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Estimates in variation for multivariate sampling-type operators

Laura Angeloni a · Gianluca Vinti b

Abstract

We prove some estimates with respect to the Tonelli variation for the multidimensional generalized
sampling operators and for a class of sampling-Kantorovich type operators in terms of the Tonelli integrals.
As a consequence, we obtain an estimate for the total variation of the same operators.

1 Introduction
In this paper we state some estimates with respect to the Tonelli variation for the multidimensional generalized sampling operators
in terms of the Tonelli integrals and, as a consequence, we obtain an estimate for the total variation of the same operators.
Moreover we also investigate some estimates for the so called mixed sampling Kantorovich operators, again in terms of the Tonelli
integrals and of the total variation functional.

In order to frame the results obtained in this paper in the context of the state of the art of the specific field, we introduce the
families of operators considered and we motivate both their role and the results, obtained so far in the scientific literature.

The role and the importance of the generalized sampling series (operators) are well known from the work of the famous
german mathematician P.L. Butzer and his school at RWTH-Aaachen, where they were introduced and studied, around the 1980s,
as a mathematical tool designed to weaken the well-known and strong assumptions of the classical Whittaker-Kotelnikov-Shannon
sampling theorem ([21, 22, 23]); see also e.g., ([40, 41, 16]).
Subsequently, in [18, 19, 12], the multidimensional version of these operators was introduced and studied, while several years
later in [28], the multidimensional version of the so called sampling-Kantorovich operators ([13]) has been introduced, also
because their importance from the point of view of applications was understood, in particular as a quasi-interpolation method for
the reconstruction of digital images [32, 33, 15, 36, 25, 37, 29, 27]; see also, e.g., [13, 38, 3, 6, 30, 24, 26].

The generalized sampling operators are defined as

(Sw f )(t) :=
∑

k∈ZN

f
�

k
w

�

χ(wt− k), (1)

for every t = (t1, . . . , tN ) ∈ RN , k = (k1, . . . , kN ) ∈ ZN and w> 0, where χ : RN −→ R is a kernel and f : RN −→ R is the function
to be approximated.

While estimates and convergence (pointwise, uniform or in norm) for the operators (1) have been investigated using a kind
of “direct” approach, as concerns the same results with respect to the variation, the situation appears very delicate to treat and, in
case of the Tonelli variation, the approach is not “direct”. Indeed, in [7] in order to obtain the convergence with respect to the
Tonelli variation, it has been suitable to pass through the convergence of a family of operators, called mixed sampling-Kantorovich
operators (later defined), in a suitable subspace of Lp(RN ) (i.e., precisely the space Λp(RN ) recalled in Section 3), exploiting a
relation between the partial derivatives of the multidimensional sampling series and the multidimensional sampling-Kantorovich
type operators acting on the partial derivatives of the function. In addition, the authors used product kernels of averaged type,
that is kernels of the form

χ̄m(t) :=
N
∏

i=1

χ̄i,m(t i) (2)

where

χ̄i,m(t) :=
1
m

∫
m
2

− m
2

χi(t + v) dv,

for some m ∈ N, and where χi : R −→ R is a one-dimensional kernel for every i = 1, . . . , N .
In case of product kernels of averaged type, the corresponding multivariate generalized sampling series and mixed sampling-

Kantorovich operators associated to χ̄m will be defined as

(S̄m
w f )(t) :=

∑

k∈ZN

f
�

k
w

�

χ̄m(wt− k), t ∈ RN , w> 0, (3)
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and

(K̄w, j f )(t) :=
∑

k∈ZN



w

∫

k j+1
w

kj
w

f
�

k1

w
, . . . , u . . . ,

kN

w

�

du



 χ̄m(wt− k), (4)

respectively.
In [8] an estimate with respect to the Tonelli variation for the Kantorovich sampling operators (not-mixed) with product-type

averaged kernels, has been provided.
The main results of the present paper consist of Theorems 1 and 2 of Section 3. Namely in Theorem 1 we prove that the

operators S̄m
w f map BVΛ(RN ) in BV (RN ) and

‖V j[S̄m
w f ]‖L1(RN−1) ≤

N
∏

i=1

‖χi‖L1‖V j[ f ]‖`1(ΣN−1
w )

for every j = 1, . . . , N , w> 0, m ∈ N, f ∈ BVΛ(RN ), where BVΛ(RN ) is a subspace of BV (RN ) introduced in Section 2.
As a consequence,

V [S̄m
w f ]≤

N
∏

i=1

‖χi‖L1

N
∑

j=1

‖V j[ f ]‖`1(ΣN−1
w ).

While the first inequality represents an estimate for the Tonelli integrals of the generalized sampling operators (with averaged
kernels) in terms of the Tonelli integrals of the function f , the second inequality gives an estimate of the total variation of the
same operators in terms of a finite sum of a kind of Tonelli integrals of f . In both the inequalities, the Tonelli integrals of the
function f are calculated with respect to the measure of the space where the function f lives, i.e. a space which is related to the
uniform partition compatible with the structure of the sampling type operators (having an admissible partition with a uniform
sampling scheme).

