(III) Construction of barycentres. Given a fault point xk ∈ F(f ;Sn) and the corre-
sponding nearest neighbour set Nk, we define Dk = {x ∈ D : d(x, xk) ≤ Rk}, where Rk =
max{d(xi, xk) : xi ∈ Nk}. Then we order the Nk + 1 points in N̄k = Nk ∪ {xk}, being
Nk = card(Nk), so that f(xk1) ≤ f(xk2) ≤ · · · ≤ f(xkNk+1). The expected jump δk of f in the
subdomain Dk is evaluated by

δk = max
1≤l≤Nk

∆f(xkl),

where ∆ is the forward difference operator. We set lk the lowest value of the index l ∈
{1, 2, . . . , Nk} for which δk is obtained.

The part Πk = Dk ∩ Γ of a fault line separates the set ∆L
k = {y ∈ N̄k : f(y) ≤ f(xklk)} of

all points of N̄k with lower function values from the set ∆H
k = {y ∈ N̄k : f(y) > f(xklk)} of
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all points of N̄k with higher function values. If ∆L
k or ∆H

k is the empty set, then we enlarge
Nk and repeat the process, so that N̄k contains points lying in the two parts of the subdomain
separated by the fault line. Having determined ∆L

k and ∆H
k in this way, we calculate the

barycentres AL
k and AH

k of ∆L
k and ∆H

k , respectively. Then we find Ak = (AL
k +AH

k )/2 and put
it in A(f ;Sn), the set of the barycentres.

(IV) Construction and sorting of barycentres of barycentres. This phase con-
sists of two stages:

Stage 1. We subdivide the domain D by a regular grid and point out the grid cells containing
points of A(f ;Sn), i.e. barycentres. Since each grid cell contains at least a barycentre, we
calculate the barycentre of the points of A(f ;Sn) in each cell, namely, the barycentre of the
barycentres for each cell. In this manner, we obtain a further set B(f ;Sn), whose points are
generally closer to the faults than the barycentres.

Stage 2. We order the points of the set B(f ;Sn), so that each point can be identified by an
index. In this way, we obtain the ordered set

C(f ;Sn) = {Ci, i = 1, 2, . . . ,m},

where m is the number of points of B(f ;Sn).
The nearest neighbour searching procedure used in the sorting process to build C(f ;Sn) is

as follows:

1. Detection of any point of B(f ;Sn) nearest to a side of the domain D and assumption of
this one as the first probe point.

2. Search of the nearest neighbour point to the actual probe point and assumption of this
one as the new probe point, excluding the points already considered.

3. Stopping the process, when all points of B(f ;Sn) are ordered.

The knowledge of C(f ;Sn) is fundamental, because it allows us to handle complex situations
as the presence of several faults, and intersections or bifurcations of faults. Indeed, the problem
of splitting fault lines into their branches is, in general, a hard task for every method. Now,
we can connect each point of C(f ;Sn) with the following one by a straight line segment, thus
obtaining a preliminary, generally low accurate, approximation curve. Since each point of
C(f ;Sn) is labelled and the direction of the ordered points is known, we can simply subdivide
the set C(f ;Sn) into a number q of subsets greater or equal to the number of fault lines. Each
subset of C(f ;Sn) is denoted by the symbol Cj(f ;Sn), for j = 1, 2, . . . , q, and it is still an
ordered set.

(V) Iterative refinement. In some cases, it is convenient to consider a further stage of
refinement, called iterative refinement. It consists of two steps:

1. From the set Cj(f ;Sn) = {Ci,j, i = 1, 2, . . . ,mj , j = 1, 2, . . . , q}, we consider Ci−1,j, Ci,j

and Ci+1,j, for 2 ≤ i ≤ mj − 1.
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2. These three points are considered as the vertices of a triangle; then, we calculate the

barycentre C
(1)
i,j , 2 ≤ i ≤ mj − 1, j = 1, 2, . . . , q, for each of the mj − 2 triangles, holding

C1,j and Cmj ,j fixed. These barycentres form the set C(1)
j (f ;Sn), j = 1, 2, . . . , q.

Step 2 can be repeated, so obtaining the barycentres C
(k)
i,j , forming the set C(k)

j (f ;Sn), for
i = 2, 3, . . . ,mj − 1, j = 1, 2, . . . , q, k = 2, 3, . . . We can see the good performance of this
technique in Figure 1 and Figure 2, where we compare the polygonal lines obtained by applying
or not the iterative refinement.
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Figure 1: Set C(f ;Sn) = {Ci, i = 1, 2, . . . , 9} (left) and polygonal line obtained without applying
the iterative refinement (right).

This approach, based on repeated averages, is simple but very powerful, because it allows us
to construct smooth curves and obtain accurate approximations. In Section 5, we will discuss in
detail some particularly difficult cases, in which the presence of bifurcations requires a splitting
of fault lines.

3 Adaptive detection of fault lines

The basic idea of adaptability is to start with a few hundreds of data points, locating roughly the
position of possible fault lines. Then, as long as the set of the found barycentres of barycentres
does not give sufficient information, we repeatedly increase the number of nodes generating
new data points within local neighbourhoods (see [7]). The barycentres are considered enough
when a comparison of them with the contour lines generated by a Shepard approximation of
the faulted surface is satisfying.

