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L, Markov exponent of certain domains with cusps

Tomasz Beberok?

Abstract

In this paper we give sharp L, Markov type inequality for derivatives of polynomials for some family of
domains with cusps.

1 Introduction

Let P,(R™) be the class of all algebraic polynomials in m variables with real coefficients of degree n. Further, let C(2) be the real
space of all real valued continuous functions f defined on a compact set 2 C R™ with the norm ||f||¢iq) := Sup,cq f (X,
and let L, ,(€2), 1 < p < 00, be the space of all Lebesgue-measurable functions f on 2 c R™ such that ||f]| Lw(@) =
(fﬂ IfF ()PW(x)dx)P < 00 if 1 < p < o0, and Leow = C(Q). Set L,(Q) := L,,(2), 1 < p < oo. Here W denotes an
integrable weight defined on a set 2 ¢ R™ with the property that the set {x € Q : W(x) = 0} has m-dimensional Lebesgue
measure 0. Moreover, N={1,2,3,...} and N, = {0} UN.

Definition 1.1. We say that a compact set § # E C R™ satisfies L, Markov type inequality (or: is a L, Markov set) if there exist
K, C > 0 such that, for each polynomial P € P(R™) and each a € Ny,

IDPll, ) < (C(deg PY)IIPIl,, ), M

la|
where D®P = aa—P and |a| =a;+-+a,.

ay Am
X0y

Clearly, by iteration, it is enough to consider in the above definition multi-indices a with |a| = 1. The inequality (1) is a
generalization of the classical Markov inequality:

1P lle-1.1)) < (deg PY[IPl¢(—1.1-

Markov-type inequalities play an important role in Approximation Theory since they are widely used for verifying inverse theorems
of approximation. These inequalities and its various generalizations (restricted not only to nonpluripolar subsets of R" or C" but
also their versions for pieces of semialgebraic sets or other "small" subsets of R" (C")) found many applications in approximation
theory, analysis, constructive function theory, but also in other branches of science (for example, in physics or chemistry).

In this paper we shall consider the following problem:

For a given L, Markov set E determine u,(E) := inf{x : E satisfies (1)}.

The quantity u,(E) is called L, Markov exponent and was first considered by Baran and Ple$niak in [2] for p = co. This is
related to the linear extension operator for C* functions with restricted growth of derivatives (see [8, 9]). For any compact
set E in R™ we have u,(E) > 2. If E is a fat convex subset of R™, then u,(E) = 2. It is known that L., Markov exponent,
for Lipy, 0 < y < 1 cuspidal domains in R™ is equal to % (see for instance, [4], [1], [6]). If K c R™isa Lipy,0 <y <1
cuspidal piecewise graph domain such that it is imbedded in an affine image of the [, ball having one of its vertices on
the boundary 0K of K, then u,(E) = % for 1 < p < oo (see [7]). Our goal is to establish L, Markov exponent of the
following domains ¥, := {(x,y) € R®> : |x| £ 1,0 < y < x*}, 1, := {(x,y) € R? : |x|] < 1,0 < ysgnx < |x|*1} and
Ag:={(x,y)€R?*:0< x <1,ax* <y < bx*}, k€N, 0 < a < b. More precisely, we show that up () = w,(Ay) = 2k and
up(T) =2k +1 for every k €N, 1 < p < 00. Since none of the domains ¥, T, and A, is cuspidal piecewise graph domain, the
above results cannot be obtained using the methods of [7]. In particular, A, has a cusp at the origin that cannot be connected to
the interior of A, by a straight line. However, these results are known in case of supremum norm (see [6]).

