
Special Issue ATMA2021 - Approximation: Theory, Methods, and Applications, Volume 15 · 2022 · Pages 1–7

Two positive solutions for a nonlinear Robin problem involving the
discrete p−Laplacian

Eleonora Amoroso a · Pasquale Candito b · Giuseppina D’Aguì a

Abstract

In this paper, combining variational methods and truncations techniques, the existence of at least two
positive solutions for a nonlinear difference equation involving the discrete p-Laplacian with Robin
boundary conditions is established.

1 Introduction
This paper deals with the following nonlinear discrete Robin boundary value problem

§

−∆(φp(∆u(k− 1))) + q(k)φp(u(k)) = λ fk(u(k)), k ∈ [1, N],
u(0) =∆u(N) = 0, (Rλ, f )

where λ is a positive parameter, N is a fixed positive integer, [1, N] represents the discrete interval {1, ..., N}, q : [1, N]→ R,
with q(k) ≥ 0 for all k ∈ [1, N], fk : R→ R are continuous functions, ∆u(k − 1) := u(k)− u(k − 1) and −∆(φp(∆u(k − 1)))
denote the forward difference and the discrete p−Laplacian operators where φp(s) := |s|p−2s, 1< p < +∞ , respectively, for all
k ∈ [1, N + 1].

The functions fk are not, in general, the restrictions of a unique function of type f : [1, N]×R→ R. Therefore the given
problem turns out to be more general than the analogous continuous case, in which the nonlinear term is usually a function
f : [a, b]×R→ R. More information regarding the link between discrete problems and nonlinear differential boundary value
problems can be found in [4, 23, 25, 31, 33, 34, 35]. For a general overview on difference equations and their applications, we
mention [1, 28].

As one can see in [1, 3, 6, 9, 10, 26, 32] and the references therein, there is a big literature dedicated to difference equations
with Dirichlet or Neumann boundary conditions. Instead, as far as we know, only few papers deal with problem of type (Rλ, f ). For
instance, whenever p = 2 and q(k) = 0 for all k ∈ [1, N], the existence of sign-changing and constant-sign solutions is established
in [30], by applying invariant sets of descending flow and variational methods. While, when the parameter belongs to appropriate
intervals, the existence of non-negative solutions is showed in [37], for problems with sign-changing weight reaction terms and
by using the iterative method and Schauder’s fixed point theorem. In [29], the critical point theory is also applied to get infinitely
many positive solutions to (Rλ, f ).

The study of the existence and multiplicity of solutions for parameter-dependent discrete problems, approached through
critical point theory, has been of great interest (see [11, 12, 13, 17, 18, 19, 21, 24, 36]). In particular, in [14] some classical
results of variational methods have been suitably rewritten by taking full advantage of the characteristics of finite dimensional
Banach spaces in order to obtain new and better performing results for discrete problems. More precisely, the existence of two
solutions for nonlinear Dirichlet problem with the discrete p−Laplacian has been obtained in [22], see also [16] for p = 2.
Moreover, multiplicity results have been obtained in [8] for a Neuman problem and in [20] for a nonlinear algebraic systems.
Such results are chiefly based on a recent result of Bonanno and D’Aguì [7] (Theorem 2.2), which gives the existence of at least
two non trivial critical points for a certain class of functionals defined on a Banach space.
The paper is organized in the following way. Section 2 is devoted to the variational framework in order to study problem (Rλ, f ).
In particular, two preliminary results of independent interest are given. One is Lemma 2.3 which gives a quantitative estimate
on the interval of parameters such that the energy functional associated to our problem satisfies the Palais-Smale condition
and is unbounded from below. In particular, it is proved, as in the above mentioned papers, but with a simpler proof, that in a
finite dimensional Banach space the p−superlinearity at infinity of the reaction term is enough to our aim, without involving
the so called Ambrosetti-Rabinowitz condition. The second one (Lemma 2.4) is dedicated to clarify the interaction between
the variational and the truncation methods allowing us to obtain positive solutions without resorting to the strong discrete
maximum principle. Section 3 is dedicated to the main results, where Theorem 3.1 gives, in a more general form, the existence
of two positive solutions for the problem (Rλ, f ) is obtained. Finally, some corollaries and an example follow in order to show the
applicability of the treatment.
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2 Mathematical Background
The variational framework in order to study problem (Rλ, f ) is the following finite dimensional Banach space

