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Hölder continuity of the Green function,
Markov-type inequality

and a capacity related to HCP

Mirosław Baran a · Leokadia Bialas-Ciez b

Abstract

Let VE be the pluricomplex Green function associated to a compact subset E of CN . The well known
Hölder Continuity Property (HCP) of E means that there exist constants B > 0,γ ∈ (0,1] such that
VE(z)≤ B dist(z, E)γ. It turns out that this condition is equivalent to a Vladimir Markov type inequality,
i.e. ‖DαP‖E ≤ M |α|(deg P)m|α| (|α|!)1−m ‖P‖E , where m, M > 0 are independent of the polynomial P of
N variables and ‖·‖E is the supremum norm on E. This equivalence has some interesting implications, e.g.
for convex bodies in RN , for uniformly polynomially cuspidal sets and for some disconnected compact
sets. Moreover, we give a definition of a capacity related to HCP and we prove some its basic properties.
This allows improving an estimate from below of the L-capacity of sets with (HCP). The paper is mostly
based on the talk given during the Workshop on Multivariate Approximation in honor of Prof. Len Bos
60th birthday, and rests on the article [3].

Let E be a compact set in CN . The pluricomplex Green’s function (with pole at infinity) of E can be defined by

VE(z) := sup{u(z) : u ∈ LN and u≤ 0 on E}, z ∈ CN ,

where LN is the Lelong class of all plurisubharmonic functions in CN of logarithmic growth at the infinity, i.e.

LN :={u ∈ PSH(CN ) : u(z)− log‖z‖2 ≤O(1) as ‖z‖2→∞}

(for background information, see [12]). Here ‖z‖2 stands for the Euclidean norm in KN , K = C or K = R. In the univariate
case VE coincides with the Green’s function gE of the unbounded component of Ĉ \ E with logarithmic pole at infinity (as usual
Ĉ= C∪ {∞}).

Let V ∗E be the standard upper regularization of VE . By Siciak’s theorem, either V ∗E ∈ LN or V ∗E ≡ +∞. It is equivalent to the
fact that E is a non-pluripolar or pluripolar set, respectively (non-polar or polar for N = 1). For a non-polar set E, V ∗E coincides
with the Green’s function gE of the unbounded component of Ĉ \ E with logarithmic pole at infinity (as usual Ĉ= C∪ {∞}).

If we define the L-capacity of E to be C(E) = lim inf
||z||2−→∞

||z||2
exp V ∗E (z)

, then E is a pluripolar set if and only if C(E) = 0. In the

one-dimensional space, C(E) equals the logarithmic capacity of E.

A set E is L-regular if lim
w−→z

V ∗E (w) = 0 for every z ∈ E. Siciak has proved that this is equivalent to the continuity of VE in the

whole space CN . Therefore, L-regularity, i.e. the continuity of VE is the global property of VE determined by the behaviour of VE
only near E.

Another global property of the set E that depends only on the behaviour of VE near E is the Hölder continuity property of the
pluricomplex Green’s function VE .

Definition 1. Let γ ∈ (0,1], B > 0. A compact set E ⊂ CN admits the Hölder continuity property of the pluricomplex Green’s
function VE (E ∈ HC P(γ, B) in short) if for every z ∈ CN

VE(z) ≤ B dist(z, E) γ. (1)

In order to investigate the behavior of VE near E, we define

V •E (z) := sup{VE(x −w) : x ∈ E, ||w||2 ≤ ||z||2}, z ∈ CN ,

that is, a radial modification of VE . The definition and main properties of V •E were presented by M. Baran, L. Bialas-Ciez,
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on the occasion of Professor Józef Siciak’s 80th birthday, Kraków, 4-8 July 2011. We set out (without proofs) the following
examples:

• if E is a unit ball in CN (with respect to a fixed complex norm) then V •E (z) = log(1+ ||z||2/C(E)),
• if E is a convex symmetric body in RN then V •E (z) = log h(1+ ||z||2/(2 C(E))), where h(t) = t +

p
t2 − 1 for t ≥ 1.