2 Auxiliary results

In order to verify our main results we shall need some auxiliary statements. The following inequalities play a central role in our
considerations.
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Lemma 2.1. Let S :={(t,y) €R?:0<t<1,0< y < t}. For each a > —1 and 3, u, v > O there exists a positive constant C such
that

f ey1 22 (e, y)P dedy < an"f
. at

S

tyPlQ(t, y)IP dedy, J t“yﬁlg—g(t,y)lpdtdy < an"f t*yPlQ(e, )P dedy  (2)
S

S

J t*yP1Q(t, y)IP dtdy < an“f
S

e yPlQ(e, y)IP dedy, f tyPlQ(t, )P dedy < an”f tyPQe, y)lP dtdy  (3)
S S

S

for every Q € P,(R?).
Proof. LetL:={(t,y)€R?*:0<y<3,y<t<y+3}andletT:={(t,y)eR*:3<t<1,1<y<t} Then
'l
j t*yP1Q(t, y)IP dedy SJ t“y"lQ(t,y)lpdtderZ“J IQ(t,y)I”dtderJ f t*yP1Q(t, y)IP dedy ()
s L T 1 Jo
and
f IQ(t, )P dtdy < 2“+ﬁ“f t*yP1Q(t, y)IP dedy. 5
T T
Since T is a fat convex set, there exists D > 0 such that
aQ N aQ 5
== (&, ¥)IPdtdy <Dn* | |Q(t,y)IP dtdy, == (t, y)IPdtdy <Dn* | |Q(t,y)IP dtdy. ©
r Ot T r 9y T
Now consider the integral over L. Using the change of variables t — y = z, we have
J t*yP1Q(t, y)IP dedy = f (v +2)°y°1Q(y +2,y)IP dzdy. 7
L [0,1/212
Set R(z,y) :=Q(y +2,y). By Theorem 7.4 of [5] there exists a positive constant A such that
2 3R %
O +2)yP15- (@ ) dz < An* f (v +2)*yPR(z, y)IP dz, (®
0 0
1 1
2 3R 5 2
(r +2)°y"| 5, @Y dy s An® f (v +2)°yPIR(z, y)IP dy. )
0 0

Thus, by (4)-(9), and by the fact that % = Z—?, 2—‘; = g—i — %, we obtain the inequalities (2).

In order to prove the inequalities (3), it suffices to prove that there exists a positive constant A’ such that
1 1
2 2
f (y +2)*y*|G(z, y)IP dz SA’HZ“J (y +2)"*yP|G(z, ) dz,
0 0

1 1
2 2
f (v +2)*¥P1G(z, Y)IP dy SA'H”J (v +2)°yP71G(z, y)IP dy.
0 0

for every G € P,(IR?). This follows from the inequality (7.22) of [5]. O

In a similar way one can derive the following lemma.

Lemma 2.2. Fix0<c<d, andlet V:=V_4:={(x,n) € R?:0<t<1,ct <n<dt}. Foreacha>—1and f3,u,v > 0O there
exists a positive constant C such that

0 0
f t“n’jla—(tz(t, n)|P dtdn SCnZ"J t*nflQ(t, mIP dtdn, J t“nﬁlﬁ(t,n)l"dtdn < an”f t*nPlQ(t, P dtdn  (10)
v \4

v 14

J t*nP1Q(t, )P dtdn < an“f
v

1%

t“nP|Q(e, m)IP dedn, f t*n”1Q(e, P dtdn < anvf t“nP Qe mIP dedn - (11)
v

v

for every Q € P,(R?).
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3 Main results

This section addresses main theorems.

Theorem 3.1. Let k be a natural number, and let ¥, = {(x,y) € R?: |x| < 1,0 <y < x*}, T, = {(x,y) €R?: |x| £ 1,0 <
ysgnx < |x|**1}. Then for 1 < p < 0o we have u,(¥,) = p, (1) —1 =2k