X = {u : [0, N + 1]→ R : u(0) =∆u(N) = 0},

endowed with the perturbed difference norm given by

∥u∥ :=

�

N
∑

k=1

|∆u(k− 1)|p +
N
∑

k=1

q(k)|u(k)|p
�1/p

∀u ∈ X .

In the sequel, we will also need both the maximum norm and the classical Hölder norm, namely

∥u∥∞ := max
k∈[1,N]

|u(k)|, ∥u∥p =

�

N
∑

k=1

|u(k)|p
�

1
p

∀u ∈ X .

Clearly, since X is a finite dimensional Banach space, all the norms are equivalent. In particular, we have

N−1/p2(1−p)/p∥u∥p ≤ ∥u∥ ≤ (2p + ∥q∥∞)1/p∥u∥p, (1)

and it is easy to show that, pointed q := min
k∈[1,N]

q(k), one has

∥u∥∞ ≤ σ∥u∥, ∀u ∈ X , (2)

where,

σ :=

¨

N
p−1

p , if 0≤ q ≤ N 1−p,
q−1/p, if N 1−p ≤ q.

Furthermore, we introduce the following two functions

Φ(u) :=
∥u∥p

p
and Ψ(u) :=

N
∑

k=1

Fk(u(k)), ∀u ∈ X , (3)

where Fk(t) :=
∫ t

0
fk(ξ)dξ for every (k, t) ∈ [1, N]×R. Clearly, Φ and Ψ are two functionals of class C1(X ,R) whose Gâteaux

derivatives at the point u ∈ X are given by

Φ′(u)(v) =
N
∑

k=1

φp (∆u (k− 1))∆v (k− 1) + q(k) |u (k)|p−2 u (k) v (k) ,

and

Ψ ′(u)(v) =
N
∑

k=1

fk(u(k))v(k),

for all v ∈ X . On the other hand, one has
N
∑

k=1

∆(φp(∆u(k− 1)))v(k) =

N
∑

k=1

�

φp(∆u(k))−φp(∆u(k− 1))
�

v(k) =

= −
N
∑

k=1

φp(∆u(k− 1))∆v(k− 1) +φp(∆u(N))v(N)−φp(∆u(0))v(0),

that is

−
N
∑

k=1

∆(φp(∆u(k− 1)))v(k) =
N
∑

k=1

φp(∆u(k− 1))∆v(k− 1), (4)

for all u v,∈ X . This leads to the following lemma.

Lemma 2.1. A vector u ∈ X is a solution of problem (Rλ, f ) if and only if u is a critical point of the function Iλ = Φ−λΨ.

Now, we recall the following classical definition.

Let (X ,∥ · ∥) be a Banach space and let I ∈ C1(X ,R). We say that I satisfies the Palais-Smale condition, (in short (PS)−condition),
if any sequence {un}n∈N ⊆ X such that

1. {I(un)}n∈N is bounded,

2. {I ′(un)}n∈N converges to 0 in X ∗,
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admits a subsequence which is convergent in X .
Our main tool is a two non-zero critical points theorem established in [7], that we recall here for the reader’s convenience.

Theorem 2.2. Let X be a real Banach space and let Φ, Ψ : X → R be two functionals of class C1 such that inf
X
Φ= Φ(0) = Ψ(0) = 0.

Assume that there are r ∈ R and ũ ∈ X , with 0< Φ(ũ)< r, such that

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
<
Ψ(ũ)
Φ(ũ)

, (5)

and, for each

λ ∈ Λ=





Φ(ũ)
Ψ(ũ)

,
r

sup
u∈Φ−1(]−∞,r])

Ψ(u)



 ,

the functional Iλ = Φ−λΨ satisfies the (PS)−condition and it is unbounded from below.
Then, for each λ ∈ Λ, the functional Iλ admits at least two non-zero critical points uλ,1, uλ,2 such that I(uλ,1)< 0< I(uλ,2).

