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Abstract

We study a Bernstein-Chebyshev inequality and some Pleśniak type properties on polynomially determin-
ing sets and on a wide class of algebraic varieties. We show that a compact subset E of algebraic variety V
satisfies a Bernstein-Chebyshev inequality if and only if a projection of E satisfies a Bernstein-Chebyshev
inequality. Moreover, we give an estimate of appropriate constants. These inequalities are also studied
on preimages under simple polynomial maps. Baran’s radial extremal function is calculated for some
compacts on algebraic sets.
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1 Introduction
For a given number r ∈ [1,∞] consider such a compact set K ⊂KN that for any δ > 0 and n ∈ N the following Bernstein-Chebyshev
inequality holds

∥p∥r,Kδ ≤ C ∥p∥r,K (1)

where
Kδ := {x ∈KN : dist (x , K)≤ δ}, dist (x , K) := inf{∥x − y∥ : y ∈ K}

and C = C(δ, n, r) is a constant independent of the polynomial p of N variables and degree at most n. The symbol ∥ · ∥ denotes
one of norms in KN , say the Euclidean one. Here and throughout, µ is a positive measure on an open neighbourhood of K and

∥p∥r,K :=

�∫

K

|p(x)|r dµ(x)

�1/r

, r <∞,

∥p∥∞,K :=max{|p(x)| : x ∈ K}.
A pointwise version of inequality (1) is often called a Bernstein-Walsh inequality. Similar problems have been studied recently
by Bos, Ma’u and Waldron in [10]. For notational convenience, set ∥p∥K := ∥p∥∞,K and C(δ, n) := C(δ, n,∞). Obviously,
C depends also on the set K and the measure µ. Assume that C(δ, n, r) is the optimal constant in inequality (1), i.e.

C(δ, n, r) = sup

�

∥p∥r,Kδ
∥p∥r,K

: p ̸≡ 0 on K , deg p ≤ n

�

<∞.

It is worth noticing that if K is a set not determining for polynomials then inequality (1) does not hold, which can be interpreted
as C(δ, n, r) =∞. Our aim is to present some estimates of the constants C(δ, n, r) for selected compact sets. These estimates
are linked to several concepts which we mention below. We first explain a relationship of (1) with Bernstein’s and Chebyshev’s
results.

In the case of a segment in R and the sup norm, estimate (1) is usually called the Chebyshev inequality :

∥p∥[−1,1]δ = ∥p∥[−1−δ,1+δ] ≤ Tn(1+δ) ∥p∥[−1,1] (2)

where Tn is the n-th Chebyshev polynomial of the first kind. If K = D := {z ∈ C : |z| ≤ 1} then the estimate

∥p∥Dδ = ∥p∥(1+δ)D ≤ (1+δ)
n ∥p∥D

is known as the Bernstein inequality. In the two estimates above we get equality for p(x) = Tn(x) and p(z) = zn, respectively.
Consequently,

C(δ, n) = Tn(1+δ) for K = [−1, 1] ⊂ R,

C(δ, n) = (1+δ)n for K = D ⊂ C.

By means of the constants C(δ, n, r), we can state definitions of certain known properties of K ⊂ CN . We list below some of
them.
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1. If there exists a positive constant m such that

sup
n∈N

C( 1
nm , n, r)<∞ (3)

then inequality (1) is called Plésniak’s property of K in the L r norm, see e.g. [12], [2]. For r =∞, condition (3) is
equivalent to Markov’s property (see [12]). We say that the set K satisfies the Markov inequality in the L r norm, if

∥|grad p|∥r,K ≤ Mnm∥p∥r,K (4)

where the constants M , m>0 are independent of the polynomial p of degree at most n and grad p is the gradient of p.

2. If the following condition holds
limsup
δ→0

sup
n∈N
[C(δ, n)]1/n = 1 (5)

then the set K is L-regular, i.e. the pluricomplex Green’s function VK of the set K is continuous in CN , where

VK(z) := sup{u(z) : u ∈ L(CN ) and u≤ 0 on K}, z ∈ CN ,

and L(CN ) is the Lelong class of plurisubharmonic functions in CN of logarithmic growth at infinity.

3. Define Baran’s radial extremal function of the set K by

ϕ•K(δ) := sup{exp VK(z +w) : z ∈ K , ∥w∥ ≤ δ}= sup{exp VK(z) : z ∈ Kδ} for δ > 0.

This function was introduced for the first time in the article [1]. It is strictly related to polynomials because of the
Siciak-Zakharyuta formula:

VK(z) = logΦK(z), z ∈ CN ,

and the definition of the Siciak extremal function

ΦK(z) := sup
� |p(z)|
∥p∥K

�1/deg p

where the supremum is taken over all polynomials p of N variables of degree deg p ≥ 1, p ̸≡ 0 on K . Consequently, one
can easily prove that

ϕ•K(δ) = sup
n∈N
[C(δ, n)]1/n .