• if E is a polar set then V •E (0) = 0, V •E |CN \{0} ≡ +∞.

For the non-polar sets we can obtain a very important fact which is derived from Prop.1.4 in [20] (cf. [6, Th.2.1c)]):

Proposition 2. If E is a non-pluripolar compact subset of CN and

ρE(r) := V •E (z) f or ‖z‖2 = r,

then t 7−→ ρE(et) is an increasing convex function.

Remark 3. The function ρE has the following basic properties:

a) ρa+λE(r) = ρE(λ−1r), a ∈ CN , λ > 0,
b) ρE×F (r) =max(ρE(r),ρF (r)),
c) ρE(r)− log r is a decreasing function and tends to − log C(E) as r →∞,
d) ρE is increasing, continuous on (0,+∞) and consequently, 0= ρE(0)≤ lim

r→0+
ρE(r). Therefore, L-regularity is equivalent

to the equality lim
r→0+

ρE(r) = 0.

It seems appropriate to mention here five equivalents for the Hölder continuity property HCP.

Proposition 4. If E is a compact subset of CN and γ ∈ (0,1] then the following statements are equivalent:

(i) ∃ B1 ≥ 1 E ∈ HC P(γ, B1),
(ii) ∃ B2 ≥ 1 ρE(r)≤ B2 rγ for r ≥ 0,

(iii) ∃ B3 ≥ 1 |ρE(r)−ρE(s)| ≤ B3 |r − s|γ for r, s ≥ 0,

(iv) ∃ B4 ≥ 1 ΦE(z)≤ 1+ B4 dist (z, E) γ for z ∈ CN , dist (z, E)≤ 1,

(v) ∃ B5 ≥ 1 |VE(z)− VE(w)| ≤ B5 ‖z −w‖ γ2 for z, w ∈ CN ,

(vi) ∀ R> 0 ∃ B6 ≥ 1 |ΦE(z)−ΦE(w)| ≤ B6 ‖z −w‖ γ2 for z, w ∈ ER := {z ∈ CN : dist (z, E)≤ R}.
Moreover, in the equivalences (i)⇔ (ii)⇔ (iii)⇔ (v) we have B1 = B2 = B3 = B5.

One can easily prove that HCP implies the A. Markov inequality, i.e. there exist constants m≥ 1, M > 0 such that for every
polynomial P of N variables

‖‖grad P‖2‖E ≤ M (deg P)m ‖P‖E , (2)

where deg P is the total degree of the polynomial P, i.e. the highest degree of its monomials. If E admits inequality (2) then it is
said to be a Markov set and we write E ∈ AM I(m, M).

An interesting question is whether there exists a relationship between the A. Markov inequality and the behaviour of the
Green’s function near the considered set. Every Markov set E ⊂ C is non-polar (see [6]) and every Markov set E ⊂ R is L-regular
(see [7]). It seems that A. Markov inequality (2) implies Hölder continuity property but a proof is an open problem mentioned
e.g. in [19]. Actually, even the question about L-regularity of Markov sets in the general case remains open.

By Theorem 3.5 in [14] we can obtain

Proposition 5. If E ⊂ C, n is a positive integer, k ∈ {1, . . . , n} and there exists Mk = Mk(E), m> 0 such that for every polynomial P
of degree at most n

‖P(k)‖E ≤ Mk nmk ‖P‖E (3)

then Mk ≥ Bk/[(k!)m−1] for certain constant B > 0 depending only on the set E.

We concentrated in [3] on a generalization of an inequality proved by A. Markov’s younger brother, V. Markov. He discovered
in 1892, after a very detailed investigation, a precise but intricate estimate for the k-th derivative of polynomials (see e.g. [21]):
for any polynomial P of degree not greater than n

‖P(k)‖[−1,1] ≤ T (k)n (1) ‖P‖[−1,1] =
n2[n2 − 1]...[n2 − (k− 1)2]

1 · 3 · . . . · (2k− 1)
‖P‖[−1,1] (4)

where Tn(x) = cos(n arccos x) is the n-th Chebyshev polynomial (for k = 1 it was proved by A. Markov in 1889).