Remark 1. It is worth noticing that the previous result guaranties the existence of two non-zero critical points for an appropriate
class of differentiable functionals. The main tools used in its proof are a local minimum theorem established in [15] and the
powerful classical Ambrosetti-Rabinowitz theorem (see [5]).

Here and in the sequel, since we are interested in positive solutions of problem (Rλ, f ), it is not restrictive to assume that

fk(t) = fk(0), ∀t < 0, ∀k ∈ [1, N].

Moreover, we put x+ :=max{x , 0} and x− :=max{−x , 0} for all x ∈ R.

The following lemma ensures that when the parameter λ belongs to a suitable half-line related to the behaviour of the
primitive F at infinity, the energy functional Iλ satisfies the (PS)−condition and it is also unbounded from below. Such Lemma is
proved for p = 2 in [14], for p ̸= 2 see also [22], [8].

For k ∈ [1, N], set

L∞(k) := lim inf
t→+∞

Fk(t)
t p

, L∞ := min
k∈[1,N]

L∞(k).

We have the following result.

Lemma 2.3. Suppose fk(0)≥ 0 for all k ∈ [1, N]. If L∞ > 0, then Iλ satisfies (PS)−condition and it is unbounded from below for

all λ ∈
�

2p + ∥q∥∞
pL∞

,+∞
�

.

Proof. To show that Iλ satisfies the (PS)−condition, we fix the following:

Claim 1. If lim
n→+∞

I ′
λ
(un) = 0, then {u−n } is bounded for every λ > 0. In particular, there exists M1 > 0 such that ∥u−n ∥∞ ≤ M1, for

all n ∈ N.
In fact, one has

I ′
λ
(un)(−u−n ) = ∥u−n ∥

p +λ
N
∑

k=1

fk(0)u
−
n (k)≥ ∥u

−
n ∥

p,

that is
∥u−n ∥

p ≤ −I ′
λ
(un)(u

−
n ), (6)

for all n ∈ N. Now, from lim
n→+∞

I ′
λ
(un) = 0, that is lim

n→+∞
sup
∥v∥≤1

I ′
λ
(un)(v) = 0, one has lim

n→+∞

I ′
λ
(un)(u−n )

∥u−n ∥
= 0, for which, taking (6)

into account, gives lim
n→+∞

∥u−n ∥= 0. By now, it is evident as to obtain the estimate on the ∥u∥∞ and our claim holds.

Claim 2. If lim
n→+∞

Iλ(un) = c, then {u+n } is bounded for all λ >
2p + ∥q∥∞

pL∞
.

Taking into account that L∞ > 0 there exists l > 0 such that L∞ > l >
2p + ∥q∥∞

pλ
. Moreover, since L∞(k)≥ L∞ > l for each

k ∈ [1, N], there is δ > 0 such that Fk(t)≥ l t p, for all t > δ and for all k ∈ [1, N]. From this, it is not restrictive to assume that

Fk(u
+
n (k))≥ l(u+n (k))

p, (7)

for all k ∈ [1, N] and for all n ∈ N. Otherwise, we are done. Therefore, bearing in mind Claim 1 and (7) there exists M2 > 0 such
that

Iλ(un)≤
�

2p + ∥q∥∞
p

−λl
�

∥u+n ∥
p
p +λM2, (8)
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for all n ∈ N. From this latter, since
2p + ∥q∥∞

p
− λl < 0, our claim holds. On the contrary, if ∥un∥p → +∞ one would have

c = lim
n→+∞

Iλ(un) = −∞. Absurd.

Finally, from (8), it is easy to see that Iλ is unbounded from below and this completes the proof.

Analogously to the differential problems, next result shows as the truncation techniques allows us to have sign information
on the non trivial critical points of the energy functional Iλ. More precisely, it ensures that a non trivial critical point of Iλ is a
positive solution of problem (Rλ, f ).