Taking into account Siciak’s theorem (see e.g. [13]):

ΦK(z) = lim
n→∞

(Φn(z))
1/n, Φn(z) := sup

§ |p(z)|
∥p∥K

: p ∈ Pn(CN ), p ̸≡ 0 on K
ª

,

we can easily prove that
ϕ•K(δ) = lim

n→∞
(C(δ, n))1/n , δ > 0. (6)

The function ϕ•K has been extended to the case of other norms by M. Baran in a presentation at the 8th European Congress
of Mathematics 2021. Namely, for the L r norm on K we have

ϕ•r,K(δ) := sup

¨

�

|p(z +w)|
∥p∥r,K

�1/deg p

: deg p ≥ 1, p ̸≡ 0 on K , z ∈ K , ∥w∥ ≤ δ

«

.

The above definition is equivalent to the condition

ϕ•r,K(δ) = sup
n∈N
[C(δ, n, r)]1/n . (7)

This implies that C(δ, n, r) ≤
�

ϕ•r,K(δ)
�n

but we cannot expect equality here for an arbitrary set K, see the Chebyshev
inequality (2).

Exact formulas of ϕ•K are only known for a few selected polynomially determining sets, see [1, 2]:

• if K is a unit ball in CN (with respect to a fixed complex norm), then

ϕ•K(δ) = 1+δ/c(K) where c(K) is the L-capacity of K ,

• if K is a convex symmetric body in RN , then ϕ•K(δ) = h(1+δ/(2c(K))) where h(x) = x +
p

x2 − 1 for x ≥ 1.
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Denote by Pn(CN ) or Pn(z), z ∈ CN the space of polynomials of N variables, degree at most n and complex coefficients. Let
P(CN ) :=
⋃

n∈N0
Pn(CN ) and P(z) :=

⋃

n∈N0
Pn(z).

In this paper we are interested in estimation of constants C(δ, n) and Baran’s radial extremal function not only for polynomially
determining sets but also for some subsets of algebraic varieties. Since estimate (1) does not hold if K is not determining for
polynomials, we need a version of the Bernstein-Chebyshev inequality appropriate for a compact subset E of an algebraic variety
V . It suffices to restrict inequality (1) to a certain space Wv ⊂ P(CN+1) as we showed it in the papers [7], [8], [9] for Markov and
division inequalities. A precise construction of Wv for an arbitrary algebraic set V is given in [8] by means of Gröbner bases.
Moreover, a simple isomorphism is constructed between Wv and the space

P(V ) := {p|V : p ∈ P(CN )}= P(CN )/I(V )1.

We are interested in algebraic hypersurfaces (see Section 3) and some algebraic sets defined by two polynomial equations
(Section 4). In these two cases we can easily indicate an appropriate subspace Wv of polynomials. Indeed, consider an algebraic
hypersurface V . It is convenient to assume that V is a subset of CN+1. The variety V is defined as a zero set of a polynomial
s ∈ P(CN+1) of degree at least 1. Taking a linear invertible change of variables if necessary, we can write the polynomial s in the
following form

s(z, y) = yk +
k−1
∑

j=0

s j(z) y j for k ≥ 1, z ∈ CN , y ∈ C (8)

where s j ∈ P(z), j = 0, ..., k− 1. Let

Wv = P(z)⊗Pk−1(y) := {q ∈ P(z, y) : q(z, y) =
k−1
∑

j=0

q j(z) y j , q0, ..., qk−1 ∈ P(z)}.

Observe that Wv is an infinite dimensional subspace of P(CN+1) and is invariant under derivation. Moreover, we can easily give
an isomorphism Φ between Wv and the quotient space P(V )

Φ : Wv ∋ p 7→ p|V ∈ P(V ). (9)

On a compact subset E of V = V (s) we will consider Bernstein-Chebyshev inequalities (1) only for polynomials p ∈Wv , i.e.

∥p∥Eδ ≤ C ∥p∥E , p ∈Wv (10)

where Eδ := {z ∈ CN+1 : dist (z, E)≤ δ} and

C = C(δ, n, E) = sup

�

∥p∥Eδ
∥p∥E

: p ̸≡ 0 on E, p ∈ Pn(CN+1)∩Wv

�

. (11)

Let us emphasise that the metric hull Eδ is taken in CN+1 and not only in V . Estimate (10) is called the Bernstein-Chebyshev
inequality on E ⊂ V (s). In Section 3 we will give an equivalent condition for E to satisfy inequality (10).

Analogously as for a compact set K in CN , see (5), (3), (4), (7), we can define L-regularity, Pleśniak’s property, and Baran’s
extremal function ϕ•E of a compact subset E of V restricting the space of polynomials to Wv , see Section 3 for the details.