Proof. First we prove that u,(¥,) = 2k. It is clear that for each P € P, (R?) there exist Py, P; € P,(R?) such that P(x,y) =
Po(x%, y) + xP;(x?%, y). Hence

kr<H P, (t, r*) + vEP,(t, rF)P kr*1P,(t, r*) — P (t, rF)P
P(x,y)IP dxdy = R L dedr + e — dedr, (12)
Lk [P(x, )l y L WG . WG
where S = {(t,r)€R?:0<t <1,0<r < t}. In (2) of Lemma 2.1, leta——— B = k—1 to conclude that
k=17,,.k—1 2P k —
Kk T;(t’ i dtdr < C(kn)® M dedr.
. 278 = ;2
Again by Lemma 2.1, for u = (k—1)p,
kY G2 e, TP KPR (g, PR
—— 2 dtdr < C(kn)* <P 2 dedr.
L 20T N NG
Therefore
krk1 S (e, )P kr* 1Py (e, TP
—dtdrSC2 kn)?p | ——22 7 dedr. 13)
L G (kn) . WG (
Similarly,

dtdr. 14

Jkrk IVEREI i < oy J kr' VTR (6, TP
r= n
; NG s 2/t

Thus, by (12)-(14), and by the fact that (x y)=3¢ i (x ,y)+xap1 (x2,y), we have

ap ke py(e, TP kP VEPy (¢, P
| =—(x, y)IP dxd SZPCZ(kn)ZkPJ — % 7 dedr+2PC3(kn)?P | ——— 22T dedr. (15)
Lk gy YT s 2/t s 2/t
From (12) and the inequality
121 ) < 272 0UF = g2 ) +I1f + 81 s))
we see that
krk=1 Py (t, rR)IP
J Mdtdr SJ |P(x, y)|IPdxdy, (16)
S ﬁ Wy
krk=1 /e (t, r )P
f ek () dtdrSJ |P(x, y)|P dxdy. an
S ﬁ Wy
By using inequalities (15)-(17), we obtain
ap +1 2 2k,
== 0 y)IPdxdy < 2P7°C*(kn)™ | |P(x,y)IP dxdy. (18)
e ay e
In a similar way we can prove that
ap p p+1 2 2kp P
Ia(x,y)l |x|dxdy < 2°*C*(kn) [P(x, y)IPlx|dxdy. (19
Wk L33

We need now to consider %. Using the change of variables y = %, we have

oP
J Ia(x,y)l" dxdy =J 2kn* 1| (x )P dxdn+f 2k~ 1| ( x,n*)[P dxdn,
B s s

J |P(x, ¥)IP dxdy = f 2kn* 7! [P(x, n**)|P dxdn +J 2kn** 7 |P(—x, n*) P dxdn.
A s s
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By Lemma 2.1, using a =0, f =2k —1,
2k—1 ap 2k 2, 2k—1 2k
n Ia—x(x,n )IP dxdn < C(2kn)™* | 7™ [P(x,n™)IP dxdn,
s s
2k—1 ap 2k 2 2k—1 2k
7 IE(—x,n )P dxdn < C(2kn)*? | n* " P(—x,n*)|P dxdn.
s s
Hence
ap N
| =—(x, y)IPdxdy < C(2kn)*? |P(x,y)lP dxdy. (20)
Y ax Y
k k
Similarly,
oP 5
Ia(x,y)IPIXI dxdy < C(2kn)* | [P(x,y)IP|x|dxdy. 2n
Yy

Y

By (18) and (20) we know that u,(¥,) < 2k for 1 < p < c0. To prove the reverse inequality, define E,(x, y) = yPn(“’"“)(l —x?).

Here P,E“”U) denotes the Jacobi polynomial of degree n associated with parameters w, o. Then

)

1
1
J 1=, (e, Y)IP dxdy = —f |P,£w’w)(f)|p (1—t)Phrh=1/2 g,
o p+1J,

9= v !
“(ny)| dxdy= | [P0 Q-0
ay 0 n

It is known (see [10], Chap. VII) that
1
J |P§“’”)(x)|p (1—x)" dx ~n“P™"2  whenever 2y < wp—2+p/2.
0

If 2(p + 1)k < wp —1+ p/2, then by (22),

92,

oy

1Zn e ar)

LP(A
(k)N 2k

Hence u,(¥;) = 2k.
Now we wish to prove that u,(Y;) = 2k + 1. Since T(x, y) = (x, yx) maps Y, onto ¥,