As concerns Theorem 2, we have reached similar results for the mixed sampling-Kantorovich operators (with averaged
kernels), i.e., K̄m

w, j f ∈ BV (RN ) for every j = 1, . . . , N , w> 0, m ∈ N, whenever f ∈ BVΛ(RN ) and

‖V i[K̄m
w, j f ]‖L1(RN−1) ≤

m+ 1
m

N
∏

i=1

‖χi‖L1(R)‖V j[ f ]‖`1(ΣN−1
w ),

for every i, j = 1, . . . , N .
Moreover, as a consequence, we obtain the following estimate for the total variaton of K̄m

w, j f ,

V [K̄m
w, j f ]≤

m+ 1
m

N
∏

i=1

‖χi‖L1(R)

N
∑

j=1

‖V j[ f ]‖`1(ΣN−1
w ).

In conclusion, in this paper we solve the still unsolved problem of obtaining estimates in variation for the families of operators
(3), (4) and a fundamental step to get these results are the estimates in terms of the Tonelli integrals of the operators involved
and of the function f .
Note that, in case of a step function f with compact support (see Remark 2 of Section 3), the above estimates bring to variation-
diminishing type properties for the considered operators. This property is very important in the reconstruction of digital images,
where variation diminishing plays a fundamental role as a smoothing filter on the original image (see, e.g., [8]).

2 Notations and preliminaries
In the multidimensional setting of RN , we will use the usual notation t = (t1, . . . , tN ) for a vector of RN ; moreover we will denote
t = (t′j , t j), where t′j = (t1, . . . , t j−1, t j+1, . . . , tN ) ∈ RN−1, and also t = (t′′j,i , t j , t i)with t′′j,i = (t1, . . . , t j−1, t j+1, . . . , t i−1, t i+1, . . . , tN ).
Finally αt = (αt1, . . . ,αtN ) and, for α 6= 0, t

α =
� t1
α , . . . , tN

α

�

. In order to study a "real" multidimensional setting we assume N > 1:
nevertheless the one-dimensional case has already been explored in [6, 8] (see Remark 1).

We will study estimates in variation for the classical generalized sampling operators (1) and for a Kantorovich version of such
operators recently introduced in [7], named mixed sampling-Kantorovich operators.

The latter are obtained replacing the value f
� k

w

�

with the integral mean computed with respect to the j−th variable, hence
leading to a "mixed" Kantorovich version of (Sw)w, that is,

(Kw, j f )(t) :=
∑

k∈ZN



w

∫

k j+1
w

kj
w

f
�

k1

w
, . . . , u . . . ,

kN

w

�

du



χ(wt− k), (5)

for every t ∈ RN , w> 0 and j = 1, . . . , N ([7, 9]). We refer to [13] for the introduction of the generalized sampling-Kantorovich
operators in the one-dimensional case, where the reader can find the reason for the association of the name of Kantorovich with
the generalized sampling series.

In both the definitions, χ is a product kernel, that is, χ(t) =
∏N

i=1 χi(t), t ∈ RN , is the product of one-dimensional kernels
χi : R→ R, i = 1, . . . , N , that fulfill the following assumptions:
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(I) χi is continuous and such that
∑

k∈Z χi(t − k) = 1, for every t ∈ R;

(I I) Aχi
:= supu∈R

∑

k∈Z |χi(u− k)| < +∞, where the convergence of the series
∑

k∈Z |χi(u− k)| is uniform on the compact
subsets of R.

We point out that the product function χ is a kernel itself, i.e., it satisfies the (multidimensional) conditions

(i) χ is continuous and such that
∑

k∈ZN χ(t− k) = 1, for every t ∈ RN ;

(ii) Aχ := supu∈RN

∑

k∈ZN |χ(u− k)|< +∞, where the convergence of the series
∑

k∈ZN |χ(u− k)| is uniform on the compact
subsets of RN .

The above assumptions on kernels are absolutely natural in case of discrete operators (see, e.g., [19, 45, 15, 34, 14, 17, 31]).

It is immediate to see that, with the above assumptions, both the operators are well defined if, for example, f is bounded
(and therefore in particular if f is of bounded variation). Indeed if | f (t)| ≤ L, for every t ∈ RN , w> 0,

|(Sw f )(t)| ≤ L
∑

k∈ZN

|χ(wt− k)| ≤ LAχ

and, for every j = 1, . . . , N ,

|(Kw, j f )(t)| ≤
∑

k∈ZN



w

∫

k j+1
w

kj
w

�

�

�

�

f
�

k1

w
, . . . , u . . . ,

kN

w

�

�

�

�

�

du



 |χ(wt− k)| ≤ L
∑

k∈ZN

|χ(wt− k)| ≤ L Aχ .