Here is the algorithm in detail:

Stage 1. Let Sn = {xk, k = 1, 2, . . . , n} be a set of distinct and scattered data points or nodes
in a domain D ⊂ R

2, and Fn = {fk = f(xk), k = 1, 2, . . . , n} a set of corresponding data values
obtained by an unknown (possible) discontinuous function f : D → R (see Definition 2.1).
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Figure 2: Polygonal line obtained by applying the iterative refinement to C(f ;Sn) = {Ci, i =
1, 2, . . . , 9} (left) and polygonal line obtained by using the iterative refinement with three
iterations (right).

Stage 2. Compute the largest deviation (or jump size) Smax as in (4) of the unknown function
f along each of two directions x and y. In particular, we have

1: S = 0;
2: quicksortx(n, x, y, f);
3: for (i = 1, . . . , n)
4: {
5: S∗ = fi+1 − fi;
6: if (S∗ > S)
7: S = S∗;
8: }
9: Smax = S;

This process is repeated for possible updating of Smax by setting quicksorty(n, x, y, f) in line

2.

Stage 3. Set σ0 = ǫ · Smax, with 0 < ǫ < 1.

Stage 4. Apply a cell-based search method to find for each node xk of Sn a suitable neigh-
bourhood Nk of the data points [12]. This phase consists of making a partition in cells of the
domain D and identify the data points closest to a node within each cell.

Stage 5. Employ the local version of Shepard’s formula (1) on each set Nk, k = 1, 2, . . . , n,
and evaluate the difference σ(xk) between the function value f(xk) and the value of the local
interpolant F (xk;Nk) given in (2). In particular, chosen a suitable threshold value σ0 > 0, we
have that

1. if σ(xk) ≤ 0, then f is smooth in a neighbourhood of xk;
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2. else σ(xk) > 0, that is, there is a steep variation of f at xk, and xk is marked as a fault
point.

Stage 6. Locate the set F(f ;Sn) of the fault points as in (3).

Stage 7. Find the set A(f ;Sn) of barycentres (see Step (III) in Section 2).

Stage 8. Find the set B(f ;Sn) of barycentres of barycentres and its ordered version C(f ;Sn)
(see Step (IV) in Section 2).

Stage 9. Establish if the detection stage has been sufficiently accurate:

1. if the faults are well identified, run Stage 10;

2. else increase the number of nodes, generating a certain number of “local” scattered data
on rectangular neighbourhoods centred at Ci, i = 1, 2, . . . ,m, namely the points of the
set C(f,Sn), and then repeat from Stage 1 to Stage 9 on the new enlarged set of nodes.

Iterating the procedure with the enlarged set of nodes as described in Step 2 (see Subsection
5.2), in general we obtain more (and new) fault points discarding eventually false fault points
previously considered, more barycentres, and accordingly more barycentres of barycentres.

Stage 10. Apply the iterative refinement (see Step (V) in Section 2), subdividing if required
the set C(f ;Sn) into a suitable number q of subsets, which are denoted by Cj(f ;Sn), for j =
1, 2, . . . , q.

4 Approximation of fault lines

We consider different approaches to approximate fault lines, namely the polygonal line method,
the least squares method, and the best l∞ approximation method.

The polygonal method must be applied in all cases, because it is not only useful in itself,
but also preliminary to the other methods.

The minimax approach, in general, assigns too much weight to outliers. The least squares
approach gives substantially more weight to a point that is farther to the approximation curve
than the rest of data, but will not allow that point to completely dominate the approximation.
In our case, the situation just described is little important, because the refinement procedure
works out repeated averages.

⋄ Polygonal line method. The polygonal line method that we consider represents an im-
provement of the procedures developed by Gutzmer and Iske [23] and by Allasia, Besenghi and
De Rossi [3].

The ordered points of C(f ;Sn) are connected by straight line segments, obtaining polygonal
lines which approximate the fault lines. The performance of the approximation procedures
depends, in particular, on the number of points, the cell dimension, and the form of the
faults. Indeed, if a fault is centred in the cells, the polygonal method produces good results;
otherwise, the polygonal line may appear too irregular and poorly accurate. To yield smoother
(and, possibly, more accurate) polygonal lines, we use the iterative refinement and connect the

points C
(k)
i,j by straight line segments.
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⋄ Least squares method. The least squares method can be used to approximate a data set
{(xi, yi), i = 1, 2, . . . ,m} by an algebraic polynomial

Ps(x) = a0 + a1x + · · · + as−1x
s−1 + asx

s (6)

of degree s < m − 1. In our problem we choose the constants a0, a1, . . . , as to solve the least

squares problem

min
a0,a1,...,as

m
∑

i=1

[yi − Ps(xi)]
2 ,

where (xi, yi) ∈ C(f ;Sn). Replacing the coefficients a0, a1, . . . , as in (6) with the values obtained
by the least squares method, we get the polynomial approximating the fault line.