The paper is organized as follows. In Section 2 we are interested in Bernstein-Chebyshev inequalities on preimages of compact
sets under simple polynomial maps. We recall a construction of a measure on preimages that allows to transfer some polynomial
inequalities, cf. [6]. Section 3 concerns Bernstein-Chebyshev type inequalities on compact subsets of algebraic hypersurfaces.
Some estimates of constants C give formulas of Baran’s radial extremal functions. In Section 4 we show analogous results for
certain algebraic sets of codimension greater than 1. Some concrete examples are presented in the last section.

2 Invariance under simple polynomial maps
Recall that q = (q1, . . . , qN ) : CN → CN is a simple polynomial map of degree m≥ 1 if we have LM(qi) = zm

i , i = 1, . . . , N where the
leading monomial LM is taken with respect to the graded lexicographic order in the family of monomials TN := {zα : α ∈ NN}.
Every simple polynomial map is proper (see [6]) and therefore, q−1(E) is compact for any compact set E ⊂ CN . Morever, the set
q−1(w) has exactly mN elements counting with multiplicities and continuously depends on w ∈ E if we assume that det q′ ≠ 0 at
any points of q−1(E), where q′ denotes the derivative of q and det q′ is its Jacobian (see [6]).

For a given positive measure µ on a compact set E ⊂ CN , a continuous function f : q−1(E)→ C, and a simple polynomial
map q : CN → CN of degree m≥ 1, we define the positive measure q∗µ following [6]:

∫

q−1(E)

f dq∗µ :=

∫

E

q∗ f dµ

and

q∗ f (w) :=
1

mN

∑

z∈q−1(w)

f (z), w ∈ E

where any root is repeated according to its multiplicity. The function q∗ f is continuous if det q′ ̸= 0 on q−1(E).

1 I(V ) = I(V (s)) = {p ∈P(CN+1) : p|V = 0} is the ideal of polynomials vanishing on V
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Proposition 2.1. Fix δ ∈ (0, 1] and r ∈ [1,∞]. Let K be a compact subset of CN and µ be a positive measure on K1. Assume that
q : CN → CN is a simple polynomial map of degree m with det q′ ̸= 0 on q−1(K). If K satisfies a Bernstein-Chebyshev inequality (1)
with a constant C(δ, n, r, K) with respect to µ on K1, then on the preimage q−1(K) we have

∥p∥r,q−1(Kδ) ≤ C∗ ∥p∥r,q−1(K) for p ∈ Pn(CN ), (12)

where ∥p∥r,q−1(Kδ), ∥p∥r,q−1(K) are taken with respect to the measure q∗µ defined above,

C∗ = C∗(δ, n, r, q−1(K)) = M · C
�

δ,
ln
m

m

, r, K
�

(13)

and M is independent of n, δ and r.

Proof. First, we consider the case r <∞. Let p ∈ Pn(CN ). Then m(d − 1)< deg p ≤ md for some d ∈ N. Lemma 3 in [6] states
that for any d ∈ N, every polynomial p ∈ Pmd(CN ) can be written as

p(z) =
∑

α∈Am−1

zαRα(q(z)), z ∈ CN

where Am−1 denotes the set of multi-indices α= (α1, . . . ,αN ) such that maxαi ≤ m− 1 and Rα ∈ Pd(CN ) for α ∈ Am−1. We apply
this result to obtain

∥p∥r,q−1(Kδ) =





1
mN

∫

Kδ

∑

z∈q−1(w)

|p(z)|r dµ(w)





1/r

=
1

mN/r





∫

Kδ

∑

z∈q−1(w)

�

�

�

�

�

∑

α∈Am−1

zα Rα(q(z))

�

�

�

�

�

r

dµ(w)





1/r

.

For z ∈ q−1(w) ⊂ q−1(Kδ) we have |zα| ≤ ∥z∥|α| ≤ ∥z∥N(m−1)
q−1(Kδ)

. Moreover,

�

�

�

�

�

∑

α∈Am−1

zα Rα(q(z))

�

�

�

�

�

≤
∑

α∈Am−1

|zα Rα(q(z))| ≤

�

∑

α∈Am−1

|zα|
r

r−1

�
r−1

r
�

∑

α∈Am−1

|Rα(q(z))|r
�1/r

.

Consequently,

∥p∥r,q−1(Kδ) ≤
1

mN/r





∫

Kδ

∑

z∈q−1(w)

∥z∥rN(m−1)
q−1(Kδ)

(Nm)r−1
∑

α∈Am−1

|Rα(q(z))|
r dµ(w)





1/r

=∥z∥N(m−1)
q−1(Kδ)

(Nm)
r−1

r

�

∑

α∈Am−1

∫

Kδ

|Rα(w)|r dµ(w)

�1/r

.

Since K satisfies the Bernstein-Chebyshev inequality (1), we have also

∥p∥r,q−1(Kδ) ≤ ∥z∥
N(m−1)
q−1(Kδ)

(Nm)
r−1

r

�

∑

α∈Am−1

C(δ, d, r, K)r
∫

K

|Rα(w)|r dµ(w)

�1/r

.