Inequality (4) inspired us to consider a new type of Markov inequality (see [3]). Let N= {1, 2, ...} and N0 = N∪ {0}.
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Definition 6. Fix m≥ 1, M > 0. A compact set E ⊂ CN admits the V. Markov inequality (E ∈ V M I(m, M) in short) if for every
α ∈ NN

0 , P ∈ P(CN )

‖DαP‖E ≤ M |α| (deg P)m|α|

(|α|!)m−1
‖P‖E (5)

where |α|= α1 + . . .+αN , Dα ∂ |α|

∂ z
α1
1 ...∂ z

αN
N

for α= (α1, . . . ,αN ).

In other words, (5) is a version of inequality (3) (and also its analogue in higher dimensional space) with the strongest
possible constants Mk (compare with [5] where best Markov exponents were studied). Wiesław Ple?iak was the first to propose
inequalities similar to (5), see eg. [18].

Remark 7. If E ∈ AM I(m1, M1) and if we fix an arbitrary δ ∈ (0, 1) then for every polynomial P of degree at most n and for all
|α| ≤ nδ, inequality (5) holds with m= m1−δ

1−δ and M = M1. In the particular case of m1 = 1, we get AM I(1, M1)⇔ V M I(1, M).

In the general case, we do not know whether or not the V. Markov inequality is equivalent to that of A. Markov. However, we
can show that the Hölder continuity property is equivalent to (5).

Theorem 8. ([3, Th.2.9]) If E is a compact subset of CN , 0< γ≤ 1≤ m, B, M > 0 then

E ∈ HC P(γ, B) =⇒ E ∈ V M I (m, M) with m= 1/γ, M =
p

N (Bγe)1/γ

E ∈ V M I(m, M) =⇒ E ∈ HC P (γ, B) with γ= 1/m, B = MγNγm.

Moreover, if E ∈ V M I (m, M), then C(E)≥ e−m 1
N M . Hence, if E ∈ HC P (γ, B), then C(E)≥

�

N 3/2(Bγe2)1/γ
�−1

.

The last estimate can be slightly improved, see Corollary 18.
As a consequence of the above theorem, the well known open problem concerning the conjectured implication AM I ⇒ HC P

is equivalent to a new question of whether AM I implies V M I . The first problem regards the properties related to the notions in
two different fields: the pluricomplex Green’s function and polynomials, whereas the new question is formulated only in terms of
derivatives of polynomials. Observe that by the Zahariuta-Siciak formula:

VE(z) = log sup

�

�

|P(z)|
‖P‖E

�1/n

: P ∈ Pn(CN ), n≥ 1, P|E 6≡ 0

�

for z ∈ CN ,

the Hölder continuity property HCP can be easily described by a polynomial condition. However, this condition requests a control
on polynomials not only on the considered set E but also on its neighborhood independent of the degree of polynomials. In
contrast, AMI request a control on polynomials on a neighborhood of E depending on the degree of polynomials (see [19, Th.3.3,
condition (ii)]). As for VMI, inequality (5) concerns the behaviour of derivatives of polynomials only on the set E, similarly to
AMI.

Due to Theorem 8 given above, we can give new, somewhat unexpected equivalents to the Hölder continuity property of the
pluricomplex Green’s function:

Corollary 9. ([3, Corollary 2.10]) If E is a compact subset of CN and γ ∈ (0,1] then the following conditions are equivalent:

(i) E ∈ HC P(γ, B1) with some B1 ≥ 1,

(ii) ∃ B2 > 0 ∀ z0 ∈ E ∀ j ∈ {1, . . . , N} ∀ ζ ∈ C such that |ζ| ≤ 1 we have

VE(z0 + ζe j) ≤ B2 |ζ|γ,

(iii) ∃M3 > 0 ∀ j ∈ {1, . . . , N} ∀ P ∈ P(CN ) ∀ k ∈ N we have

‖Dke j P‖E ≤ M k
3

(deg P)k/γ

k !
1
γ−1

‖P‖E ,

where e1, . . . , eN are the canonical vectors in CN : e j = (0, . . . , 0, 1, 0, . . . , 0) with the value 1 in the jth entry.