If there is only one fault in D, then the discrete least squares method can be advantageously
applied. Otherwise, when we deal with complex situations (several faults, intersections or
bifurcations of faults), the least squares method cannot be applied directly, but a suitable
subdivision of C(f ;Sn) is required. Indeed, if the surface shows two or more fault lines, we
need to split the set C(f ;Sn) in a number of subsets greater or equal to the number of fault
lines before applying the least squares method. This procedure is suggested also when a fault
line is not of open type. Acting in this way, the least squares method yields very good results.

Finally, when a fault line is parallel or nearly parallel to the y-axis, it is convenient to make
first a rotation of the coordinate axes and then to apply the least squares method.

⋄ Best l∞ approximation method. The best l∞ (or Chebychev) approximation method can
be considered as a tool for finding polynomial approximations to fault lines starting from the set
C(f ;Sn) or from some further set possibly subjected to iterative refinement. The polynomial
in (6) is chosen such as to minimize the largest absolute value of the differences Ps(xk)− yk at
m < n discrete abscissae xk, 1 ≤ k ≤ m.

Given the abscissae xk and the corresponding ordinates yk, for k = 1, 2, . . . ,m, the polyno-
mial in (6) is sought to solve the minimax problem (see, e.g., [11])

min
a0,a1,...,as

max
k

|Ps(xk) − yk| . (7)

Introducing the residuals rk at the abscissae xk

Ps(xk) − yk = rk, k = 1, 2, . . . ,m,

(7) becomes
min

a0,a1,...,as

max
k

|rk| .

Among the residuals rk there exists at least one with the largest absolute value. Let us denote
it by H = maxk |rk| > 0. Hence, we have the inequalities

|Ps(xk) − yk| ≤ H, k = 1, 2, . . . ,m, (8)

and the problem in (7) is equivalent to minimize the value H. Now, we rewrite (8) in the form
∣

∣

∣

∣

∣

∣

s
∑

j=0

(aj

H

)

xj
k −

(

1

H

)

yk

∣

∣

∣

∣

∣

∣

≤ 1, k = 1, 2, . . . ,m. (9)
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With the unknowns

ξ1 =
a0

H
, ξ2 =

a1

H
, ξ3 =

a2

H
, . . . , ξs+1 =

as

H
, ξs+2 =

1

H
,

the conditions (9) read as follows

∣

∣ξ1 + xkξ2 + x2
kξ3 + . . . + xs

kξs+1 − ykξs+2

∣

∣ ≤ 1, k = 1, 2, . . . ,m. (10)

To avoid expressions with absolute values, we observe that each inequality of (10) is equivalent
to two inequalities. Moreover, the variable ξs+2 equals the reciprocal value of the non-negative
quantity H which has to be minimized. Thus we obtain the following linear program

maximize Z = ξs+2,

subject to the constraints

ξ1 + xkξ2 + x2
kξ3 + . . . + xs

kξs+1 − ykξs+2 ≤ 1,

ξ1 + xkξ2 + x2
kξ3 + . . . + xs

kξs+1 − ykξs+2 ≥ −1,

for k = 1, 2, . . . ,m, and
ξs+2 ≥ 0.

As only ξs+2 has to satisfy a sign condition, the variables ξ1, ξ2, . . . , ξs+1 are free. Since the
standard procedure requires that all the variables have non-negativity constrains, any prob-
lem containing variables allowed to be negative must be converted to an equivalent problem
involving only non-negative variables before the simplex method is applied. Each free variable
ξj, 1 ≤ j ≤ s + 1, is replaced throughout the model by the difference of two new non-negative
variables

ξj = ξ+
j − ξ−j , j = 1, 2, . . . , s + 1.

Since ξ+
j and ξ−j can have any non-negative values, the difference ξ+

j − ξ−j can have any value
(positive and negative), so it is a legitimate substitute for ξj in the model. Now, applying the
simplex method, we determine the coefficients a0, a1, . . . , as of (6) and identify an approximat-
ing polynomial to the fault line.

The considerations previously developed for the least squares method are effective also for
the best l∞ approximation method. Hence, problems considering several faults, intersections
or bifurcations of faults can be successfully solved. Obviously, in particularly difficult cases, the
iterative refinement can be used in both the least squares method and the best l∞ approximation
method; this gives a greater smoothness to approximating curves.

We note that solving a minimization problem to find fault line approximation is proposed
and carefully investigated by Crampton and Mason [19], who use the simplex method too.

Remarks.

a) Smoothness. The performance of the approximation procedures depends, in particular,
on the number of points and the form of the faults. Least squares and best l∞ approximations
give smooth curves, whereas polygonal lines have a simpler formulation. If a polygonal line
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appears too irregular and poorly accurate, we can obtain another smoother and, possibly, more
accurate polygonal line, using the refinement technique and connecting the barycentres by
straight line segments. Iterating a few times the refinement technique, we construct smooth,
planar curves rather than polygonal curves. This is a meaningful advantage if compared with
the Gutzmer-Iske method [23].

b) Connection errors. When we have to deal with complex surface discontinuities, applying
least squares and best l∞ approximations require a further subdivision of data. This situation
can create small errors at points in which two piecewise curves join, but the introduction
of the refinement technique considerably reduces the occurrence of these errors of connection.
Nevertheless, the decision of how to subdivide the domain can hide several difficulties (see [19]).
Obviously, in particularly difficult cases, the refinement technique can be used and iterated in
both the least squares method and the best l∞ approximation method.