Comparing it with |Rα(w)|r ≤ C(K , q)r∥p∥rq−1(w) ≤ C(K , q)r
∑

z∈q−1(w)
|p(z)|r where a constant C(K , q) depends only on K and q (see

Proposition 7 in [6]), we obtain

∥p∥r,q−1(Kδ) ≤∥z∥
N(m−1)
q−1(Kδ)

(Nm)
r−1

r +
1
r C(δ, d, r, K) C(K , q)





∫

K

∑

z∈q−1(w)

|p(z)|r dµ(w)





1/r

≤∥z∥N(m−1)
q−1(K1)

Nm
N
r +1 · C(δ, d, r, K) · C(K , q) ∥p∥r,q−1(K).

Since every simple map is proper, q−1(K1) is compact. To emphasise that the constant C∗ depends on δ and n in the same fashion
as C , we write

C∗ = C∗(δ, n, r, q−1(K)) = M · C
�

δ,
ln
m

m

, r, K
�

where M is independent of n, δ > 0 and r. The proof for the case r =∞ uses similar arguments. We leave it to the reader.
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On the left hand side of inequality (12) in Proposition 2.1 we have the norm on q−1(Kδ). Since ∥q(z)− q(z0)∥ ≤ D∥z− z0∥ for
some positive constant D depending only on q and K , we have

(q−1(K))δ ⊂ q−1(KδD) for all δ ∈ (0.1].

Therefore, (12) implies the Bernstein-Chebyshev inequality for q−1(K):

∥p∥r,(q−1(K))δ ≤ C∗ ∥p∥r,q−1(K) for p ∈ Pn(CN )

with respect to the measure q∗µ and C∗ = M · C
�

δD,
�

n
m

�

, r, K
�

.

Theorem 2.2. Assume that K , r, µ and q are as in Proposition 2.1. If C(δ, n, r, K ,µ) is finite for all δ ∈ (0.1], n ∈ N then

C(δ, n, r, q−1(K), q∗µ)≤ M · C
�

δD,
ln
m

m

, r, K ,µ
�

, δ ∈ (0, 1
D ]

where M, D are independent of n, δ and r. In particular,

1. If K has Plésniak’s property in the L r(µ) norm then q−1(K) has it in the L r(q∗µ) norm.

2. If K is L-regular then so also is q−1(K).

3. ϕ•r,q−1(K)(δ)≤ M0

�

ϕ•r,K(δD)
�1/m

for δ ∈ (0, 1
D ] where M0, D are independent of n, δ and r.

In the case of r =∞, properties (2) and (3) (with M0 = 1, because in this case we have (6)) can be also proved by Klimek’s
theorem, see Th. 5.3.1 in [11], because for any simple polynomial map q of degree m we have

lim inf
∥z∥→∞

∥q(z)∥/∥z∥m > 0.

Proposition 2.1 gives an estimate from below of C by C∗. We can give also a reverse estimate that is easier to prove.

Proposition 2.3. Assume that K , r and µ are as in Proposition 2.1. Let q : CN → CN be a simple polynomial map of degree m. If
inequality (12) is satisfied with a constant C∗(δ, n, r, q−1(K), q∗µ) for all n ∈ N then K satisfies Bernstein-Chebyshev inequality (1)
and

C(δ, n, r, K ,µ)≤ C∗(δ, nm, r, q−1(K), q∗µ).

Proof. The case of r =∞ is easy to show:

∥p∥Kδ = ∥p ◦ q∥q−1(Kδ) ≤ C∗(δ, nm,∞, q−1(K), q∗µ) ∥p ◦ q∥q−1(K)

= C∗(δ, nm,∞, q−1(K), q∗µ) ∥p∥K .

For r <∞, we can observe that

q∗(|p ◦ q|r)(w) =
1

mN

∑

z∈q−1(w)

|(p ◦ q)(z)|r =
1

mN

∑

z∈q−1(w)

|p(w)|r = |p(w)|r .

Hence

∥p∥r,Kδ =

�

∫

Kδ

|p|r dµ

�1/r

=

�

∫

Kδ

q∗(|p ◦ q|r)dµ

�1/r

=

�

∫

q−1(Kδ)

|p ◦ q|r dq∗µ

�1/r

= ∥p ◦ q∥r,q−1(Kδ).

By the assumption,

∥p∥r,Kδ ≤ C∗(δ, nm, r, q−1(K), q∗µ) ∥p ◦ q∥r,q−1(K) = C∗(δ, nm, r, q−1(K), q∗µ) ∥p∥r,K

and the assertion follows.

3 On general algebraic hypersurfaces
This section is devoted to the Bernstein-Chebyshev inequality and related properties of compact subsets of an algebraic hypersurface
V . Usually, we will denote compact subsets of V by E, and compact subsets of CN by K . Consider an algebraic hypersurface V
given by a polynomial s. It is convenient to assume that V is a subset of CN+1. Then s is a polynomial of N + 1 variables and, as
explained in the Introduction, we can write s in the form (8). Every element of the quotient space P(V ) can be represented by
only one polynomial from Wv = P(z)⊗Pk−1(y), z ∈ CN , y ∈ C, see the isomorphism Φ in (9). We consider the projection π
given by

π : V ∋ (z, y) 7→ z ∈ CN .