Throughout this paper, we will consider product kernels of averaged type, that is kernels of the form (2) where χi : R −→ R is
a one-dimensional kernel for every i = 1, . . . , N (i.e., satisfying (I) and (I I)).

Of course χ̄m is a kernel itself and

‖χ̄i,m‖1 =

∫

R

�

�

�

�

�

1
m

∫
m
2

− m
2

χi(t + v) dv

�

�

�

�

�

d t ≤
1
m

∫
m
2

− m
2

∫

R
|χi(t + v)| d t dv

= ‖χi‖1

(6)

and also ‖χ̄m‖1 ≤
∏N

i=1 ‖χi‖1.
It is easy to provide examples of product kernels of averaged type. Among them, it is easy to see that the central B-splines of

order n ∈ N (see, e.g., [20, 43]), defined as

Mn(x) :=
1

(n− 1)!

n
∑

i=0

(−1)i
�

n
i

�

�n
2
+ x − i

�n−1

+
, x ∈ R,

where (x)+ :=max {x , 0} denotes “the positive part” of x ∈ R, are kernels (they satisfy conditions (I) and (I I)) of averaged type
since

M̄n,1(t) = Mn+1(t), t ∈ R,

for every n ∈ N, i.e., the averaged kernel with m = 1 generated by a central B-spline of order n is a B-spline itself of order
n+ 1. Therefore the product kernel Mn

1(t) :=
∏N

i=1 M̄n,1(t i) =
∏N

i=1 Mn+1(t i), t ∈ RN , is an example of a product kernel of
averaged type to which our results can be applied.

We refer to [7, 8] for other examples of product averaged type kernels.

From now on, we will deal with multivariate generalized sampling series and mixed sampling-Kantorovich operators associated
to χ̄m, as defined in (3) and (4), i.e.,

(S̄m
w f )(t) :=

∑

k∈ZN

f
�

k
w

�

χ̄m(wt− k), t ∈ RN , w> 0,

and

(K̄w, j f )(t) :=
∑

k∈ZN



w

∫

k j+1
w

kj
w

f
�

k1

w
, . . . , u . . . ,

kN

w

�

du



 χ̄m(wt− k),

respectively.
Notice that χ̄m is differentiable and, obviously,

∂ χ̄m

∂ t j
(t) =

1
m

∏

i 6= j

χ̄i,m(t i)
h

χ j

�

t j +
m
2

�

−χ j

�

t j −
m
2

�i

, t ∈ RN .

As usual, V[a,b][ f ] = sup
∑n

i=1 | f (x i)− f (x i−1)|, where the supremum is taken over all the possible partitions a = x0 < x1 <
. . .< xn = b of the interval [a, b], is the Jordan variation of f over [a, b] and VR[ f ] := sup[a,b]⊂R V[a,b][ f ] denotes the Jordan
variation of f over R.
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By M(RN ) will denote the space of all the measurable and bounded functions f : RN → R.
The concept of Jordan variation was extended in the multidimensional frame in several directions and several definitions were

proposed in the literature (see, e.g., [11]). One of the most used concepts, that is very convenient working with approximation
results, is the Tonelli variation (see [42, 39, 44]). In order to recall the definition of BV-functions in the sense of Tonelli, we
introduce the auxiliary notation

V j[ f ](x′j) := VR[ f (x′j , ·)], x′j ∈ R
N−1,

so that V j[ f ] : RN−1→ R, j = 1, . . . , N , where f (x′j , ·) are the j − th sections of f .

Definition 2.1. A function f ∈ M(RN ) is said to be of bounded variation (in the sense of Tonelli) if the j− th sections f (x′j , ·) are
of bounded variation on R for a.e. x′j ∈ R

N−1 and V j[ f ] ∈ L1(RN−1), for every j = 1, . . . , N . We denote by BV (RN ) the space of
functions of bounded variation.

For the sake of completeness, we now recall how to compute the Tonelli variation of a function f , according to its classical
definition, although in this paper we will always use its integral representation (7).

Given I =
∏N

i=1[ai , bi] and j = 1, . . . , N one considers the (N − 1)−dimensional integrals (Tonelli integrals)

Φ
j
I ( f ) :=

∫

[a′j ,b
′
j ]

V[a j ,b j ][ f (x
′
j , ·)]dx

′
j ,

and their Euclidean norm ΦI ( f ) :=
¦

∑N
j=1(Φ

j
I ( f ))

2
©

1
2

, where ΦI ( f ) = +∞ if Φ j
I ( f ) = +∞, for some j = 1, . . . , N .

Then

VI[ f ] := sup
m
∑

k=1

ΦJk
( f ),

where the supremum is taken over all the finite families of N−dimensional intervals {J1, . . . , Jm} which form partitions of I , is the
variation of f on I ⊂ RN . Passing to the supremum over all the intervals I ⊂ RN , we obtain the variation of f on RN , i.e.,

V [ f ] := sup
I⊂RN

VI[ f ].

We now recall the notion of absolute continuity in the sense of Tonelli.