5 Numerical results

In this section we propose a detailed and extensive investigation of a few test functions. They
are examples of several numerical and graphical results, obtained by computational procedures
developed in C/C++, Matlab, and Maple environments.

In the various tests we consider n randomly scattered data points xi in the square [0, 1] ×
[0, 1] ⊂ R

2, and the corresponding function values fi, for i = 1, 2, . . . , n, supposing that these
are the only information relative to f at our disposal. All the nodes are generated by means of
the Matlab command rand, which gives uniformly distributed random points on the interval
(0,1). In fact, in many real applications, one does not know the location of faults on the surface
or even whether or not the surface is faulted [9].

The detection and approximation schemes are tested against functions with different kinds
of faults, varying the dimension n of the sample generated by a uniform distribution and the
threshold value σ0. The results are obtained by using local Shepard’s formula (1), even if other
choices of CRBIs could work as well. Although the CRBI choice can appear quite elementary,
the use of more advanced mathematical tools do not guarantee remarkable improvements.
Moreover, the cell-based search method and the CRBIs allow to partition the domain, to process
the data in some stages, and to insert or remove data points. These features are particularly
important in surveying phenomena, such as geodetic or geophysical activities, where data are
distributed in regions with different characteristics.

In general, it is remarkable that, also taking a data point set with a few thousands or,
in the adaptive approach, even a few hundreds scattered data, the method of detection holds
its efficiency. In this case a loss of approximation accuracy is unavoidable, but it depends
essentially on the reduced information, that is, the number of data points. In fact, the method
allows to individualize the position of fault lines all the same, outlining roughly their form.

If the set of obtained fault points is not satisfactory, the initial set of data points can
be enlarged, but considering only new data points located in a smaller region including the
fault. Then we can repeat the detection process and find a new and larger set of fault points.
The adaptiveness of this approach ensures good results, though the number of data points is
meaningfully reduced. It will be extensively discussed in Subsection 5.2.
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5.1 Approximation of unknown fault lines

Let us now consider some examples to test the standard process described in Section 2.

Example 1

The test function (see [23, 3, 24, 14])

f1(x, y) =

{

1 + 2
⌊

3.5
√

x2 + y2
⌋

, if (x − 0.5)2 + (y − 0.5)2 < 0.16,

0, otherwise,
(11)

is a surface with discontinuities across the set

Γ = Γ1 ∪ Γ2 ∪ Γ3 = {(x, y) ∈ R
2 : (x − 0.5)2 + (y − 0.5)2 = 0.16}

∪ {(x, y) ∈ R
2 : x2 + y2 = 16/49, (x − 0.5)2 + (y − 0.5)2 ≤ 0.16}

∪ {(x, y) ∈ R
2 : x2 + y2 = 36/49, (x − 0.5)2 + (y − 0.5)2 ≤ 0.16}.

This surface is always constant in D \ Γ, but presents faults intersected and/or bifurcated.
In particular, first Gutzmer and Iske [23], and then Allasia, Besenghi and De Rossi [3] test their
detection methods against this function using 2000 scattered data. López de Silanes, Parra and
Torrens [24] also detect surface discontinuities using 2800 track data. This kind of data and,
more in general, data disposed on a family of lines or curves can be advantageously treated by
the method proposed by Allasia [5].

Since other authors considered n = 2000 data points, we also used a data set of the same
dimension. Obviously, the proposed method works better considering a larger number of data
points, e.g. n = 4000, 10000, as shown by errors in Table 1 and Table 2.

Starting from the set Sn of 2000 data points and the function values fi, i = 1, 2, . . . , n,
we use the formula (5) that, in general, is applied to approximate a continuous surface. The
obtained surface graphic and the respective contour lines, in Figure 3 (bottom), give us a
preliminary, but very useful, information on the surface, in general, and on the dislocation of
possible fault lines in particular.

After calculating the largest function oscillation, Smax = 7, and applying the cell-based
search method in the preprocessing phase, we proceed with the calculus of the threshold value

σ
(t)
0 , t = 1, 2, . . ., that occurs with t∗ = 12 iterations, namely σ0 ≡ σ

(t∗)
0 = σ

(12)
0 ≈ 0.11. In

practice, one can start with the value σ
(6)
0 = Smax/

√
26, based on the information given by

Shepard’s surface.
Now, exploiting the particular cell structure of the domain D constructed in the previous

step, we evaluate F (xk;Nk) in (1) and compute σ(xk) in (2). We find 345 barycentres (belonging
to the set A(f ;Sn)) and 115 barycentres of barycentres (belonging to the set B(f ;Sn)), which
are shown in Figure 4 (left) and (right) respectively.

We remark that the phase which requires to split fault lines into different branches is not
completely automatic, but a simple user interaction is required: it is to examine the polygonal
lines (see Figure 5 (left)).

