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Markov’s inequality on some cuspidal domains in the Lp norm
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Abstract

In this note we give an example of a cuspidal set for which the exact value of Markov’s exponent is
calculated. More precisely, we show that if

Ω= {(x , y) ∈ R2 : |x | ≤ y + 1, x2 ≥ 4y},

then the Markov exponent for Ω, with respect to Lp norm, is equal to 4.

1 Introduction
For a Lebesgue-measurable set E ⊂ RN , a bounded real-valued function w defined on E, 1≤ p <∞ and h : E→ R for which the
p-th power of the absolute value is Lebesgue integrable, we set

‖h‖Lp(E,w) =

�∫

E

|h(x)|p|w(x)| d x

�1/p

.

If w≡ 1 on E. Instead of writing ‖h‖Lp(E,w), let us write ‖h‖Lp(E).
Let P(RN ) denote the space of algebraic polynomials of N real variables. Moreover, N= {1,2, 3, . . .} and N0 = {0} ∪N.

Definition 1.1. We say that a compact set ; 6= E ⊂ RN satisfies Markov’s inequality (or: is a Markov set) if there exist M , r > 0
such that, for each polynomial P ∈ P(RN ) and each α ∈ NN

0 ,

‖DαP‖E ≤ (M(deg P)r)|α|‖P‖E , (1)

where ‖ · ‖E is the supremum norm on E, DαP = ∂ |α|P
∂ x
α1
1 ...∂ x

αN
N

and |α|= α1 + · · ·+αN .

Clearly, by iteration, it is enough to consider in the above definition multi-indices α with |α|= 1. We consider the following
generalization of Markov’s inequality:

Definition 1.2. Let 1≤ p <∞. We say that a compact set ; 6= E ⊂ RN satisfies Lp Markov type inequality (or: is a Lp Markov
set) if there exist κ, C > 0 such that, for each polynomial P ∈ P(RN ) and each α ∈ NN

0 ,

‖DαP‖Lp(E) ≤ (C(deg P)κ)|α|‖P‖Lp(E). (2)

The inequalities (1) and (2) are natural generalizations of the classical Markov inequality proved by A.A. Markov in 1889.
Markov’s inequality and its various generalizations (restricted not only to nonpluripolar subsets of RN or CN but also their versions
for pieces of semialgebraic sets or other "small" subsets of RN (CN )) found many applications in approximation theory, analysis,
constructive function theory, but also in other branches of science (for example, in physics or chemistry). Markov’s inequality is
still an active and fruitful area of approximation theory (see, for instance, [5, 7, 16]). For a given E ⊂ RN , an important problem is
to determine µ(E), where µ(E) = inf{r : E satisfies (1)} is the Markov exponent of E (see [4] for more details on this matter). This
is related to the linear extension operator for C∞ functions with restricted growth of derivatives (see [22, 23]). For any compact
set E in RN we have µ(E)≥ 2. If E is a fat convex subset of RN , then µ(E) = 2. If E = {(x , y) ∈ R2 : 0≤ x ≤ 1, 0≤ y ≤ x l}, for
l ≥ 1, then by [11] µ(E) = 2l. The interested reader may refer to [8, 11, 20, 24, 25] for more on this topic. Markov’s inequality
was also considered in the Lp norm (see [1, 6, 12, 13, 14, 15]). The problem of determining the Lp Markov exponent µp(E)
for a Lp Markov set E seems to be more complicated. Here µp(E) := inf{κ : E satisfies (2)}. In particular, to the best of our
knowledge there is no example of a bounded set in RN with cusps for which Lp Markov exponent (with respect to the Lebesgue
measure) is known. Attempts to solve this problem led, among others, to the so-called Milówka-Ozorka identity (see [3, 21] for
discussion). The purpose of this note is to give such an example. More precisely, we show that if 1≤ p <∞, then µp(Ω) = 4,
where Ω= {(x , y) ∈ R2 : |x | ≤ y + 1, x2 ≥ 4y} which is depicted in Figure 1. Since T. Koornwinder has constructed orthogonal
polynomials on Ω (see [17, 18]) we call this set the Koornwinder domain.
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Figure 1: The Koornwinder domain.

2 Some weighted polynomial inequalities on simplex
The following lemma will be particularly useful in the proof of our main result.