Definition 2.2. A function f : RN → R is locally absolutely continuous in the sense of Tonelli ( f ∈ ACloc(RN )) if, for every interval
I =

∏N
i=1[ai , bi] and for every j = 1,2, . . . , N , the j-th section of f , f (x′j , ·) : [a j , b j]→ R, is absolutely continuous for almost

every x′j ∈ [a
′
j ,b
′
j].

It is well known that, if f ∈ AC(RN ) := BV (RN ) ∩ ACloc(RN ), ( f is absolutely continuous) then the variation of f has the
following integral representation, i.e.,

V [ f ] =

∫

RN

|∇ f (x)| dx (7)

(see, e.g., [39, 44, 35, 10]). For approximation results by means of discrete and integral operators we refer, e.g., to [2, 4, 1, 5].
Working with the multidimensional version of the generalized sampling series (Sw f )w>0 in the Lp frame, it is natural to

introduce a suitable subspace of Lp(RN ), namely the space Λp(RN ): indeed in [15] (see also [12] for N = 1) it is proved that, in
such subspace, it is possible to achieve convergence in Lp for (Sw f )w>0. Due to the natural link between convergence in variation
of a function f and convergence in L1 of its partial derivatives, in order to obtain convergence results in the space BV (RN ) by
means of the generalized sampling series, it is natural to work again within the subspace Λ1(RN ) (see [7]). On the other side,
since the definition of the mixed sampling-Kantorovich operators is very close to that one of (Sw f )w>0, it is natural to expect that
convergence in Lp holds for (Kw, j f )w>0 in the same subspace ([7]). For all these reasons, in the present paper Λp(RN ) will play a
crucial role: let us now recall its definition ([15, 7] and [12] for N = 1).

We first recall the concept of admissible partition over the i-th axis, i.e., a partition Σi := (x i, ji ) ji∈Z such that

0<∆ := min
i=1,...,N

inf
ji∈Z
(x i, ji − x i, ji−1)≤ max

i=1,...,N
sup
ji∈Z
(x i, ji − x i, ji−1) =:∆< +∞.

A sequence Σ = (xj)j∈ZN ⊂ RN , xj = (x1, j1 , . . . , xN , jN ), j = ( j1, . . . , jN ) ∈ ZN , is an admissible sequence if it is the cartesian product
of admissible partitions Σi = (x i, ji ) ji∈Z.

Let us fix an admissible sequence Σ: then the l p(Σ)-norm of f : RN → R is defined as

‖ f ‖lp(Σ) :=

(

∑

j∈ZN

sup
x∈Qj

| f (x)|p∆j

)
1
p

, 1≤ p < +∞,

where Qj =
∏N

i=1[x i, ji−1 − x i, ji [ and ∆j :=
∏N

i=1(x i, ji − x i, ji−1) is the volume of Qj. The subspace Λp(RN ) is defined as

Λp(RN ) := { f ∈ M(RN ) : ‖ f ‖lp(Σ) < +∞, for every admissible sequence Σ}.
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It can be proved (see [12, 15]) that Λp(RN ) is a proper linear subspace of Lp(RN ) and that it contains, for example, all the
measurable functions with compact support. We refer to [15] and to [12] for other properties concerning such space. Among the
admissible sequences, the sampling grid will play an important role: let us denote it as ΣN

w , i.e., ΣN
w is the cartesian product of

�

k j
w

�

k j∈Z
, j = 1, . . . , N .

For convenience, we also introduce the following notation: we will denote by BVΛ(RN ) the space of functions f ∈ M(RN ) such
that the j − th sections f (x′j , ·) are of bounded variation on R for a.e. x′j ∈ R

N−1 and V j[ f ] ∈ Λ1(RN−1), for every j = 1, . . . , N .
Of course, BVΛ(RN ) is a subspace of BV (RN ) and, for example, it contains all the functions of bounded variation with compact

support.

3 Main results
Our first result will be an estimate in variation for the generalized sampling operators.

Theorem 3.1. If f ∈ BVΛ(RN ), then S̄m
w f ∈ BV (RN ), w> 0, m ∈ N, and

‖V j[S̄m
w f ]‖L1(RN−1) ≤

N
∏

i=1

‖χi‖L1(R)‖V j[ f ]‖`1(ΣN−1
w ) (8)

for every j = 1, . . . , N.
As a consequence,

V [S̄m
w f ]≤

N
∏

i=1

‖χi‖L1(R)

N
∑

j=1

‖V j[ f ]‖`1(ΣN−1
w ). (9)

Proof. We can write, for every j = 1, . . . , N , t ∈ RN , w> 0,

∂ S̄m
w f

∂ t j
(t) =

w
m

∑

k∈ZN

f
�

k
w

�

∏

i 6= j

χ̄i,m(wt i − ki)
h

χ j

�

wt j − k j +
m
2

�

−χ j

�

wt j − k j −
m
2

�i

.