J If Cx, ¥)IP dxdy =J If G, )P |x| dxdy.
Tk Wi
Applying (19) and (21) to Q(x, y) := P(x, yx), we find that

p

J Ixz—(x,yX)IPIXIdxdyS2P“C2(2kn)2"pJ- [P(x, yx)Plx|dxdy,
Y

Y

Y
oP JP » p1 2 2 »
|52 G yx) 4y 5= (e, yx)lIxl dxdy < 201 C3(2kn) | P(x, )l lx| dxdy.
W Y Y

In order to establish u,(T,) < 2k + 1 it will be enough to prove that there exists a positive constant B such that

f IR(x,y)I"IXIdxdySBnPJ IXR(x, y)IP|x|dxdy
Wi

W
for every R € P,(R?). If we write R(x, y) = Ro(x2,y) + xR;(x?,y), then
ZJ [R(x, y)IP|x|dxdy = J kr¥ Y Ro(t, r¥) + VER, (£, r¥)|P dtdr + J. kr¥ Y Ro(t, r¥) — VER, (t, rF)|P dtdr.
o s s
By Lemma 2.1, we conclude that

J YR (t, )P dtdr < Cn"J VR, (t, rR)IP dedr,
S

S

J r* VR, (¢, )P dedr < Cnpj r* R, (¢, rO)P dedr.
S S

(22)

(23)

24

(25)

(26)
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From this it follows that

ZJ |R(x, y)IP|x|dxdy < 2PCnP (f VR, (8, PP dedr +J k1R, (¢, r)P dtdr) .
W s

S

Therefore

J IR(x,y)I"IXIdxdySZPCnPf [xR(x, y)IP x| dxdy.
Y

Wi

From (23)-(26), it follows that u,(1;) < 2k + 1. Let Z, be given as above. If 2(p + 1)k < wp—2—p/2, then

).

1
|E (x y)lp dxdy — L |P(w,w)(t)|P (1 _ t)pk+k+p/2 dt ~ nwp—z(pk+k+p/2)—2.
- n\%s p +1 . n

d%,

oy

p 1
() dxdy=f [P0 (1= ) e ~ nor2-2,
0

Hence u, (1) = 2k + 1. Thus u,(T) =2k + 1. O

The second main theorem is as follows.
Theorem 3.2. Let k be a natural number. Fix 0 < a < b, and let A, := {(x,y) € R? : 0 < x < 1, ax* < y < bx*}. Then
u,(Ay) = 2k for every 1 < p < oo.

Proof. We note first that the L., Markov exponent of A, is known (see [6]). For 1 < p < oo, using the change of variables
k
y = 2", we have

J |P(x, y)IPdxdy = J k2" P(x,z")|P dxdz, 27)
Ak Ved
where ¢ = ¥a and d = ¥/b. In (10) of Lemma 2.2, let a =0, B =k —1 to conclude that
opP
J 2K = (x, 2P dxdz < C(kn)zl’f 21 P(x, 2°)P dxdz, (28)
Ved ax Vc,d
op
j 257 kzk "t == (x,2")|P dxdz < C(kn)?® J 2571 P(x, 29)IP dxdz (29)
Ve,d 3_)/ Ved
for every P € P,(R?). Another application of Lemma 2.2 shows that
ap oP
2K =—(x,2M)|P dxdz < C(kn)?p~2p 2K 2 = (x, 2F)|P dxdz. (30)
v Jy v dy
c,d c,d

Thus, by (27)-(30), we have ,up(Ak) < 2k.
To prove i, (A;) = 2k, define U, (x, y) = yP“*(1—x). Then

).

f [U,(x, y)IP dxdy =
Ak

au,
oy (x,5)

D 1
dxdy:(b—a)f [Pl ()|’ (1—1)dt,
0

bp+1 __ b+l 1
| P -0k de.
p+1 0

Proceeding as before, whenever 2(p + 1)k < ap —2 + p/2 we have

au,

El
Y lle(ay) ~ 12k

AT

This completes the proof. O

Similarly, one can prove the following theorem.
Theorem 3.3. Let k, [ be natural numbers such that | <k. Fix0<a < b, andlet A, :={(x,y) €R*: 0 < x < 1, ax* < y! < bx*}.
Then Zl—k < up(Ayy) < 2k for every 1 < p < oo.