Lemma 2.1. Let S = {(x1, x2) ∈ R2 : −1≤ x1 ≤ x2 ≤ 1}, w(x1, x2) = x2− x1 and 1≤ p <∞. Then there exist constants C , C̃ > 0
such that









w
∂ P
∂ x i









S

≤ C(deg P)2‖wP‖S (3)









∂ P
∂ x i









Lp(S,w)

≤ C̃(deg P)2‖P‖Lp(S,w) (4)

for every P ∈ P(R2) and i = 1,2.

Proof. First consider the inequality (3). By Wilhelmsen’s result (see Theorem 3.1 in [27]), we have

max

�







∂ P
∂ x1









S

,









∂ P
∂ x2









S

�

≤
4(deg P)2

δS
‖P‖S , (5)

where δS is the width of the convex body (the minimal distance between parallel supporting hyperplanes). Applying (5) to the
polynomial wP yields

max

�







w
∂ P
∂ x1

− P









S

,









w
∂ P
∂ x2

+ P









S

�

≤
4(deg P + 1)2

δS
‖wP‖S ,

Then (see Lemma 3 of [13]) there is a constant κ > 0 such that








w
∂ P
∂ x i









S

≤
(κδS + 4)(deg P + 1)2

δS
‖wP‖S (6)

for all P ∈ P(R2) and i = 1,2. Hence we may conclude that (3) holds.
For each 1≤ p <∞ it is clear that









∂ P
∂ x i









Lp(S,w)

≤
2
∑

j=0

�

∫

Dj

�

�

�

�

∂ P
∂ x i
(x1, x2)

�

�

�

�

p

(x2 − x1) d x1d x2

�1/p

,

where

D0 = {(x1, x2) ∈ R2 : − 1≤ x1 ≤ 0, x1 + 1≤ x2 ≤ 1},

D1 = {(x1, x2) ∈ R2 : − 1≤ x1 ≤ 0, x1 ≤ x2 ≤ x1 + 1},

D2 = {(x1, x2) ∈ R2 : 0≤ x2 ≤ 1, x2 − 1≤ x1 ≤ x2}.

We shall show that there is a constant C̃ > 0 such that
�

∫

Dj

�

�

�

�

∂ P
∂ x i
(x1, x2)

�

�

�

�

p

(x2 − x1) d x1d x2

�1/p

≤ C̃(deg P)2‖P‖Lp(S,w) (7)

for all P ∈ P(R2) and j = 0,1, 2.
By the definition of D0 it is clear that

�

∫

D0

�

�

�

�

∂ P
∂ x i
(x1, x2)

�

�

�

�

p

(x2 − x1) d x1d x2

�1/p

≤ 2

�

∫

D0

�

�

�

�

∂ P
∂ x i
(x1, x2)

�

�

�

�

p

d x1d x2

�1/p

(8)
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Using the main result of [12] (see also the work in [9, 13, 19]) there is a constant C0 so that
�

∫

D0

�

�

�

�

∂ P
∂ x i
(x1, x2)

�

�

�

�

p

d x1d x2

�1/p

≤ C0(deg P)2
�

∫

D0

|P(x1, x2)|
p d x1d x2

�1/p

(9)

Since w≥ 1 on D0, we obtain
�

∫

D0

|P(x1, x2)|
p d x1d x2

�1/p

≤

�

∫

D0

|P(x1, x2)|
p (x2 − x1) d x1d x2

�1/p

(10)

By the inequalities (8), (9) and (10) it follows that
�

∫

D0

�

�

�

�

∂ P
∂ x i
(x1, x2)

�

�

�

�

p

(x2 − x1) d x1d x2

�1/p

≤ 2C0(deg P)2‖P‖Lp(D0 ,w) ≤ 2C0(deg P)2‖P‖Lp(S,w).

Now consider the case j = 1. So we need to examine
�

∫

D1

�

�

�

�

∂ P
∂ x i
(x1, x2)

�

�

�

�

p

(x2 − x1) d x1d x2

�1/p

.

By making the change of variables t = x1, s = x2 − x1, we obtain
�

∫

D1

�

�

�

�

∂ P
∂ x i
(x1, x2)

�

�

�

�

p

(x2 − x1) d x1d x2

�1/p

=

�

∫ 0

−1

∫ 1

0

�

�

�

�

∂ P
∂ x i
(t, s+ t)

�

�

�

�

p

s dsd t

�1/p

.