We say that E ⊂ V has a Markov property for polynomials from Wv if there exist positive constants m, M such that

∥|grad p|∥E ≤ M(deg p)m∥p∥E for every polynomial p ∈Wv . (14)

In [8] this property was also called Wv-Markov property and we proved there the following characterization of this property.
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Theorem 3.1. Let V = V (s) ⊂ CN+1 be an algebraic variety defined by an irreducible polynomial s in form (8) and E be a compact
subset of V (s). Then E has a Markov property for polynomials from Wv if and only if π(E) satisfies the Markov inequality (4) with
r =∞.

Now, we are interested in a similar result for the Bernstein-Chebyshev inequality. We need the following property.

Definition 3.1. Let K be a compact subset of CN . We say that K satisfies the division inequality with exponent m if for any
polynomial q ̸≡ 0 on K there exists a positive constant M such that for all polynomials p ∈ P(CN )

∥p∥K ≤ M(deg p+ deg q)m deg q∥pq∥K . (15)

We know a lot of compact sets with this property, e.g. on any Markov set (a compact satisfying inequality (4) with r =∞)
a division inequality (15) holds, see [7].

The proposition given below will be crucial in the proof of the main result of this section.

Proposition 3.2. (see [8, 9]) Let V (s) ⊂ CN+1 be an algebraic variety defined by an irreducible polynomial s in form (8), K ⊂ CN be
a compact set and E := π−1(K) ⊂ V (s). If K satisfies the division inequality with exponent m then

∥[p0, ..., pk−1]∥K := max
j=0,...,k−1

{∥p j∥K} ≤ M0 (deg p)m0∥p∥E (16)

for any polynomial p written in the form p(z, y) =
k−1
∑

j=0
p j(z) y j on V (s) where M0, m0 ≥ 0 are constants independent of p0, . . . , pk−1

and m0 = m(k− 1) deg s.

Proposition 3.3. Let V = V (s) ⊂ CN+1 be an algebraic variety defined by an irreducible polynomial s of form (8). Assume that E ⊂ V
is a compact set such that π(E) ⊂ CN satisfies the division inequality and E = π−1(π(E)). Then E satisfies a Bernstein-Chebyshev
inequality (10) if and only if π(E) satisfies a Bernstein-Chebyshev inequality (1) with r =∞. Moreover, if π(E) satisfies (1) with
r =∞ and C = C(δ, n,π(E)), then C(δ, n, E)≤ M̃(δ) nm0 C(δ, n,π(E)) in (10). On the other hand, C(δ, n,π(E))≤ C(δ, n, E).

Proof. Let K = π(E). For r =∞ and any polynomial p ∈Wv written in the form p(z, y) =
k−1
∑

j=0
p j(z) y j with deg p ≤ n we get

∥p∥Eδ ≤
k−1
∑

j=0

∥p j∥Kδ ∥y∥
j
Eδ

.

It follows from (1) that

∥p∥Eδ ≤ C(δ, n, K)
k−1
∑

j=0

∥p j∥K ∥y∥
j
Eδ

.

From Proposition 3.2 we have

∥p∥Eδ ≤ C(δ, n, K)M0 nm0∥p∥E
k−1
∑

j=0

∥y∥ j
Eδ

and this finishes the proof.

Let us now introduce Pleśniak’s property, the L-regularity and Baran’s radial extremal function for compact subsets of algebraic
sets. As noted before, we shall do this by restricting the space of polynomials to Wv . More precisely, for a compact subset E of an
algebraic set V we can use C(δ, n, E) defined by (11).

We say that a compact set E ⊂ V has Plésniak’s property for polynomials from Wv with exponent m if

∥p∥Eδ ≤ C ∥p∥E , for p ∈ Pn(CN+1)∩Wv where δ = n−m (17)

and C = sup
n∈N

C(n−m, n, E)<∞.

A compact set E ⊂ V is said to be L-regular if

limsup
δ→0

sup
n∈N
[C(δ, n, E)]1/n = 1. (18)

Similarly as in (6), Baran’s radial extremal function of the set E ⊂ V is defined by

ϕ•E(δ) = lim
n→∞

[C(δ, n, E)]1/n ,δ > 0. (19)

As an immediate consequence of Proposition 3.3 we have the following

Theorem 3.4. Let V = V (s) ⊂ CN+1 be an algebraic variety defined by an irreducible polynomial s of form (8). Assume that E ⊂ V is
a compact such that π(E) satysfies the division inequality and π−1(π(E)) = E. Then

1. E has Plésniak’s property for polynomials from Wv with exponent m if and only if π(E) has Plésniak’s property with exponent
m.