It seems to be rather surprising that condition (ii) in Corollary 6 that holds only in N canonical directions, is sufficient to
guarantee the Hölder continuity property of VE in all directions.

If E is a compact subset of RN ⊂ RN + iRN = CN and inequality (1) holds for x ∈ RN then it holds for all z ∈ CN (see [3,
Cor.4.4]). As a consequence, we obtain

Proposition 10. ([3, Example 4.7]) There exists an absolute constant B such that for all dimensions N and for all convex bodies
E ⊂ RN the following inequality holds:

VE(z)≤ B(dist(z, E)/C(E))1/2, z ∈ CN .

In particular, these sets belong to V M I(2,
p

NB2e2/[4 C(E)]).
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Recall a definition of a class of UPC sets introduced by Pawłucki and Pleśniak [15] who have shown its importance in
approximation theory. In particular, they have proved a deep result (cf. [15, Cor. 6.5]) that every fat compact subanalytic subset
of RN belongs to this class (see also [16]).

Let s ≥ 1, S > 0 and d ∈ {1, 2, . . .}.

Definition 11. A compact set E ⊂ RN is called uniformly polynomially cuspidal (E ∈ U PC(s, S, d) in short) if for every x0 ∈ E we
can find a polynomial mapping ϕ : R→ RN of degree at most d such that ϕ(1) = x0 and

dist(ϕ(t),RN \ E)≥ S(1− t)s for t ∈ [0, 1].

It is rather difficult to find the optimal constant s in the last inequality. However, calculations are much simpler for the
following modification of the above definition.

Definition 12. (cf. [2]) Let v be a fixed unit vector in RN . A compact set E ⊂ RN is called uniformly polynomially cuspidal in
direction v (E ∈ U PCv(s, S, d) in short) if for every x0 ∈ E we can find a polynomial mapping ϕ : R→ RN of degree at most d
such that ϕ(1) = x0 and

distv(ϕ(t),RN \ E)≥ S(1− t)s for t ∈ [0,1].

Here distv(x ,RN \ E) := sup{r ≥ 0 : [x − rv, x + rv] ⊂ E}.

If E ∈ U PC(s, S, d) then E ∈ U PCv(s, S, d) for every unit vector v. An open problem is whether conditions E ∈ U PCv j
(s j , S j , d j), j =

1, . . . , N , v1, . . . , vN that are linearly independent imply E ∈ U PC(s, S, d) with some S, s, d. We conjecture this is true for N = 2
but not for N ≥ 3.

As a consequence of Th.8 given above, we obtain the following theorem that essentially improves earlier result by Pawłucki
and Pleśniak [15, Th.4.1] (see also [17]).

Theorem 13. ([3, Corollary 4.11]) If E ∈ U PCe j
(s j , S j , d j), j = 1, . . . , N then there exists a constant B such that E ∈ HC P(γ, B)

with γ= 1/(2min
j

s j). In particular, if E ∈ U PC(s, S, d) then E ∈ HC P(1/(2s), B).

Although the definition of HCP is simple, its verification for particular sets can be very complicated (see e.g. [1, 10, 11]). The
Carleson-Totik criterion (see [9, Th.1.2, Th.1.7]) merits mentioning here. It gives an equivalent condition for HCP expressed in
terms of capacities in a similar way to Wiener’s criterion for L-regularity. This criterion can be used for proving HCP for a large
family of sets. However, the Carleson-Totik criterion holds only in the univariate complex case (or in R) and the equivalence is
valid under certain additional assumption on sets e.g. for sets satisfying an exterior cone condition. In this context, Theorem 8
given above (i.e. Th.2.9 in [3]) provides a useful tool for showing HCP especially when sets do not satisfy the assumptions of the
criterion mentioned above. We give some examples of such an application of Th.8.