If we define the polynomial Q by setting Q(t, s) = P(t, s+ t), then

∂Q
∂ t
(t, s)−

∂Q
∂ s
(t, s) =

∂ P
∂ x1
(t, s+ t),

∂Q
∂ s
(t, s) =

∂ P
∂ x2
(t, s+ t). (11)

Using the result of [10] (see Theorem 3), we can show that
∫ 1

0

�

�

�

�

∂ P
∂ x2
(t, s+ t)

�

�

�

�

p

s ds ≤ C p
1 (degQ)2p

∫ 1

0

|Q(t, s)|p s ds. (12)

Therefore








∂ P
∂ x2









Lp(D1 ,w)

≤

�

∫ 0

−1

�

C p
1 (deg P)2p

∫ 1

0

|Q(t, s)|p s ds

�

d t

�1/p

= C1(deg P)2
�

∫ 0

−1

∫ 1

0

|P(t, s+ t)|p s dsd t

�1/p

≤ C1(deg P)2‖P‖Lp(S,w).

On the other hand,








∂ P
∂ x1









Lp(D1 ,w)

≤

�

∫ 0

−1

∫ 1

0

�

�

�

�

∂Q
∂ t
(t, s)

�

�

�

�

p

s dsd t

�1/p

+

�

∫ 0

−1

∫ 1

0

�

�

�

�

∂Q
∂ s
(t, s)

�

�

�

�

p

s dsd t

�1/p

.

Dolomites Research Notes on Approximation ISSN 2035-6803



Beberok 15

Using the result of [15] (see theorem in sec. 3), we can show that there exists constant Ĉ1 such that
∫ 0

−1

�

�

�

�

∂Q
∂ t
(t, s)

�

�

�

�

p

d t ≤ Ĉ p
1 (degQ)2p

∫ 0

−1

|Q(t, s)|p d t (13)

for every polynomial Q ∈ P(R2). By (11), (12) and (13), we see that









∂ P
∂ x1









Lp(D1 ,w)

≤

�

∫ 1

0

�

Ĉ p
1 (deg P)2ps

∫ 0

−1

|Q(t, s)|p d t

�

ds

�1/p

+

�

∫ 0

−1

�

C p
1 (deg P)2p

∫ 1

0

|Q(t, s)|p s ds

�

d t

�1/p

.

Thus we finally have








∂ P
∂ x1









Lp(D1 ,w)

≤ Ĉ1(deg P)2‖P‖Lp(D1 ,w) + C1(deg P)2‖P‖Lp(D1 ,w) ≤ (Ĉ1 + C1)(deg P)2‖P‖Lp(S,w).

A similar result for D2 can be obtained if one considers the change of variables t = x2, s = x2 − x1 and the polynomial
Q̃(t, s) = P(t − s, t). Since the proof for D2 is quite similar to the one that we carry out in detail for D1, we omit the details.

Thus we have shown that, if C̃ = 2max{C0, Ĉ1, C1, Ĉ2, C2}, then (7) holds. That completes the proof.

Now we shall prove the following weighted Schur-type inequality.

Lemma 2.2. Let S = {(x1, x2) ∈ R2 : − 1 ≤ x1 ≤ x2 ≤ 1}, w(x1, x2) = x2 − x1, 1 ≤ p <∞, d ∈ N0 and R ∈ P(R2). Let A be a
Lebesgue-measurable subset of S. Assume that there exists α ∈ N2

0 such that α1 +α2 ≤ d and

∀x∈A |DαR(x)| ≥ m> 0.

Then there exist constants Cd , C̃d such that

‖wP‖A ≤ Cd m−1ε−d(deg P + deg R)2d‖wPR‖S + ε‖wP‖S (14)

‖P‖Lp(A,w) ≤ C̃d m−1ε−d(deg P + deg R)2d‖PR‖Lp(S,w) + ε‖P‖Lp(S,w) (15)

for any 0< ε < 1 and every P ∈ P(R2).

Proof. At first, we prove the inequality (15). The idea of proof comes from [13]. Thus we proceed by induction on d, starting
with d = 0. If α1 = α2 = 0, then

|P(x)| ≤ m−1|P(x)R(x)| for x ∈ A.

Therefore

‖P‖Lp(A,w) ≤ m−1‖PR‖Lp(A,w) ≤ m−1‖PR‖Lp(S,w) + ε‖P‖Lp(S,w).