In general, if we use the polygonal line method in approximation phase, three refinements
are needed; otherwise, least squares and best l∞ approximation methods, which hold in them-
selves the smoothing property, require only one refinement. Figure 5 (right) presents the fault
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Figure 3: Analytic expression (top), Shepard’s surface (bottom, to left) and contour lines
(bottom, to right) of f1.
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Figure 4: Set A(f ;Sn) of barycentres (left) and set B(f ;Sn) of barycentres of barycentres
(right) of f1.
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approximation obtained by the polygonal line method, whereas the least squares and best l∞
approximation methods are shown in Figure 6 (left) and (right), respectively.
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Figure 5: Initial approximation of the fault lines of f1, obtained by using NNSP and polyg-
onal lines (left), and accurate approximation, obtained by polygonal line method with three
iterations (right).

In a similar way, we can handle any case, in which the unknown surface is almost constant
in D \ Γ with one or more faults, and with intersections or bifurcations of faults. Functions of
this type are studied by various authors with different techniques and methodologies [26, 28,
13, 3, 24, 14, 19, 30, 25].

Example 2

As second test, we consider the function (see [10])

f2(x, y) =







g(x, y), if y < min(1/3x, 0.25),
h(x, y), if min(1/3x, 0.25) ≤ y < 2x − 0.5,
6, otherwise,

(12)

with

g(x, y) = 1 + 1.4375
(

2 − (x − 1)2
)

exp(5 (1 − x) (4y − 1)),

h(x, y) = 1 +
(

2 − (x − 1)2
) (

2 − (y − 1)2
)

,

and discontinuity set

Γ = Γ1 ∪ Γ2 =

{(

t,
1

3
t

)

: 0 ≤ t ≤ 0.75

}

∪
{(

t, 2t − 1

2

)

: 0.3 ≤ t ≤ 0.75

}

.

This function gives a discontinuous surface with two faults, which bifurcate at the point
(3/10,1/10). The fault line Γ1 has a jump size that vanishes when x tends to 0.75, while
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Figure 6: Accurate approximation of fault lines obtained by least squares (left) and best l∞
approximation methods with one iteration (right) of f1.

Γ2 presents a variable jump size on all the domain D. The surface is smooth on D \ Γ, but
shows different characteristics, because a part of the function is constant, another is almost
constant, and the remainder changes enough quickly. It follows that this surface collects some
features, which are difficult to be represented, namely, bifurcated fault lines, rapid surface
variations, and changing or vanishing jump sizes.

In [26], Parra, López de Silanes and Torrens evaluate the function f2 at 10000 points
randomly distributed on the domain and then apply their detection method, which determines
fault lines using a divergence property of sequences measuring gradient near discontinuities (see
also [25] for a different characterization of jump discontinuities and the vertical fault detection).

In the following, we test our method focusing on the case of n = 2000 scattered data, but
we also report errors obtained by n = 4000, 10000 (see Table 1 and Table 2).

In Figure 7, we present the analytic expression of f2 (top), Shepard’s surface (bottom,
to left) and the corresponding contour lines (bottom, to right). Such preliminary information
highlights the function characteristics, locating not only the two fault lines, but also the presence
of rapid variations of the surface.

Thus, since the maximum jump size is Smax ≈ 4.98, the procedure finds the threshold

value σ
(t)
0 after 9 iterations, so that σ0 ≡ σ

(9)
0 ≈ 0.22. This value leads, first, to obtain the

set A(f ;Sn) consisting of 81 barycentres, and then the set B(f ;Sn) containing 41 points (see

Figure 8). To shorten, one can start with σ
(4)
0 = Smax/

√
24.

Now, subdividing the set C(f ;Sn) into two subsets Cj(f ;Sn), j = 1, 2, we obtain an initial
approximation of the fault lines, in Figure 9 (left). Then, we apply the iterative refinement
and get more accurate approximation curves, as shown in Figure 9 (right) and Figure 10.

Example 3

Finally, let us consider the discontinuity set Γ, which consists in the polygonal line of ver-
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Figure 7: Analytic expression (top), Shepard’s surface (bottom, to left) and contour lines
(bottom, to right) of f2.
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Figure 8: Set A(f ;Sn) of barycentres (left) and set B(f ;Sn) of barycentres of barycentres
(right) of f2.
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Figure 9: Initial approximation of the fault lines of f2, obtained by using NNSP and polyg-
onal lines (left), and accurate approximation, obtained by polygonal line method with three
iterations (right).
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Figure 10: Accurate approximation of fault lines obtained by least squares (left) and best l∞
approximation methods with one iteration (right) of f2.
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tices (0, 0.2), (0.2, 0.2), (0.35, 0.225), (0.42, 0.3), (0.48, 0.4), (0.49, 0.53), (0.5, 0.65), (0.65, 0.725),
(0.8, 0.75), (1, 0.8), and let f be the function defined by

f3(x, y) =
1

[

(

3x − 7
2

)2
+

(

3y − 7
2

)2
] + g(x, y),

where g denotes the function given by

g(x, y) =

{

0.35 + exp
[

−
(

3x − 3
2

)2 −
(

3y − 3
2

)2
]

, if (x, y) ∈ ω,

0, otherwise,

and ω is the part of the domain D located above the fault line (according to the y-axis direction).
This test function is considered by Gout et al. [22] (see also [17]).