Lemma 2.4. If u ∈ X is a non trivial critical point of Iλ, then u is a positive solution of problem (Rλ, f ), for every λ > 0.

Proof. Fixed λ > 0 and let u ∈ X a non trivial critical point of Iλ. Lemma 2.1 implies that u is a non trivial solution of problem
(Rλ, f ). In other words, we have that u ∈ X satisfies the following condition

N
∑

k=1

φp(∆u(k− 1))∆v(k− 1) +
N
∑

k=1

q(k)φp(u(k))v(k) = λ
N
∑

k=1

fk(u(k))v(k), ∀v ∈ X . (9)

From this, taking as test function v = −u−, with simple computations, we get

∥u−∥p = −λ
N
∑

k=1

fk(0)u
−(k)≤ 0,

which implies ∥u−∥ = 0, that is u is nonnegative. Moreover, arguing by contradiction, we show that u is also a positive solution of
problem (Rλ, f ). Suppose that u(k) = 0 for some k ∈ [1, N]. Being u a solution of problem (Rλ, f ) we have

φp(∆u(k− 1))−φp(∆u(k)) = λ fk(0)≥ 0,

which produces that
0≥ −|u(k− 1)|p−2u(k− 1)− |u(k+ 1)|p−2u(k+ 1)≥ 0.

So, we have that u(k−1) = u(k+1) = 0. Hence, iterating this process, we get that u(k) = 0 for every k ∈ [1, N], which contradicts
that u is nontrivial and this completes the proof.

3 Main Results
In this section, we present some results on the existence of two positive solutions for problem (Rλ, f ). First, we put

Q =
N
∑

k=1

q(k).

Theorem 3.1. Let fk : R→ R be continuous functions such that fk(0)≥ 0 for all k ∈ [1, N]. Assume also that there exist two positive
constants c and d with d < c such that

N
∑

k=1

max
|ξ|≤c

Fk(ξ)

cp
<

1
σp

min



















1
(1+Q)

N
∑

k=1

Fk(d)

d p
,

L∞
2p + ∥q∥∞



















, (10)

being σ as given in (2). Then, for each λ ∈ Λ̄ with

Λ̄=











max



















(1+Q)
p

d p

N
∑

k=1

Fk(d)

,
2p + ∥q∥∞

pL∞



















,
1

pσp

cp

N
∑

k=1

max
|ξ|≤c

Fk(ξ)











,

the problem (Rλ, f ) admits at least two positive solutions.

Proof. Our conclusions are proved in two main steps. First, we apply Theorem 2.2 to obtain two non-zero solutions for problem
(Rλ, f ). Next, owing to Lemma 2.4 we complete the proof.

Put Φ and Ψ as in (3). It is well known that Φ and Ψ satisfy all regularity assumptions requested in Theorem 2.2 and that any
non-zero critical point in X of the functional Iλ is precisely a nontrivial solution of problem (Rλ, f ). Clearly, inf

S
Φ = Φ(0) = Ψ(0) = 0.

So, our end is to verify condition (5) of Theorem 2.2.
Fix λ ∈ Λ̄ and observe that from (10) one has that L∞ > 0 and Λ̄ is non-degenerate. Then, by Lemma 2.3, the functional

Iλ satisfies the (PS)−condition for each λ >
2p + ∥q∥∞

pL∞
, and it is unbounded from below. Next, set r =

1
p

� c
σ

�p
. Let be

u ∈ Φ−1 (]−∞, r]); bearing in mind (2), one has
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∥u∥∞ ≤ σ(pr)1/p = c.