Now suppose that the theorem has been proved for d = 0, 1,2, . . . , d0 − 1. We then prove it for d = d0. Let

I =
�

(β1,β2) ∈ N2 : 0< |β |, 0≤ β1 ≤ α1, 0≤ β2 ≤ α2

	

.

Here |α| denotes the length of α. Notice that the set I contains at most (d0+1)(d0+2)
2 − 1 elements. By Leibniz’s rule, if x ∈ A, then

|P(x)| ≤ m−1



|Dα(PR)(x)|+
∑

β∈I

�

α

β

�

|Dα−βR(x)| |Dβ P(x)|



 .

Let η= (d0+1)(d0+2)
2 and deg P = n. We set

B0 = {x ∈ A: |Dα−βR(x)| ≤
mε
η2

�

α

β

�−1

(C̃n2)−|β |, β ∈ I},

where C̃ is the constant from Lemma 2.1. Then

|P(x)| ≤ m−1|Dα(PR)(x)|+
ε

η2

∑

β∈I

(C̃n2)−|β ||Dβ P(x)|.

for all x ∈ B0. This yields

‖P‖Lp(B0 ,w) ≤ m−1‖Dα(PR)‖Lp(B0 ,w) +
ε

η2

∑

β∈I

(C̃n2)−|β |‖Dβ P‖Lp(B0 ,w)

≤ m−1‖Dα(PR)‖Lp(S,w) +
ε

η2

∑

β∈I

(C̃n2)−|β |‖Dβ P‖Lp(S,w).
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Therefore by the preceding lemma,

‖P‖Lp(B0 ,w) ≤ m−1C̃ |α|(n+ k)2|α|‖PR‖Lp(S,w) +
ε

η
‖P‖Lp(S,w).

On the other hand, if x ∈ A\ B0 then there exists β ∈ I such that

|Dα−βR(x)|>
�

α

β

�−1 mε(C̃n2)−|β |

η2
. (16)

Hence, we can divide the set A\ B0 into at most η− 1 disjoint subsets B j such that, for each j, there exists an index β j satisfying

inf{|Dα−β j R(x)|: x ∈ B j} ≥
�

α

β j

�−1 mε(C̃n2)−|β j |

η2
. (17)

Since |β j |> 0 for all j, the induction hypothesis implies that

‖P‖Lp(B j ,w) ≤ (C̃n2)|β j | η
2

mε

�

α

β j

�

Cd0−|β j |

�η

ε

�d0−1
(n+ deg R)2(d0−|β j |)‖PR‖Lp(S,w) +

ε

η
‖P‖Lp(S,w).

Thus we see that

‖P‖Lp(A,w) ≤ Cd0
m−1ε−d0(deg P + deg R)2d0‖PR‖Lp(S,w) + ε‖P‖Lp(S,w),

where

Cd0
= C̃ d0 +

�

(d0 + 1)(d0 + 2)
2

�d0+1
∑

β∈I

�

α

β

�

Cd0−|β |C̃
|β |.

This completes the induction and the proof of (15).
Since wP is a polynomial, the inequality (14) follows from Lemma 3 in [13].

3 Main result
The principal result of this paper is the following theorem:

Theorem 3.1. Let 1≤ p <∞ and Ω= {(x , y) ∈ R2 : |x | ≤ y + 1, x2 ≥ 4y}. Then there exists constants M , M̃ > 0 such that

max

�







∂ P
∂ x









Ω

,









∂ P
∂ y









Ω

�

≤ M(deg P)4 ‖P‖Ω (18)

max

�







∂ P
∂ x









Lp(Ω)

,









∂ P
∂ y









Lp(Ω)

�

≤ M̃(deg P)4 ‖P‖Lp(Ω) (19)

for every polynomial P ∈ P(R2). Moreover, µ(Ω) = µp(Ω) = 4.

Proof. Let P ∈ P(R2) and S = {(u, v) ∈ R2 : − 1≤ u≤ v ≤ 1}. Observe first that the integrals
∫

Ω

�

�

�

�

∂ P
∂ y
(x , y)

�

�

�

�

p

d xd y,

∫

Ω

|P(x , y)|p d xd y

become, under the change of variables x = u+ v, y = uv,
∫

S

�

�

�

�

∂ P
∂ y
(u+ v, uv)

�

�

�

�

p

(v − u) dudv,

∫

S

|P(u+ v, uv)|p (v − u) dudv.