Using a scattered data sample of dimension n = 2000, we test our method proposed in the
paper and obtain the results as follows:

(a) From Shepard’s formula (5) and the relative contour lines (see Figure 11 (bottom)), we
have basic information on the behaviour and the orientation of the fault line.

(b) After obtaining the maximum surface variation Smax ≈ 2.06, we find the threshold value

σ0 ≡ σ
(6)
0 ≈ 0.26. The detection phase identifies 36 points belonging to the set A(f ;Sn), while

the set B(f ;Sn) contains 22 points, represented in Figure 12 (left).

(c) Constructing the set C(f ;Sn), we approximate the fault line by the polygonal line method
applying once the iterative refinement as shown in Figure 12 (right).

Analogous results are obtained considering the least squares and best l∞ approximation
methods.

Functions with features similar to those described in the last two tests can be found in
[26, 29, 24, 9]. Furthermore, recovering functions with discontinuities sampled on cartesian
grid are studied in [15, 16].

For the first two test functions, we compute the maximum absolute error (MAE) and
the root mean square error (RMSE), evaluating each fault line at 100 equispaced points in
0 ≤ x ≤ 1. If a fault line is parallel or nearly parallel to the y−axis, it is convenient first to
rotate the coordinate axes and then to compute the errors. The results are reported in Table 1
and Table 2. For simplicity, we compare only least squares and best l∞ approximation curves,
because the polygonal line method requires an evaluation of all linear pieces.

5.2 Adaptive approximation of unknown fault lines

In the adaptive detection algorithm a crucial point is the optimal choice of the threshold value
σ0. It is, in general, a difficult task, because the finite number of data is the only available
information. Several tests showed that the procedure works well when 1/25 ≤ ǫ ≤ 1/23, and
it ends successfully if the function f is smooth enough on D \ Γ. If the function f shows very
steep variations and the procedure accordingly does not end successfully, we can repeatedly
apply the process by using increasing values of ǫ > 1/23. This reduces the sensitivity of the
procedure, thus avoiding the detection of false fault points.
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Figure 11: Analytic expression (top), Shepard’s surface (bottom, to left) and contour lines
(bottom, to right) of f3.

f/n 2000 4000 10000

f1 6.83495E − 2 2.83227E − 2 2.04529E − 2
8.57487E − 3 3.63514E − 3 2.70869E − 3

f2 1.06565E − 2 7.34524E − 3 4.41158E − 3
7.97225E − 3 5.40742E − 3 3.79520E − 3

Table 1: MAEs and RMSEs resulting from least squares method.
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Figure 12: Set B(f ;Sn) of barycentres of barycentres (left) and comparison between the fault
line of f3 (dash-dot line) and the fault line approximation obtained by polygonal line method
with one iteration (solid line) (right).

f/n 2000 4000 10000

f1 6.89141E − 2 2.63607E − 2 2.08777E − 2
8.91904E − 3 4.57793E − 3 3.47217E − 3

f2 1.34226E − 2 1.06295E − 2 9.24255E − 3
8.33712E − 3 5.65426E − 3 5.68766E − 3

Table 2: MAEs and RMSEs resulting from best l∞ approximation method.
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We sketch the results obtained by our method considering five significant test examples.
Choosing the optimal value of ǫ, numerous tests pointed out that a few thousand data points
are sufficient to produce an accurate approximation.

Now, for convenience we briefly summarize the adaptive approach to accurately detect the
surface discontinuities. It consists of the following steps:

Step 1. Starting from a few hundreds of data points (here, we take n = 250) in the unit
domain D, we apply the detection algorithm, locating roughly the position of possible fault
lines. The process determines, first, the set F(f,Sn) of fault points, then, the set A(f,Sn) of
barycentres and, finally, the set B(f,Sn) of barycentres of barycentres and its ordered form
C(f,Sn).

Step 2. We increase the number of nodes, generating a certain number of “local” scattered
data on rectangular neighbourhoods centred at Ci, i = 1, 2, . . . ,m, the points of the set C(f,Sn)
(in general, 15–20 nodes for each neighbourhood are sufficient).

Step 3. From the enlarged set of nodes we obtain more fault points, discarding eventually false
fault points previously considered, and accordingly we obtain more barycentres and barycentres
of barycentres.

Step 4. Stop, if the faults are well identified, else go back to Step 2.

In practice, a suitable choice of the (local) neighbourhood size in Step 2 is essential. It is
advisable to change the rectangular neighbourhood size, first considering larger neighbourhoods
(here, side length and width are taken between 0.12 and 0.16 in the unit square) and then, in
subsequent adaptive detection phases, reducing their sizes by about one half.

Note that the process allows us to evaluate only the latest generated data points, exploiting
the previous evaluations due to Shepard’s formula. Obviously, if we have some information
about the position of fault lines, we can locate from the beginning a reduced searching region.

In the Figures we plot the test functions, the corresponding fault line approximations and
a picture of the adaptive detection process. An error analysis is shown as well. It gives an idea
of the good quality of our approach.