Moreover, since f is in particular bounded, by (I I) for each one-dimensional kernel χ̄i,m,χ j ,
�

�

�

�

∂ S̄m
w f

∂ t j
(t)
�

�

�

�

≤
w
m

L
∑

k∈ZN

∏

i 6= j

|χ̄i,m(wt i − ki)|
h
�

�

�χ j

�

wt j − k j +
m
2

�
�

�

�+
�

�

�χ j

�

wt j − k j −
m
2

�
�

�

�

i

≤
2w
m

L
∏

i 6= j

Aχ̄i,m
Aχ j

.

This implies that S̄m
w f ∈ ACloc(RN ).

Again, it is possible to write, putting in the second series k̃i = ki for i 6= j and k̃ j = k j +m,

∂ S̄m
w f

∂ t j
(t) =

w
m

∑

k∈ZN

f
�

k
w

�

∏

i 6= j

χ̄i,m(wt i − ki) ·χ j

�

wt j − k j +
m
2

�

+

−
w
m

∑

k̃∈ZN

f

�

k̃′j
w

,
k̃ j −m

w

�

∏

i 6= j

χ̄i,m(wt i − k̃i) ·χ j

�

wt j − k̃ j +
m
2

�

=
w
m

∑

k′j∈Z
N−1

∑

k j∈Z

�

f

�

k′j
w

,
k j

w

�

− f

�

k′j
w

,
k j −m

w

��

∏

i 6= j

χ̄i,m(wt i − ki) ·χ j

�

wt j−k j+
m
2

�

≤
w
m

∑

k′j∈Z
N−1

∑

k j∈Z

V� k j−m
w ,

k j
w

�

�

f

�

k′j
w

, ·

��

∏

i 6= j

χ̄i,m(wt i − ki) ·χ j

�

wt j−k j+
m
2

�

= w
∑

k′j∈Z
N−1

VR

�

f

�

k′j
w

, ·

��

∏

i 6= j

χ̄i,m(wt i − ki) ·χ j

�

wt j−k j+
m
2

�

.

Therefore there holds
∫

RN

�

�

�

�

∂ S̄m
w f

∂ t j
(t)
�

�

�

�

dt≤ w
∑

k′j∈Z
N−1

VR

�

f

�

k′j
w

, ·

��

∫

RN

∏

i 6= j

χ̄i,m(wt i − ki) ·χ j

�

wt j−k j+
m
2

�

dt

=
∑

k′j∈Z
N−1

1
wN−1

V j[ f ]

�

k′j
w

�

∏

i 6= j

‖χ̄i,m‖L1(R) · ‖χ j‖L1(R) ≤ ‖V j[ f ]‖`1(ΣN−1
w )

N
∏

i=1

‖χi‖L1(R),

by (6). By Proposition 1 of [7], V [S̄m
w f ] =

∫

RN

�

�∇S̄m
w f (t)

�

� dt and therefore, by the previous inequality we have that S̄m
w f

are in BV (RN ): being also all the sections of S̄m
w f of bounded variation and locally absolutely continuous, V j[S̄m

w f ](x′j) =
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∫

R

�

�

�

�

∂ S̄m
w f

∂ t j

�

x′j , u
�

�

�

�

�

du, a.e. x′j ∈ R
N−1, and therefore

‖V j[S̄m
w f ]‖L1(RN−1) ≤

N
∏

i=1

‖χi‖L1(R)‖V j[ f ]‖`1(ΣN−1
w ).

The estimate (9) follows immediately by the previous one and the obvious inequality V [S̄m
w f ]≤

∑N
j=1 ‖V

j[S̄m
w f ]‖L1(RN−1).

We point out that, of course, the main part of the above result is the first estimate: indeed in case of positive kernels χi ,
i = 1, . . . , N , since the L1−norm of χi turns out to be 1, inequality (8) becomes

‖V j[S̄m
w f ]‖L1(RN−1) ≤ ‖V j[ f ]‖`1(ΣN−1

w )).

Notice that ‖V j[S̄m
w f ]‖L1(RN−1) is the Tonelli integral of S̄m

w f , Φ j
RN (S̄m

w f ): in other words, we have a variation diminishing-type
estimate for the L1−norm of the sections of the operators in terms of the `1(ΣN−1

w )−norm of the sections of the function. Working
with the generalized sampling operators, it is natural to expect that we cannot obtain an estimate in terms of the L1−norm of the
sections of f , since their L1−norm can just be estimated in terms of the `1−norm of f (see [15]) on the sampling grid: we could
think to the `1−norm of the variation of the section of f as a kind of Tonelli integral in the setting of BVΛ(RN ), instead of the
classical Tonelli integrals in BV (RN ).

We now prove a similar estimate in variation for the mixed sampling-Kantorovich operators (K̄m
w, j f )w>0, j = 1, . . . , N .