2. E is L-regular if and only if π(E) is L-regular.
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3. ϕ•E = ϕ
•
π(E).

It is well known that for r =∞ Pleśniak’s property (3) is equivalent to Markov inequality (4) for any compact set in CN

(see [12]). Similarly to [12], using Taylor’s formula and Cauchy’s inequality one can prove that for compact subsets of V (s) the
Markov property (14) is equivalent to Pleśniak’s property (17).

In the real case some generalizations of Pleśniak’s property (3) were used in characterizations of semialgebraic curves in
the class of compact, piecewise C1 curves and compact subsets with Zariski dimension σ in the class of compact sets with an
analytic parametrization of order σ (see [4] and [5]). Another generalization of Pleśniak’s property for certain compact subsets
of algebraic sets in Rn were introduced in [3]. In a similar fashion we can define Pleśniak’s property for compact subsets of
algebraic sets in the complex space CN . For a compact subset E of an algebraic set V ⊂ CN , δ > 0 and p ∈ P(CN ) set

|∥p|∥Eδ := inf{∥ fp∥Eδ : fp ∈ P(CN ), fp ≡ p on V}, the quotient norm.

Definition 3.2. A compact subset E of an algebraic set V ⊂ CN is said to have a V-Plésniak property with exponent m if there
exists a constant M > 0 such that for all polynomials p ∈ P(V ) we have

|∥p|∥Eδ ≤ M ∥p∥E where δ = (degV p)−m (20)

with degV p :=min{deg q : q ∈ P(CN ), q|V ≡ p}.

The above CN -Pleśniak property is equivalent to Pleśniak’s property (3) with r =∞.
The following result establishes an important relationship between the degrees of polynomials (see [9, Theorem 2.3])

Theorem 3.5. Let V = V (s) ⊂ CN+1 be an algebraic variety defined by a polynomial s of form (8) and d = deg s. For all polynomials
p ∈ P(z)⊗Pk−1(y) we have

degV p ≤ deg p ≤ d · degV p.

Moreover, if d = k then degV p = deg p.

In [7] we gave a better estimate of deg p in a specific case.

Theorem 3.6. If V = {(z, y) ∈ CN ×C : yk + s0(z) = 0} and d = deg(yk + s0(z)) then for any polynomial p ∈ P(z)⊗Pk−1(y) we
have

degV p ≤ deg p ≤
d
k

degV p.

Theorem 3.7. Let V (s) ⊂ CN+1 be an algebraic variety defined by an irreducible polynomial s of form (8) and E ⊂ V (s). If E has the
Markov property (14) with exponent m then E has V -Plésniak property (20) with the same exponent m.

Proof. Let p ∈ P(V ), δ = (degV p)−m and Φ be an isomorphism given by (9). Fix v ∈ Eδ and v0 ∈ E such that dist(v, E) = ∥v− v0∥.
From Markov property (14) we get

|Φ−1(p)(v)| ≤
∑

α

1
α! |D

αΦ−1(p)(v0)| ∥v − v0∥|α|

≤
∑

α

1
α! M |α|(degΦ−1(p))m|α|∥Φ−1(p)∥E ∥v − v0∥|α|.

Since
∑

|α|= j
1
α! = N j/ j!, we get

|∥p|∥Eδ ≤ ∥Φ
−1(p)∥Eδ ≤

degΦ−1(p)
∑

j=0

N j

j! M j(degΦ−1(p))m j δ j ∥p∥E .

Appling Theorem 3.5 we see that

|∥p|∥Eδ ≤ exp(N M(degΦ−1(p))mδ) ∥p∥E ≤ exp(N M(d degV p)mδ) ∥p∥E
≤ exp(N Mdm) ∥p∥E .

4 Algebraic sets of codimension greater than one
One can also consider an algebraic set

V (s1, s2) = {(z, y1, y2) : s1(z, y1) = 0, s2(z, y1, y2) = 0} ⊂ CN+2

given by two polynomials s1 and s2 in the following forms

s1(z, y1) = yk1
1 +

k1−1
∑

j=0

s1, j(z) y j
1, (21)

s2(z, y1, y2) = yk2
2 +

k2−1
∑

l=0

s2,l(z, y1) y l
2 (22)

Dolomites Research Notes on Approximation ISSN 2035-6803



Bialas-Ciez · Kowalska 23

with z ∈ CN , y1, y2 ∈ C, k1 ≥ 1, k2 ≥ 1, s1, j ∈ P(CN ) for j ∈ {0, . . . , k1 − 1} and s2,l ∈ P(CN+1) for l ∈ {0, . . . , k2 − 1}. Observe
that in this case dim V = N and the space

Wv = P(z)⊗Pk1−1(y1)⊗Pk2−1(y2)
is an appropriate space of representatives of P(V (s1, s2)) that is isomorphic to P(V (s1, s2)). We denote by d1 the degree of s1 and
by d2 the degree of s2. We now define three projections

π1 : V (s1) ∋ (z, y1) 7→ z ∈ CN , π2 : V (s1, s2) ∋ (z, y1, y2) 7→ (z, y1) ∈ V (s1), π̃ := π1 ◦π2.