Example 4

The test function (see [13, 3])

f4(x, y) =







y − x + 1, if 0 ≤ x < 0.5,
0, if 0.5 ≤ x < 0.6,
0.3, if x ≥ 0.6,

is a surface with discontinuities in x = 0.5 and x = 0.6, i.e.

Γ = Γ1 ∪ Γ2 = {(0.5, t) : 0 ≤ t ≤ 1} ∪ {(0.6, t) : 0 ≤ t ≤ 1}.

Figure 13 (left) shows that, outside the discontinuities, the function f4(x, y) is constant for
x > 0.5, but it changes quickly enough for x ≤ 0.5, producing a variation of the jump size
in Γ1. Moreover, Figure 13 (right) provides the graphical representation of the least squares
curves from the 75 points of the set C(f ;Sn). In Figure 14 we show step by step the adaptive
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detection procedure, representing (bottom, left to right) the subsequent enlarged sets of data
points and (top, left to right) related sets C(f ;Sn). More precisely, in Figure 14 (A) (see Step

1), we plot the points of the set C(f ;Sn) obtained by applying the detection procedure from
250 scattered data (not represented). Figure 14 (C) and (E) (see Step 3) refer to new sets
C(f ;Sn) of points obtained by increasing the number of nodes on or close to possible fault
lines, as shown in Figure 14 (B) and (D) respectively (see Step 2). Then, Figure 14 (F) (see
Step 2) contains the enlarged set of data points from which we get the final set C(f ;Sn). The
related approximation lines (see Figure 13 (right)) are obtained by subdividing at first C(f ;Sn)
into two subsets, to which the refinement technique is applied, and then by applying the least
squares method to the resulting subsets. The six plots in Figure 14 must be considered in
alphabetical order.

In the detection phase, to obtain an accurate approximation of the faults, we employ 3479
data points (this number is purely indicative and may considerably vary). In some cases,
nevertheless, if a rough knowledge of faults (e.g. position, behaviour, etc.) is sufficient, the
number of the considered points can be considerably reduced (say, to about a quarter). In
doing so, we may reduce the number of steps in the adaptive detection process, but obviously
we do not attain the accuracy obtained in this article.

All these remarks hold also for the other test functions (see Figure 16, 18, 20, 22).
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Figure 13: Test function f4 (left) and least squares approximation curves (right).

Example 5

The test function (see [24])

f5(x, y) =

{

0, if x > 0.4, y > 0.4, y < x + 0.2,
(x − 1)2 + (y − 1)2, otherwise,

is a surface with discontinuities across the set

Γ = Γ1 ∪ Γ2 ∪ Γ3 = {(t, 0.4) : 0.4 ≤ t ≤ 1} ∪ {(0.4, t) : 0.4 ≤ t ≤ 0.6}
∪ {(t, t + 0.2) : 0.4 ≤ t ≤ 0.8},
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Figure 14: Subsequent enlarged sets of data points (bottom, left to right) and related sets
C(f ;Sn) (top, left to right) in adaptive detection procedure for f4.

as shown in Figure 15 (left). Moreover, we can observe that the jump size of fault lines varies
in Γ1, Γ2 and Γ3.

Figure 15 (right) provides the graphical representation of the best l∞ approximation curves
from the 45 points belonging to the set C(f ;Sn). Figure 16 presents, instead, a picture of the
adaptive detection procedure. The fault line is obtained from the set C(f ;Sn), subdividing the
original set into three subsets.

The adaptive detection process ends successfully using 2099 scattered data.

Example 6

In this test case, we still consider the function f1 given in (11), which is displayed in Figure 17
(left), while the graph is obtained by the polygonal line method from the ordered 108 points
of C(f ;Sn) (right). Figure 18 presents the results of the adaptive detection procedure. Also in
this case, we consider a subdivision of the set C(f ;Sn). Finally, to obtain a greater smoothness,
we apply the refinement technique three times.

In this test, to obtain the result of Figure 17 (right), 5185 nodes are considered in input.

Example 7

The next test considers the function (see [26, 3, 24, 25]),

f6(x, y) =

{

(2 − (x − 0.8)2)(2 − (y − 0.8)2), if y > l(x),
(1 − (x − 0.5)2)(1 − (y − 0.2)2), otherwise,
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Figure 15: Test function f5 (left) and best l∞ approximation curves (right).
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Figure 16: Subsequent enlarged sets of data points (bottom, left to right) and related sets
C(f ;Sn) (top, left to right) in adaptive detection procedure for f5.
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Figure 17: Test function f1 (left) and polygonal line approximation curves (right).
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Figure 18: Subsequent enlarged sets of data points (bottom, left to right) and related sets
C(f ;Sn) (top, left to right) in adaptive detection procedure for f1.
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with l(x) = 0.5 + 0.2 sin(5πx)/3. The fault set is given by

Γ = {(t, l(t)) : 0 ≤ t ≤ 1}

and its jump size is almost constant on all the domain.
Figure 19 shows the test function f6 (left) and the fault approximation obtained by the

least squares curve from the 49 points of the set C(f ;Sn) (right), while Figure 20 shows step
by step the adaptive detection procedure. Splitting up C(f ;Sn) in subsets does not produce
considerable advantages.