Theorem 3.2. If f ∈ BVΛ(RN ), then K̄m
w, j f ∈ BV (RN ) for every j = 1, . . . , N, w> 0, m ∈ N, and

‖V i[K̄m
w, j f ]‖L1(RN−1) ≤

m+ 1
m

N
∏

l=1

‖χl‖L1(R)‖V j[ f ]‖`1(ΣN−1
w ), (10)

for every i, j = 1, . . . , N.
As a consequence,

V [K̄m
w, j f ]≤

m+ 1
m

N
∏

l=1

‖χl‖L1(R)

N
∑

j=1

‖V j[ f ]‖`1(ΣN−1
w ).

Proof. Let us first consider the case i = j.

Since f is in particular bounded,
∂ K̄m

w, j f

∂ t j
(t) exists for every t ∈ RN . Indeed, for every j = 1, . . . , N , t ∈ RN , there holds

∂ K̄m
w, j f

∂ t j
(t) =

w2

m

∑

k∈ZN

�

∫

[
k j
w ,

k j+1
w ]

f

�

k′j
w

, u

�

du

�

∏

i 6= j

χ̄i,m(wt i − ki)
h

χ j

�

wt j − k j +
m
2

�

−χ j

�

wt j − k j −
m
2

�i

, (11)

and hence, using (I I), for every t ∈ RN ,
�

�

�

�

�

∂ K̄m
w, j f

∂ t j
(t)

�

�

�

�

�

≤
w
m

L
∑

k∈ZN

∏

i 6= j

|χ̄i,m(wt i − ki)|
h
�

�

�χ j

�

wt j − k j +
m
2

�
�

�

�+
�

�

�χ j

�

wt j − k j −
m
2

�
�

�

�

i

≤
2w
m

L
∏

i 6= j

Aχ̄i,m
Aχ j
< +∞. (12)

This implies that K̄m
w, j f ∈ ACloc(RN ) and therefore we have, for a.e. x′j ∈ R

N−1,

∫

R

�

�

�

�

�

∂ K̄m
w, j f

∂ t j
(x′j , u)

�

�

�

�

�

du= sup
[a,b]∈R

∫ b

a

�

�

�

�

�

∂ K̄m
w, j f

∂ t j
(x′j , u)

�

�

�

�

�

du= sup
[a,b]∈R

V[a,b][K̄
m
w, j f (x′j , ·)] = V j[K̄m

w, j f ](x′j). (13)

Now, putting in the second series of (11) k̃i = ki for i 6= j and k̃ j = k j +m, we can write

∂ K̄m
w, j f

∂ t j
(t) =

w2

m

∑

k∈ZN

�

∫

[
k j
w ,

k j+1
w ]

f

�

k′j
w

, u

�

du

�

∏

i 6= j

χ̄i,m(wt i − ki)χ j

�

wt j − k j +
m
2

�

+

−
w2

m

∑

k̃∈ZN

�

∫

[
k̃ j−m

w ,
k̃ j−m+1

w ]

f

�

k̃′j
w

, u

�

du

�

∏

i 6= j

χ̄i,m(wt i − k̃i)χ j

�

wt j − k̃ j +
m
2

�

.

(14)

If we now put, in the second integral, v = u+ m
w , then

∂ K̄m
w, j f

∂ t j
(t) =

w2

m

∑

k∈ZN

∫

[
k j
w ,

k j+1
w ]

�

f

�

k′j
w

, u

�

− f

�

k′j
w

, u−
m
w

��

du
∏

i 6= j

χ̄i,m(wt i − ki)χ j

�

wt j − k j +
m
2

�

,
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and therefore
�

�

�

�

�

∂ K̄m
w, j f

∂ t j
(t)

�

�

�

�

�

≤
w
m

∑

k∈ZN

V
[

k j−m
w ,

k j+1
w ]

�

f

�

k′j
w

, ·

��

∏

i 6= j

|χ̄i,m(wt i − ki)|
�

�

�χ j

�

wt j − k j +
m
2

�
�

�

�

≤ w
m+ 1

m

∑

k′j∈Z
N−1

VR

�

f

�

k′j
w

, ·

��

∏

i 6= j

|χ̄i,m(wt i − ki)|
�

�

�χ j

�

wt j − k j +
m
2

�
�

�

� .

Then, by (13),

‖V j[K̄m
w, j f ]‖L1(RN−1) =











∂ K̄m
w, j f

∂ t j











L1(RN )

≤ w
m+ 1

m

∫

RN

∑

k′j∈Z
N−1

VR

�

f

�

k′j
w

, ·

��

∏

i 6= j

|χ̄i,m(wt i − ki)|
�

�

�χ j

�

wt j − k j +
m
2

�
�

�

� dt

=
m+ 1

m

∑

k′j∈Z
N−1

1
wN−1

V j[ f ]

�

k′j
w

�

∫

RN

wN
∏

i 6= j

|χ̄i,m(wt i − ki)|
�

�

�χ j

�

wt j − k j +
m
2

�
�

�

� dt≤
m+ 1

m
‖V j[ f ]‖`1(ΣN−1

w )

N
∏

i=1

‖χi‖L1(R).