The first example regards certain onion type sets in the complex plane that are very useful in a problem concerning local and
global Markov’s properties (see [8]).

Example 14. ([3, Prop.5.1]) Let (a j) j be a strictly decreasing sequence of positive numbers such that a1 = 1, a j → 0 as j→∞ and
let ϕ j ∈ (0, π2 ) for j = 1, 2, . . .. Put

C j := {a j e
i t : t ∈ [ϕ j , 2π]} f or j = 1, 2, . . . ,

E := {0} ∪
∞
⋃

j=1

C j .

If |1− eiϕ j | ≤ a j+1 for j = 1,2, ... then E ∈ HC P( 1
6 , B) for some B > 0.

Example 15. ([3, Prop.5.2]) Let µ≥ 2, b ∈ (0,
p

2− 1) and let (a j) j , (r j) j be sequences of positive numbers such that

a1 = 2, r1 = 1, a j = r j + r2
j , r j = b rµj−1 f or j ≥ 2.

Then the set E defined by

E := {0} ∪
∞
⋃

j=1

E j , E j := {z = (z1, . . . , zN ) ∈ CN : |z1 − a j | ≤ r j , |z2| ≤ r j , . . . , |zN | ≤ r j}

satisfies E ∈ HC P( 1
2+µ ,B) with some B > 0.

In order to study the best constants in Hölder continuity property of the pluricomplex Green’s function, we define a new
capacity H(E) related to this property. This capacity leads us to an estimate of the L-capacity of the sets with HCP stronger than
this one given in Th.8.
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Definition 16. If γ ∈ (0, 1] is fixed then for E being a compact subset of CN put

Hγ(E) :=
�

inf
r>0

rγ

γeρE(r)

�1/γ

= inf
r>0

r
(γeρE(r))1/γ

= 1/(B(γ)γe)1/γ,

where B(γ) = sup
r>0

ρE (r)
rγ . We define the H-capacity (or Hölder capacity) by the following formula

H(E) := sup
0<γ≤1

Hγ(E).

The set function E 7→ H(E) is called a capacity because of its properties similar to features of known capacities:

• H(a+ sE) = sH(E) for a ∈ CN , s > 0 since ρa+sE(r) = ρE(r/s) (cf. Remark 3), and so Hγ(a+ sE) = sHγ(E),

• Hγ(E×F) =min(Hγ(E), Hγ(F)) and H(E×F) = sup
0<γ≤1

min(Hγ(E), Hγ(F)) in view of the propertyρE×F (r) =max(ρE(r),ρF (r)),

• H(F) ≤ H(E) if ρE ≤ ρF (where E and F are subsets of CN1 and CN2 , respectively, for two integers N1, N2 that can be
distinct),

• if E is a unit ball in CN (with respect to a given norm) then H(E) = C(E)H(D) = C(E) because of the formula ρE(r) =
log(1+ r/C(E)) = ρC(E)D(r) and Remark 19,

• if E is a unit ball in RN then H(E) = 2C(E)H([−1, 1]) = C(E) thanks to ρE(r) = ρ[−1,1](r/(2C(E))) and Remark 19. The
same formula is true if E is the standard simplex in RN , i.e. E = {x ∈ RN | x1, . . . , xN ≥ 0, x1 + · · ·+ xN ≤ 1}.

The idea of the Hölder capacity has appeared as an answer to a question posed by R.Eggink about the behaviour of the
right-hand side of the estimate of C(E) as a function of γ ∈ (0, 1] (see Th.8).

It is clear that B(γ) is the best constant in HCP in view of Proposition 4 (see (ii)) and Hγ(E)> 0 if and only if E ∈ HC P(γ, B).
If H(E)> 0 then γ(E), the Hölder exponent of E, is equal to

γ(E) = sup{γ ∈ (0, 1] : Hγ(E)> 0}.