Note that the above result is valid for p = co (see [6]).

In the last statement we turn our attention to more general types of cuspidal domains. Specifically, we replace x* (in ¥;,) by
any convex function f such that f(0) = f’(0) = 0.

Dolomites Research Notes on Approximation ISSN 2035-6803
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Theorem 3.4. Let f be a real-valued convex function on the interval [0,1]. Suppose that f(0) = f’(0) =0, f’(1) < oo and f(t) >0
fort€(0,1]. Let K ={(x,y) €R?*: |x| £ 1,0 < y < f(x®)}. Thenfor 1 <p < oo,

p,(K) < inf{t > 0: 3¢og Voen n> < Cf'(1/n*)n"} 31
Moreover, if there exists a constant I > 0 such that I - f (x) = xf’(x) then the above inequality becomes an equality.

Proof. If PO’ Pl € Pn(Rz)i P(X,_Y) = Po(XZ:Y) +XP1(X2,y), then

1Po(t, ¥) + VEPy (£, y)IP Po(t, y) = VP (£, Y)IP
P Pdxdy = dtd 2
LI (x, y)IPdxdy JK/ WG dtdy+L/ WG tdy, (32)

where K’ = {(t,y) €R?:0<t<1,0<y < f(t)}. Forn €N, let

1
K;={(t,y)€]R2:;Stﬁl,OSySf(t)}.

It follows from (7.17) of [5] that for every a > —1 there exists a positive constant B such that if H is a polynomial in one variable
of degree at most n, then

1 1
J t”IH(t)IpdtSBJ t“|H(t)IP dt.
0 1

/n2

Hence
f tlQ(t, y)IP dtdy < BJ t*lQ(t, y)IP dtdy (33)
K’ K},

for every Q in P,(R?). Let 1, = f(1/n*), n/, = f'(1/n*). Our assumptions guarantee that

/

1
Tn:;{(t,y)e]RZ:—ZStSLOSySn;t—n—;}cK;. (€Z))]
n n
For n > 2, define
2. 1 ;M M ,
Ly={(t,y)€R*: — <t <1 mit——2 <y<nit——2+f(1/4)}NK. (35)
n n n
If we define V:={(t,y) €eR*: 1/4 <t <1, f(1/4) <y < f(t)}, then K, C L, U T, UV for n> 2. Hence
f t*lQ(t, y)IP dtdy SJ t“IQ(f,y)Ipdfderf f“lQ(f,y)lpdfderf t*Q(t, y)IP dtdy. (36)
K}, Ly, T, v

Since V is a locally Lipschitzian compact subset of R?, u,(V) =2 (see [3]). Hence there exists a positive constant B; such that

max{ | 1220,y dedy, | 1990,y dedy b < B, (deg@ | (e, )P dedy. @7
v ot v 9y v
By the definition of V, we can write
%J tlQ(t, y)IP dedy Sf lQ(t, y)IP dtdy S4“+1J t“lQ(t, y)IP dtdy. (38)
1’4 14 1’4
By (37) and (38),
a aQ a aQ at+2 2, a
maxi [ t*|—(t, )P dtdy, | t*|-—(t,y)Pdtdy  <4“""B,(degQ)? | t*|Q(t,y)IPdtdy. 39
vy ot v 9y v

Now consider the integral over T,,. Using similar ideas to those applied in the proof of Lemma 2.1, we can establish that there is a
constant B,, depending only on a, such that

J mi—?(t,y)p’dtdy532(1—1/n2)—P(degQ)2PJ tlQ(t, y)IP dedy, (40)
Tn Tn
«2Q ;Moo ) «
J t Ia—(t,y)lpdtdysBz(nn——z) P(degQ)PJ t*1Q(t, y)IP dtdy. (41)
Ty Yy n Ty

In order to deal with L,, we define

1 /
L= {(t,y)€R?: = <t <1,0<y <m)— 2 + f(1/4)} NK.,
n? 4

1(0):={(t,y)eR*:y =6}, O€R.