For a compact subset K of CN we consider the set F := π−1
1 (K) ⊂ V (s1) and the set E := π̃−1(K) ⊂ V (s1, s2) that can be written in

the form E = π−1
2 (F). The assumption of the division inequality is crucial in Proposition 3.2, this suggests a question: under what

conditions is it true that F satisfies the division inequality? The answer can be found in [9]
Theorem 4.1. Let V = V (s) ⊂ CN+1 be an algebraic hypersurface given by an irreducible polynomial s in form (8) with deg s = d
and K be a compact subset of CN and F := {(z, y) ∈ V : z ∈ K}. If K is determining for polynomials from P(z) and satisfies the
division inequality then F also satisfies the division inequality.

From this theorem we obtain a division inequality for F ⊂ V (s1). In order to obtain the main result for sets of codimension
greater than 1, we also need the definition presented in [8]
Definition 4.1. Let V ⊂ CN be an algebraic set and q, s ∈ P(z, y) where z ∈ CN , y ∈ C. We say that polynomials q and s are
coprime (or relatively prime) on V if Resy(q, s) ̸≡ 0 on V (Resy(q, s) is the resultant of q and s in y). The polynomial s is said to
be irreducible on V if it is relatively prime on V with any polynomial q ∈ P(z, y), q ̸≡ 0 on V.

Theorem 4.2. Let V = V (s1, s2) ⊂ CN+2 be an algebraic set given by polynomials s1 and s2 of forms (21-22). Assume that s1 is an
irreducible polynomial and s2 is irreducible on V (s1) and K ⊂ CN be a compact set satisfying the division inequality. If K satisfies
the Bernstein-Chebyshev inequality (1) with r =∞ then E = π̃−1(K) ⊂ V (s1, s2) satisfies the Bernstein-Chebyshev inequality for
polynomials from Wv . Moreover, if K satisfies (1) with r =∞ and C = C(δ, n), then C(δ, n, V )≤ M̃(δ)nm0 C(δ, n) for E in (10).

Proof. For any polynomial p ∈Wv written in the form p(z, y1, y2) =
k1−1
∑

j=0

k2−1
∑

l=0
p jl(z) y j

1 y l
2 with deg p ≤ n we get

∥p∥Eδ ≤
k1−1
∑

j=0

k2−1
∑

l=0

∥p jl∥Kδ ∥y1∥
j
Eδ
∥y2∥lEδ .

It follows from (1) that

∥p∥Eδ ≤ C(δ, n)
k1−1
∑

j=0

k2−1
∑

l=0

∥p jl∥K ∥y1∥
j
Eδ
∥y2∥lEδ .

Since K satisfies the division inequality with some exponent m, from Proposition 3.2 we obtain

∥p∥Eδ ≤ C(δ, n)M1 nm1

k1−1
∑

j=0

k2−1
∑

l=0

∥p̃l∥F ∥y1∥
j
Eδ
∥y2∥lEδ

where p̃l(z, y1) =
k1−1
∑

j=0
p jl(z) y j

1 on V (s1) and m1 = m(k1 − 1)d1.

From Theorem 4.1 the set F satisfies the division inequality with exponent m̃ and from Proposition 3.2 we have

∥p∥Eδ ≤ C(δ, n)M1 ·M2 nm2+m1∥p∥E
k1−1
∑

j=0

k2−1
∑

l=0

∥y1∥
j
Eδ
∥y2∥lEδ

where m2 = m̃(k2 − 1)d2.

Analogously to Theorem 3.4, we may also get

Corollary 4.3. Let V = V (s1, s2) ⊂ CN+2 be an algebraic set given by polynomials s1 and s2 of forms (21-22). Assume that s1 is an
irreducible polynomial and s2 is irreducible on V (s1) and E ⊂ V (s) such that π̃(E) satysfies the division inequality and π̃−1(π̃(E)) = E.

1. E has Plésniak’s property with exponent m for polynomials from Wv if and only if π̃(E) has Plésniak’s property with exponent
m.

2. E is L-regular if and only if π̃(E) is L-regular.
3. ϕ•E(δ) = ϕ

•
π̃(E)(δ)

In [9] we also proved the following relationship between the degrees of polynomials

Theorem 4.4. For all polynomials p ∈ P(z)⊗Pk1−1(y1)⊗Pk2−1(y2)

degV p ≤ deg p ≤ d1 d2 degV p.

Moreover, if d1 = k1 and d2 = k2 then degV p = deg p.
Using Theorem 4.4 we can prove

Proposition 4.5. Let V = V (s1, s2) ⊂ CN+2 be an algebraic set given by polynomials s1 and s2 of forms (21-22). Assume that s1 is an
irreducible polynomial and s2 is irreducible on V (s1). If E ⊂ V (s1, s2) satisfies Markov property with exponent m for polynomials from
Wv then E satisfies a V -Plésniak property with exponent m.
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5 Examples
We now give some examples of the application of theorems proved in the previous sections. The computer system software
Singular is used to determine the reduced Groebner basis of ideals I(V ) in these examples.