Let us now take i 6= j. First notice that, similarly to (11) and (12), for i 6= j there holds

∫

R

�

�

�

�

�

∂ K̄m
w, j f

∂ t i
(x′i , u)

�

�

�

�

�

du= V i[K̄m
w, j f ](x′i),

a.e. x′i ∈ R
N−1. Moreover, similarly to (14),

∂ K̄m
w, j f

∂ t i
(t) =

w2

m

∑

k∈ZN

�

∫

[
k j
w ,

k j+1
w ]

f

�

k′j
w

, u

�

du

�

·
∏

l 6=i

χ̄l,m(wt l − kl)
�

χi

�

wt i − ki +
m
2

�

−χi

�

wt i − ki +
m
2

�
�

.

Putting in the second series k̃i = ki for i 6= j and k̃ j = k j +m,

∂ K̄m
w, j f

∂ t i
(t) =

w2

m

∑

k∈ZN

∫

[
k j
w ,

k j+1
w ]



 f

�

k′j
w

, u j

�

− f

 

k′′j,i
w

,
ki −m

w
, u j

!



 du j

∏

l 6=i

χ̄l,m(wt l − kl)χi

�

wt i − ki +
m
2

�

≤
w2

m

∑

k∈ZN

∫

[
k j
w ,

k j+1
w ]

V
[

ki−m
w ,

ki
w ]



 f

 

k′′j,i
w

, u j , ·

!



 du j

∏

l 6=i

χ̄l,m(wt l − kl)χi

�

wt i − ki +
m
2

�

≤
w2

m

∑

k′′j,i∈Z
N−2

∑

k j∈Z

∫

[
k j
w ,

k j+1
w ]

∑

ki∈Z







V
[

ki−m
w ,

ki−m+1
w ]



 f

 

k′′j,i
w

, u j , ·

!



+

+ . . .+ V
[

ki−1
w ,

ki
w ]



 f

 

k′′j,i
w

, u j , ·

!











du j

∏

l 6=i

χ̄l,m(wt l − kl)χi

�

wt i − ki +
m
2

�

= w2
∑

k′′j,i∈Z
N−2

∑

k j∈Z

∫

[
k j
w ,

k j+1
w ]

V i[ f ]

 

k′′j,i
w

, u j

!

du j

∏

l 6=i

χ̄l,m(wt l − kl)χi

�

wt i − ki +
m
2

�

.

Therefore there holds

‖V i[K̄m
w, j f ]‖L1(RN−1) =

∫

RN

�

�

�

�

�

∂ K̄m
w, j f

∂ t i
(t)

�

�

�

�

�

dt

≤ w2

∫

RN

∑

k′′j,i∈Z
N−2

∑

k j∈Z

∫

[
k j
w ,

k j+1
w ]

V i[ f ]

 

k′′j,i
w

, u j

!

du j

∏

l 6=i

|χ̄l,m(wt l − kl)|
�

�

�χi

�

wt i − ki +
m
2

�
�

�

� dt

= w2
∑

k′′j,i∈Z
N−2

∑

k j∈Z

∫

[
k j
w ,

k j+1
w ]

V i[ f ]

 

k′′j,i
w

, u j

!

du j

∫

RN

∏

l 6=i

|χ̄l,m(wt l − kl)|
�

�

�χi

�

wt i − ki +
m
2

�
�

�

� dt

=
∑

k′′j,i∈Z
N−2

1
wN−2

∑

k j∈Z

∫

[
k j
w ,

k j+1
w ]

V i[ f ]

 

k′′j,i
w

, u j

!

du j

∏

l 6=i

‖χ̄l,m‖L1(R)‖χi‖L1(R)

≤
∑

k′′j,i∈Z
N−2

1
wN−1

∑

k j∈Z

sup
u j∈[

k j
w ,

k j+1
w ]

V i[ f ]

 

k′′j,i
w

, u j

!

∏

l 6=i

‖χ̄l,m‖L1(R)‖χi‖L1(R) ≤ ‖V i[ f ]‖`1(ΣN−1
w )

N
∏

l=1

‖χl‖L1(R),

and hence inequality (10) follows.
The second estimate follows again taking into account that V [K̄m

w, j f ]≤
∑N

i=1 ‖V
i[K̄m

w, j f ]‖L1(RN−1).
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Remark 1. Throughout the paper we have assumed that N > 1. Similar estimates in variation in the one-dimensional case
have already been obtained: we refer to [6] for case of the generalized sampling series and to [8] for the case of the sampling-
Kantorovich operators (notice that, for N = 1 the mixed sampling-Kantorovich operators obviously coincide with the classical
sampling-Kantorovich operators).