Define Q by Q(u, v) = P(u+ v, uv). Then

(v − u)
∂ P
∂ y
(u+ v, uv) =

∂Q
∂ u
(u, v)−

∂Q
∂ v
(u, v). (20)

We now see, using Lemma 2.1, that








(v − u)
∂ P
∂ y
(u+ v, uv)









Lp(S,w)

=









∂Q
∂ u
−
∂Q
∂ v









Lp(S,w)

≤ 2C̃(2 deg P)2 ‖Q‖Lp(S,w) .

Applying Lemma 2.2, with R(u, v) = v − u, A= S and ε= 1/2, to ∂ P
∂ y we may derive that









∂ P
∂ y
(u+ v, uv)









Lp(S,w)

≤ 4C̃1(deg P + 1)2








(v − u)
∂ P
∂ y
(u+ v, uv)









Lp(S,w)

.
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Hence








∂ P
∂ y
(u+ v, uv)









Lp(S,w)

≤ 8C̃ C̃1(2 deg P + 1)4 ‖Q‖Lp(S,w) .

Thus








∂ P
∂ y









Lp(Ω)

≤ 8C̃ C̃1(2deg P + 1)4 ‖P‖Lp(Ω) .

To prove the remainder, we need to consider the polynomials uQ and vQ. Then

(v − u)
∂ P
∂ x
(u+ v, uv) =

∂ vQ
∂ v
(u, v)−

∂ uQ
∂ u
(u, v).

Hence








(v − u)
∂ P
∂ x
(u+ v, uv)









Lp(S,w)

≤ C̃(2deg P + 1)2
�

‖vQ‖Lp(S,w) + ‖uQ‖Lp(S,w)

�

≤ 2C̃(2 deg P + 1)2 ‖Q‖Lp(S,w) .

Thus using an argument similar to the one that we carry out in detail for ∂ P/∂ y , one can obtain the desired estimate.
To prove the inequality (18), let Q(u, v) = P(u+ v, uv), G(u, v) = ∂ P

∂ y (u+ v, uv) and w(u, v) = v − u. Then, by (20) and
Theorem 3.1 in [27], we see that

‖wG‖S =









∂Q
∂ u
−
∂Q
∂ v









S

≤
8
δS
(2 deg P)2 ‖Q‖S . (21)

Applying Lemma 3 from [13], with R(u, v) = v − u, Ω= S, A= S and ε= 1/2, to G yields the following inequality

‖G‖S ≤ 4C̃1(2 deg P + 1)2 ‖wG‖S . (22)

Since T (x , y) = (x + y, x y) maps Ω to S,

‖G‖S =









∂ P
∂ y









Ω

and ‖Q‖S = ‖P‖Ω . (23)

Now (18) follows from (21), (22) and (23).
Since Ω is a compact subanalytic subset of R2, the Corollary 6.6 from [22] implies that Ω is UPC. Thus, by Corollary 26 in [2],

µp(Ω)≥ µ(Ω). From the inequality (19), we see now that 4≥ µp(Ω). Therefore it remains to show that µ(Ω)≥ 4.
The discussion here is based on unpublished work of M. Baran. Let us consider the following sequence of polynomials

Pk(x , y) =
�

1
k

T ′k

�

2− x
4

��5 �1+ x + y
4

�

, (24)

where Tk is the kth Chebyshev polynomial of the first kind. Note that the polynomial Pk has degree 5k− 4. It is known (see [25,
Chap. 1.5]) that

1
k+ 1

T ′k+1(x) = Uk(x), (25)

where Uk is the kth Chebyshev polynomial of the second kind defined by

Uk(x) =
sin(k+ 1)θ

sinθ
, θ = arccos x . (26)

If x ∈ [0,1], then sin(arccos x) =
p

1− x2. Therefore by (25) and (26),
p

1− x
k
|T ′k(x)| ≤

p
1− x2

k
|T ′k(x)| ≤ 1, x ∈ [0, 1]. (27)

Hence
�

�

�

�

p
x

k
T ′k(1− x)

�

�

�

�

≤ 1 if x ∈ [0,1]. (28)