Dolomites Research Notes on Approximation ISSN 2035-6803
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Then 1(0) intersects L’ along a single line segment of lengths not smaller then some positive constant depending only on f for

every 6 € [0,71;, — %2 + f(1/4)]. Thus by using Theorem 7.4 of [5] along each of these segments implies that there exists a
positive constant By such that

| Sy < paesey” | ot ypacay.
L, L,
By our assumptions, L, C L’ C K!. Therefore
J I (t y)Pdedy < Bg(degQ)ZPf t?lQ(t, y)IP dtdy. (42)
Ly K,
An illustration of L,, T, L/, with f(x) =x? n= 3 is shown in Figure 1.

Using the change of variables s = y —n’t + 2 and proceeding as before, one can verify that

i i
f t“Ia—?(t,y)+n’n£(t,y)lpdtdySBg(degQ)z”f t*1Q(t, y)IP dtdy. (43)
Ln

Ky

From (42), (43) and the convexity of x — x? forp > 1,
P
J | (t Y)IPdtdy < B, (n ) (degQ)2"J t*1Q(t, y)IP dtdy. 44
L, n K},

By (32), (33), (39), (40), (41), (42) and (44), there exists a positive constant C such that

{f I—(x P dxdy,f I—(X P dde’} < C( ) j [P(x, y)IP dxdy

for every P in P,(R?). Therefore,
p,(K) < inf{t > 0: 3¢og Voen n> < Cf'(1/n*)n"}
To prove the reverse inequality, we shall use Jacobi polynomials Pn(“"’). An easy computation leads to
t)*
+

J t*|yPl)(1— )P dtdy = f (f(t))P+1 IP(“")(l t)l"dt=f_ (Faa— t))P“( [P ()P de.  (45)

Using the change of variables t = cos 6, we have

1—cosf)*
p

%
Jt“lyP,E‘“"’)(l—t)lpdtdy=f (f(l—cose))P“( ) [P{)(cos 0)|P sin 6 d, (46)
K

where u,, = arccos(1 — 1/n?). Applying certain properties of Jacobi polynomials PTS“”") verified in [10], (7.32.5), p. 169, we
conclude that there exists a natural number n, so that

% _ a —p/2
(f(1—cos6))PH! MIP(‘“’U)(COS 0)|Psin8do < An
u, p+1 n p+1

J %(f(l —c0s0))P*(1—cos0)*07PP2sin0dO  (47)
for n > n, and appropriately adjusted constant A. The fact that 1 —cos x ; sin® x for —m/2 < x < /2 allows us to conclude that
f : (f(1—cos0))P*1(1—cos 0)*0~“PP/2sinH dO < J : (f (1 —cos 0))P*!(sin 6)2**+19~<PP/2 4. (48)

Since sinx < x for x > 0, we have
f : (f (1 —cos 0))P*!(sin 6)2**+19=<rP/2 4 < f %( f(1—cosB))PH1e-wrp/22atl 4. (49)

Integration by parts gives us, for —wp —p/2+2a+ 1 # —1,

(f (1 —cos §))P+1 g—wp—p/2+2a+2 ]ﬂ/2

%
1— 0 p+16—wp—p/2+2a+1 de =
J;n (f(1=cos6)) [ —wp—p/2+2a+2

n

3 _ D )—wp—p/2+2a+2
M R CAS 1)(’;()11) +;°/529_))22_ - F(1—cos0)sin0do.  (50)

un
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If -1 < x <1, then v1—x2arccosx < 2(1 —x). Therefore,
0sin@f’(1—cosfB) <2(1—cosO)f’'(1—cosh).
Hence, by our assumption on f,
Osin@f’(1—cosf) <2If(1—-cosh). (51)
If wp+p/2—2a—2> 0, then by (51),