Theorem 17. If E is a compact subset of CN then C(E)≥ Hγ(E) for an arbitrary γ ∈ (0, 1] and thus C(E)≥ H(E).

Proof. We can assume that Hγ(E) > 0, in particular E is an L-regular set. Let us recall that ρE(r) − log r ↘ − log C(E) as
r →∞, which implies r

expρE (r)
↗ C(E). In particular, r

expρE (r)
≤ C(E) for all r > 0. Since ρE([0,+∞)) = [0,+∞), we can take

r ∈ ρ−1
E (1/γ). Then

Hγ(E)≤
r

(γeρE(r))1/γ
=

r
e1/γ

=
r

expρE(r)
≤ C(E)

which completes the proof. �

By Th.8, for E ∈ HC P(γ, B), we have N 3γ/2γe2B · C(E)γ ≥ 1. We can essentially improve this estimate taking into account the
first inequality given in Th.17:

Corollary 18. If E is a compact subset of CN and E ∈ HC P(γ, B) for some γ ∈ (0, 1] and B > 0, then

γeB · C(E)γ ≥ 1.

The above inequality gives not only an estimate of the capacity but also a bound for the constant B in the Hölder Continuity
Property in the dependance on the capacity of E (compare with [20]). The estimates of the constant B are important from the
numerical point of view, especially as the best exponent in HCP (and in AMI) is not known.

Remark 19.

(i) H(D) = lim
γ→0+

Hγ(D) = 1 = C(D) and so H(E) = C(E) for all complex balls (see the first property of the H-capacity listed above).

(ii) lim
γ→0+

Hγ([−1, 1]) = 1
2 = C([−1,1]) and thus H(E) = C(E) for all real balls.

Indeed, for γ ∈ (0, 1) we consider fγ(r) =
log(1+r)

rγ . Since lim
r→0+

fγ(r) = lim
r→+∞

fγ(r) = 0, we have sup
r>0

fγ(r) = fγ(rγ) with rγ such

that f ′
γ
(rγ) = 0. In other words, γ log(1+ rγ) =

rγ
1+rγ

. The inequality

γrγ ≥ γ log(1+ rγ)≥
rγ

1+ rγ

implies that
rγ ≥ 1/γ− 1

and so
lim
γ→0+

rγ = +∞.
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Hence
Hγ(D) =

rγ
(γe log(1+ rγ))1/γ

=
rγ

(1+ rγ)1+1/rγ
exp

�

(1+ 1/rγ) log(1+ 1/rγ) log(1+ rγ)
�

−→ 1 as γ→ 0+ .

Similarly, we can verify (ii). If γ ∈ (0, 1
2 ) and rγ is a solution of the equation 1

γ =
q

1+ 2
r log h(1+ r) ≥ 2 where h(t) =

t +
p

t2 − 1, then rγ ≥
1

2γ − 2 and

Hγ([−1, 1]) =
rγ

h(1+ rγ)
p

1+2/rγ
exp

 

1
2

√

√

√1+
2
rγ

log h(1+ rγ) log

�

1+
2
rγ

�

!

−→
1
2

as γ→ 0+.

Proposition 20. The function (0,1) 3 γ 7−→ Hγ(D) is decreasing.

Proof. Let g(r) = (1+ 1/r) log(1+ r). It is easy to verify that g ′(r) = − 1
r2 log(1+ r) + 1

r > 0 and g : (0,+∞) −→ (1,+∞) is
increasing. We have

Hγ(D) = g−1(1/γ)e−1/γ(1+ 1/g−1(1/γ))1/γ.

If we put
ϕ(x) = g−1(x)e−x (1+ 1/g−1(x))x

then
logψ(t) = logϕ(g(t)) = log t − g(t) + g(t) log(1+ 1/t),

which gives
ψ′(t)
ψ(t)

= g ′(t) log(1+ 1/t)> 0

and the proof is completed. �

Similarly, we can check that there exists γ0 > 0 such that the function
(0,γ0) 3 γ 7−→ Hγ([−1,1]) is decreasing.
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