Remark 2. a) We point out that Theorem 3.1 can be viewed as a generalization of Proposition 5 of [7]. Indeed, let us consider
a step function f with compact support [a,b] ⊂ RN , [a,b] ⊂ RN , where a,b ∈ ZN , ai < bi , i = 1, ..., N , and f (x) = f (i)
for every x ∈ [i,j[, i.e., f is constant on each interval of a grid of multi-dimensional intervals of the form [i,j] ⊂ [a,b],
with i,j ∈ ZN , and | jν − iν| = 1, ν = 1, ..., N , that form a partition of [a,b[. Then it is not difficult to see that, for such
function, V j[ f ] is also a step type function on the same grid and therefore the `1(ΣN−1

w ) and the L1−norm of V j[ f ] actually
coincide. This implies that, in this case, the thesis of Theorem 3.1 says that the Tonelli integrals of S̄m

w f are smaller than
the Tonelli integrals of f multiplied by

∏N
i=1 ‖χi‖L1(R), and therefore, passing to the Euclidean norm, we obtain the thesis

of Proposition 5 of [7].

b) We finally point out that, in case of the same step-type function of a), the mixed sampling-Kantorovich operators coincide
with the classical Kantorovich operators (therefore Theorem 3.2 becomes Theorem 1 of [8]) and also with the generalized
sampling series: hence, as pointed out in Corollary 1 of [8], the sharper estimate

V i[K̄m
w, j f ] = V i[K̄m

w f ] = V i[S̄m
w f ] ≤

N
∏

l=1

‖χl‖L1(R) V
i[ f ]

actually holds for every i, j = 1, . . . , N . As a consequence, we also have

V [K̄m
w, j f ] = V [K̄m

w f ] = V [S̄m
w f ] ≤

N
∏

l=1

‖χl‖L1(R)

N
∑

i=1

V i[ f ].

Acknowledgements
The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilitá e le loro Applicazioni (GNAMPA) of the Istituto
Nazionale di Alta Matematica (INdAM), of RITA (Research ITalian network on Approximation) and of the UMI group “Teoria dell’Approssimazione
e Applicazioni".
The authors are partially supported by the "Department of Mathematics and Computer Science" of the University of Perugia (Italy) and within
the projects "Metodi e processi innovativi per lo sviluppo di una banca di immagini mediche per fini diagnostici" (2018) and "Metodiche di
Imaging non invasivo mediante angiografia OCT sequenziale per lo studio delle Retinopatie degenerative dell’Anziano (M.I.R.A.)" (2019)
funded by the Fondazione Cassa di Risparmio di Perugia. The authors have been also partially supported within the projects "Metodi di Teoria
dell’Approssimazione, Analisi Reale, Analisi Nonlineare e loro applicazioni" and "Integrazione, Approssimazione, Analisi Nonlineare e loro
Applicazioni", funded by the 2018 and 2019 basic research fund of the University of Perugia. Finally, the first author of the paper have been partially
supported within a 2019 GNAMPA-INdAM Project (“Metodi di analisi reale per l’approssimazione attraverso operatori discreti e applicazioni")
and a 2020 GNAMPA-INdAM Project (“Analisi reale, teoria della misura ed approssimazione per la ricostruzione di immagini").

References
[1] U. Abel, O. Agratini. On the variation detracting property of operators of Balazas and Szabados. Acta Math. Hungar., 150(2):383–395,

(2016).

[2] O. Agratini. On the variation detracting property of a class of operators. Appl. Math. Lett., 19(11):1261–1264, 2006.

[3] P. N. Agrawal, A. M. Acu, M. Sidharth. Approximation degree of a Kantorovich variant of Stancu operators based on Pólya-Eggenberger
distribution. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM,. 113(1):137–156, (2019).

[4] L. Angeloni. A characterization of a modulus of smoothness in multidimensional setting. Bollettino dell’Unione Matematica Italiana, Serie IX,
4(1):79–108, (2011).

[5] L. Angeloni. A new concept of multidimensional variation in the sense of Riesz and applications to integral operators. Mediterr. J. Math.,
14(4): 149 (2017).

[6] L. Angeloni, D. Costarelli, G. Vinti. A characterization of the convergence in variation for the generalized sampling series. Ann. Acad. Sci.
Fenn. Math., 43:755–767, (2018).

[7] L. Angeloni, D. Costarelli, G. Vinti. Convergence in variation for the multidimensional generalized sampling series and applications to
smoothing for digital image processing. Ann. Acad. Sci. Fenn. Math., 45:751–770, (2020).

[8] L. Angeloni, D. Costarelli, M. Seracini, G. Vinti, L. Zampogni. Variation diminishing-type properties for multivariate sampling Kantorovich
operators. Boll. Unione Mat. Ital., Special Issue "Measure, Integration and Applications dedicated to Prof. Domenico Candeloro, 13:595–605
(2020).

[9] L. Angeloni, D. Costarelli, G. Vinti. Approximation properties of mixed sampling-Kantorovich operators. R. Acad. Cienc. Exactas Fis. Nat.
Serie A. Matemáticas. 115 article n. 4 (2021). DOI: 10.1007/s13398-020-00936-x

[10] L. Angeloni, G. Vinti. A characterization of absolute continuity by means of Mellin integral operators. Z. Anal. Anwend., 34(3):343–356,
(2015).
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