3 ZI(p + 1)(f(1 — cos 6))p+l e—a)p—p/2+2a+1

do. 52
wp+p/2—2a—2 (52)

f'(1—cos@)sin6do sf

Un

3 (p+1)(f(1_COSG))pQ—wp—p/2+2a+2
“ wp+p/2—2a—2

Thus, by (50) and (52),

Z (n )p+1u—wp—p/2+2a+2
(f (1 —cos §))Pr1g—wr—p/220+l 4 g < 2 n (53)
“ wp+p/2—2a—2—-2I(p+1)
whenever wp +p/2—2a—2 > 2I(p + 1). Hence, there exists A, such that
%
j (f(l —cos 9))p+1 9—wp—p/2+2a+1 do < Al(nn)p+1nwp+p/2—2a—2' (54)
Un
Putting inequalities (45)-(54) and (33) together, we have
BAA BAA
ta|yprsw,o)(1 _ l')|p dtdy < 1 (nn)p+1nwp—2a—2 < _l(n;)p-%—l n@p—2a—4-2p (55)
K p+1 p+1
By our assumption,
5 rf© %
J t*|P(1— )P dtdy > J J t*| P (1— )P dydt = J FOLPED (1= )P dt. (56)
K o Jo 0
By making the change of variable t = ;%;, we obtain
2 1 (2
f ORI -0 de = f £ (g1~ g, ()P d, (57)
0 0

where g,(z) = 5%5. Again certain properties of Jacobi polynomials PTE“"’)(X) play a role. By the formula of Mehler-Heine type
(see [10], Theorem 8.1.1.)

1
2n2

wp 2
42:2 J f(&n(2))(8n(2))*(4(2/2) I, (2) = 1/T(w +2))" dz
0

2
j F(gn(@)(gn(@N* P (1~ g, (2))IP dz >
0

for w > 0 all sufficiently large n. Here J,(2) is the Bessel functions of the first kind. Since

. Y . 1 22 11w
zrerfég]{(z/z) Jo@) = »2002] { Mw+1) 4T(w+2) } T TMw+1) T(w+2) T(w+2)
we have
1 (7 4oo—1 Y 2
o L F(n(@))(gn(2)* [P (1~ g, ()P dz = (m) n“r? L f(gn(2))(gn(2))* dz. (58)

Then integration by parts shows that

r12"‘(oc+1)_2_n2 a+1

Jf(gn(z))(gn(z)wdz=i L f E Fi(g(2))(ga(2))" da.

Since If(x) = xf'(x), this leads to

/

21, > 27,
n2e(I+a+1)  n2e2[(I+a+1)

f f(8n(2))(8n(2))* dz = (59)
0

From (56), (57), (58) and (59) we see that

dow—1 )P 2n“P2n),

%Pl (1 — )P dtd 2(
L, P T A= dtdy 2\ 3re032) ) e as D)
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This last inequality together with (55) imply that there exists a positive constant A depending only on f, a and w such that, for
each n,

n?
t* [P —o)P dedy > A— t*lyPl (1 —t)P dtdy.
K’ (P Jxr
Since
f |PTE‘°"’)(1 —x?)Pdxdy = J t_1/2|PrE“’"’)(1 —t)Pdtdy
K K
f lyPL? (1= x| dxdy = f 2 yPeO(1 - )P dedy,
K K’
it follows that p,(K) > inf{7 > 0: .o V,ey n> < Cf'(1/n*)n"}. O
06 b
0Ly
Ts
L'
04r | - (2/9)x-1/82 1
— XZ
0.2F A .
0.0 =
0.0 0.‘2 0‘4 0.‘6 0‘8 1.‘0
Figure 1: L3, T3, Lg, with f(x) = x? and the tangent line to the curve y = x2 at the point é.
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