So,

Ψ(u) =
N
∑

k=1

Fk(u(k))≤
N
∑

k=1

max
|ξ|≤c

Fk(ξ),

for all u ∈ X such that u ∈ Φ−1 (]−∞, r]).
Hence,

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
≤ pσp

N
∑

k=1

max
|ξ|≤c

Fk(ξ)

cp
. (11)

Now, define ũ ∈ X be such that ũ(k) = d for all k ∈ [1, N + 1]. It is easy to see that

Φ(ũ) =
(1+Q)d p

p
, (12)

and hence, one has

Ψ(ũ)
Φ(ũ)

=
p

(1+Q)

N
∑

k=1

Fk(d)

d p
. (13)

Therefore, from (11), (13) and assumption (10) one has

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
<
Ψ(ũ)
Φ(ũ)

.

Moreover, since 0< d < c and again thanks to (10), we obtain that

0< d <
c

σ(1+Q)
1
p

. (14)

Indeed, arguing by contradiction, if we assume that d ≥
c

σ(1+Q)
1
p

, we have

N
∑

k=1

max
|ξ|≤c

Fk(ξ)

cp
≥

N
∑

k=1

Fk(d)

cp
≥

1
(1+Q)σp

N
∑

k=1

Fk(d)

d p
,

which contradicts (10). Hence by (12) and (14) we obtain that 0< Φ(ũ)< r.
Therefore, Theorem 2.2 ensures that Iλ admits at least two non-zero critical points and then, for all λ ∈ Λ̄ ⊂ Λ, Lemma 2.4

ensures that these are positive solutions of (Rλ, f ) and this completes the proof.

A consequence of Theorem 3.1 is the following result.

Corollary 3.2. Let fk be a continuous function such that fk(0)≥ 0, for every k ∈ [1, N]. Assume that

limsup
t→0+

Fk(t)
t p
= +∞, (15)

and

lim
t→+∞

Fk(t)
t p
= +∞, (16)

for all k ∈ [1, N], and put λ∗ =
1

pσp
sup
c>0

cp

N
∑

k=1

max
|ξ|≤c

Fk(ξ)

.

Then, for each λ ∈ ]0,λ∗[, the problem (Rλ, f ) admits at least two positive solutions.
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Proof. First, note that L∞ = +∞. Then, fix λ ∈ ]0,λ∗[ and c > 0 such that

λ <
1

pσp

cp

N
∑

k=1

max
|ξ|≤c

Fk(ξ)

.

From (15) we have

limsup
t→0+

N
∑

k=1

Fk(t)

t p
= +∞,

then there is d > 0 with d < c such that
p

(1+Q)

N
∑

k=1

Fk(d)

d p
>

1
λ

. Hence, Theorem 3.1 ensures the conclusion.

Corollary 3.3. Let fk be a continuous function satisfying (15) and (16) and let λ∗ as in Corollary 3.2. Then, for each λ ∈ ]0,λ∗[,
the problem (Rλ, f ) admits at least two non trivial solutions.

Proof. A careful reading of the proof of Theorem 3.1 allows to get the conclusion, at once.

In order to show the applicability of the results, we give an example.

Example 3.1. Let p = N = 2 and consider problem (Rλ, f ) with q(k) = 2k for k = 1,2 and f (u) = ( f1(u), f2(u)) as nonlinear
term, where

f1(u) = eu + 1 ,

f2(u) =
1− u(1+ 3u) + u ln(|u+ 1|)(−2+ 2(u− 1)u+ 3u(u+ 1) ln(|u+ 1|))

1+ u
,

for all u ∈ R. It follows that

F1(t) = et + t − 1 , F2(t) = t
�

t2 ln2 |t + 1| − t(ln |t + 1|+ 1) + 1
�

∀t ≥ 0 .

Choosing, for instance, c = 0.3 and d = 0.01, all the assumptions of Theorem 3.1 are satisfied. Therefore, the problem
( −u(2) + 4u(1) = 10−1 f1(u(1))

5u(2)− u(1) = 10−1 f2(u(2))
u(0) =∆u(2) = 0

admits at least two positive solutions. We observe that in this case λ= 10−1, and clearly it belongs to the interval of parameter
which has the following form

Λ̄=
�

7
2

d2

F1(d) + F2(d)
,

c2

F1(d) + F2(d)

�

⊇ ]0.012,0.107[ .
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