If (x , y) ∈ Ω, then 4y ≤ x2. Thus

1+ x + y
4

≤
�

1
2
+

x
4

�2

for (x , y) ∈ Ω. (29)

Then, by (24), (28) and (29), we have

|Pk(x , y)| ≤

�

�

�

�

�

1
k

T ′k

�

2− x
4

�

√

√1
2
+

x
4

�

�

�

�

�

4 �
�

�

�

1
k

T ′k

�

2− x
4

�

�

�

�

�

≤
1
k
‖T ′k‖[−1,1] = k (30)
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for any (x , y) ∈ Ω. On the other hand,
�

�

�

�

∂ Pk

∂ y
(−2,1)

�

�

�

�

=
1
4

�

�

�

�

1
k

T ′k(1)

�

�

�

�

5

=
k5

4
≥

k4

4
‖Pk‖Ω . (31)

Similarly, if Qk =
�

1
k T ′k

� 1+y
2

��5 � x2

4 − y
�

, then

‖Qk‖Ω ≤ k and

�

�

�

�

∂Qk

∂ x
(2, 1)

�

�

�

�

= k5. (32)

By the inequalities (30), (31) and (32), we have µ(Ω)≥ 4. Thus we finally have µp(Ω) = µ(Ω) = 4.

Remark 1. In the same fashion, we may prove that there exists a positive constant Cl such that

max

�







∂ P
∂ x









Lp(∆l )

,









∂ P
∂ y









Lp(∆l )

�

≤ Cl(deg P)2l ‖P‖Lp(∆l ) (33)

for every P ∈ P(R2). Here ∆l =
�

(x , y) ∈ R2 : |x |1/l + |y|1/l ≤ 1
	

and l is a positive odd number.

4 Sharpness of the exponents
In this section we shall analyze the inequality (33). Let P(α,β)

n denote the nth Jacobi polynomial. Define Wn(x , y) = yP(α,α)
n (x).

Then
∫

∆l

�

�

�

�

∂Wn

∂ y
(x , y)

�

�

�

�

p

d xd y = 2

∫ 1

−1

�

�P(α,α)
n (x)

�

�

p �
1− |x |1/l

�l
d x ,

∫

∆l

|Wn(x , y)|p d xd y =
2

p+ 1

∫ 1

−1

�

�P(α,α)
n (x)

�

�

p �
1− |x |1/l

�(p+1)l
d x .

Then the symmetry relation (see [26, Chap. IV])

P(α,β)
n (x) = (−1)nP(β ,α)

n (−x)

yields that
∫

∆l

�

�

�

�

∂Wn

∂ y
(x , y)

�

�

�

�

p

d xd y = 4

∫ 1

0

�

�P(α,α)
n (x)

�

�

p �
1− x1/l

�l
d x ,

∫

∆l

|Wn(x , y)|p d xd y =
4

p+ 1

∫ 1

0

�

�P(α,α)
n (x)

�

�

p �
1− x1/l

�(p+1)l
d x .

We now apply Bernoulli’s inequality to deduce that
�

1− x
l

�l

≤
�

1− x1/l
�l
≤ (1− x)l

for each positive integer l and x ∈ [0, 1]. Therefore, if n→∞, then

∫

∆l

�

�

�

∂Wn
∂ y (x , y)

�

�

�

p
d xd y

∫

∆l
|Wn(x , y)|p d xd y

∼

∫ 1

0

�

�P(α,α)
n (x)

�

�

p
(1− x)l d x

∫ 1

0

�

�

�P(α,α)
n (x)

�

�

�

p
(1− x)(p+1)l d x

.

Now a result proved by Szegö (see [26, Chap. VII]) comes into play. With µα,p = αp− 2+ p/2, we have

∫ 1

0

�

�P(α,α)
n (x)

�

�

p
(1− x)l d x ∼ nαp−2l−2 whenever 2l < µα,p, (34)

∫ 1

0

�

�P(α,α)
n (x)

�

�

p
(1− x)(p+1)l d x ∼ nαp−2(p+1)l−2 whenever 2(p+ 1)l < µα,p. (35)

If 2(p+ 1)l < µα,p, then we can combine (34) and (35) to see that






∂Wn
∂ y







Lp(∆l )

‖Wn‖Lp(∆l )
∼ n2l . (36)

As a consequence of (33) and (36), we then find that µp(∆l) = 2l.
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