To end the adaptive process, the number of the employed points is 2705.
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Figure 19: Test function f6 (left) and least squares approximation curve (right).

Example 8

Last, we take the function f2 in (12), which is represented in Figure 21. The best l∞ approxi-
mation curves are derived from the 46 points belonging to C(f ;Sn). Figure 22 shows the output
of the adaptive detection process. All these results are obtained, subdividing the C(f ;Sn) set
into two subsets.

The entire detection procedure is completed using 2263 data points.

For each test function, we compute the maximum absolute error (MAE), the maximum
relative error (MRE) and the root mean square error (RMSE), evaluating each fault line at
100 equispaced points in 0 ≤ x ≤ 1, as in the previous case. If a fault line is parallel or
nearly parallel to the y-axis, we first rotate the coordinate axes and then compute the errors.
For simplicity, though polygonal lines could be also expressed analytically as piecewise linear
polynomials, we compare only least squares and best l∞ approximation curves, as it is reported
in Table 3 and Table 4.

page 32



Allasia et al. DRNA Vol. 3 (2010), 7–38

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (A)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (C)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (E)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (B)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (D)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (F)

Figure 20: Subsequent enlarged sets of data points (bottom, left to right) and related sets
C(f ;Sn) (top, left to right) in adaptive detection procedure for f6.
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Figure 21: Test function f2 (left) and best l∞ approximation curves (right).
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Figure 22: Subsequent enlarged sets of data points (bottom, left to right) and related sets
C(f ;Sn) (top, left to right) in adaptive detection procedure for f2.

Test Function MAE MRE RMSE

f1 4.84865 · 10−2 4.56550 · 10−1 5.86301 · 10−3

f2 6.30713 · 10−3 3.16528 · 10−1 3.88514 · 10−3

f4 1.87486 · 10−3 3.12477 · 10−3 7.29411 · 10−4

f5 3.97532 · 10−3 9.93829 · 10−3 1.97662 · 10−3

f6 5.35214 · 10−3 1.77711 · 10−2 2.44892 · 10−3

Table 3: Errors obtained by the least squares method.

page 34



Allasia et al. DRNA Vol. 3 (2010), 7–38

Test Function MAE MRE RMSE

f1 5.75570 · 10−2 5.08761 · 10−1 7.57615 · 10−3

f2 1.29125 · 10−2 6.48021 · 10−1 7.74472 · 10−3

f4 7.39352 · 10−3 1.23225 · 10−2 3.02462 · 10−3

f5 7.41478 · 10−3 1.23230 · 10−2 2.57417 · 10−3

f6 1.67485 · 10−2 5.20277 · 10−2 5.71694 · 10−3

Table 4: Errors obtained by the best l∞ approximation method.

6 Conclusions

In this paper, we presented and analyzed a technique for the detection and the adaptive detec-
tion of unknown surface discontinuities in order to obtain an accurate approximation of fault
lines from scattered data. The approach we proposed gives good results. In particular, the
adaptive technique allows us to reduce the cost, preserving at the same time a good accuracy.
Indeed, in some applications, the search of information (data) is very expensive, so that a
reduction of cost represents a remarkable advantage.

The detection algorithm, under a reasonable choice of the threshold parameter σ0, yields
the set A(f ;Sn) of barycentres. This phase allows us to understand the form and the number
of faults. The approach is similar but alternative to that proposed in [23], where a local
approximation scheme based on thin plate splines combined with a triangulation method is
used. Then, from the set A(f ;Sn) we obtain the set B(f ;Sn) of barycentres of barycentres,
and its ordered version C(f ;Sn). This last set is necessary to handle complex situations, such
as several faults, close type faults and intersections or bifurcations of faults. In these cases
C(f ;Sn) is manually subdivided into a number of subsets greater or equal to the number
of discontinuities. Moreover, the set C(f ;Sn) is basic to apply the proposed approximation
methods, namely, polygonal line, least squares, and best l∞ approximation methods.

For automaticity and simplicity the polygonal line method turns out to be more suitable in
almost all applications, even if least squares or best l∞ approximations produce good or even
better results. Moreover, the iterative refinement allows us to construct smooth, planar curves
rather than polygonal curves.

When the fault line is a multivalued function, applying least squares and best l∞ approxi-
mations requires to subdivide the data. This situation can create small errors at points in which
two pieces of curve join, but the introduction of the iterative refinement reduces considerably
the occurrence of these errors of connection. Nevertheless, the decision of how partitioning the
domain can hide several difficulties (see [19]).

Finally, the application of this method pointed out at least two problems. If the considered
surface shows very rapid variations outside the faults, then the detection algorithm may identify
false fault points. Another drawback occurs when the jump size varies fastly or vanishes; here
the optimal choice of a global parameter σ0 is difficult and sometimes it is impossible to detect
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correctly the fault points. To solve these problems, we could split up the domain in a uniform
grid and find a (local) threshold parameter for each grid cell. This approach should allow us to
detect only the actual points of discontinuity, but it is yet an open problem and is still under
investigation.
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