Example 5.1. Consider
V = V ((x − 1)2 + y2 + 9z2 − 1, x2 + y2 + z2 − 1) ⊂ C3

and the lexicographical ordering in the family of monomials {(x1, x2, x3)α} where x1 = y , x2 = z, x3 = x , so we have an ordering
⪯ such that x ⪯ z ⪯ y. The reduced Gröbner basis of I(V ) is the set G = {y2 + x2 + 1

4 x − 9
8 , z2 − 1

4 x + 1
8 }. Consequently, P(V )

is isomorphic to Wv = P(x)⊗P1(z)⊗P1(y) for V = V (s1, s2) with s1(x , y) = y2 + x2 + 1
4 x − 9

8 and s2(x , y, z) = z2 − 1
4 x + 1

8 .
Polynomials s1 and s2 are of forms (21-22).

We consider the set E = {(x , y, z) ∈ V : x ∈ [ 1
2 ,
p

73−1
8 ]}. Observe that E ⊂ R3 is the real curve given by the intersection of

the two surfaces in Figure 1.

Figure 1: The set E, Example 5.1.

From Theorem 4.2 the set E satisfies the Bernstein-Chebyshev inequality

∥p∥Eδ ≤ M0(δ)Tn

�

(
p

73+ 5)δ
3

+ 1

�

n2(m+m̃) ∥p∥E , p ∈ P(x)⊗P1(z)⊗P1(y).

Moreover, Corollary 4.3 yields that E has Pleśniak’s property and is L-regular. We have also the Baran’s radial extremal function
of the set E

ϕ•E(δ) = ϕ
•
h

1
2 ,
p

73−1
8

i(δ) = h

�

1+
(5+
p

73)δ
3

�

where h(x) = x +
p

x2 − 1 for x ≥ 1.
Now we take the algebraic hypersurface V1 = V (z2 − 1

4 x + 1
8 ) ⊂ C

2 and the set F =
¦

(x , z) ∈ V1 : x ∈
�

1
2 ,
p

73−1
8

�©

⊂ R2.

0.5 0.6 0.7 0.8 0.9

-0.4

-0.2

0.0

0.2

0.4

Figure 2: The set F , Example 5.1.

Then P(V1) is isomorphic to P(x)⊗P1(z). Polynomial s(x , z) = z2 − 1
4 x + 1

8 is of forms (8). From Proposition 3.3 we have
that F satisfies the following Bernstein-Chebyshev inequality

∥p∥Fδ ≤ M̃(δ)Tn

�

(
p

73+ 5)δ
3

+ 1

�

n2m∥p∥F , p ∈ P(x)⊗P1(z).
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Applying Theorem 3.4 we obtain that F has Pleśniak’s property, is L-regular and ϕ•F (δ) = ϕ
•
E(δ).

Example 5.2. Let V = V (y3 − z2 + 1, x2 − y4 − xz) ⊂ C3 and E = {(x , y, z) ∈ V : y ∈ D where D := {w ∈ C : |w| ≤ 1}. For
the reverse lexicographical ordering of x1 = y, x2 = z, x3 = x the above two polynomials form the reduced Gröbner basis.
Regarding the lexicographical ordering of x , y, z, we get {y3 − z2 + 1, x2 − xz − yz2 + y} as the reduced Gröbner basis and
Wν = P1(x)⊗P2(y)⊗P(z) that is isomorphic to P(V ). Eliminating the variable x leads us to the set

F := {(y, z) ∈ C2 : y3 = z2 − 1, y ∈ D}

that is the projection of E into the space of (y, z). By Example 23 in [7], the set F satisfies the Markov inequality for polynomials
from P2(y)⊗P(z) because the projection of F into the z-plane is the Bernoulli lemniscate that satisfies Markov inequality (4) in
C with γ =∞. It follows from Theorem 4.2 that the set E satisfies the Bernstein-Chebyshev inequality for polynomials from Wν
and is L-regular. We have the Baran’s radial extremal function of the set E

ϕ•E(δ) = ϕ
•
D(δ) = 1+δ.

Example 5.3. Consider the algebraic variety V = V (p1, p2) defined by p1(x , y, z) = z − y x and p2(x , y, z) = z2 − y2 − 25.
Regarding the lexicographical ordering or the degree lexicographical ordering or the degree reverse lexicographical ordering,
we obtain the reduced Gröbner basis with three elements: −p1, −p2, p3 where p3(x , y, z) = xz2 − 25x − yz. For the reverse
lexicographical ordering we get the following Gröbner basis of I(V ):

q1(x , y, z) = z − x y and q2(x , y, z) = x2 y2 − y2 − 25.

These polynomials do not have the form as in Theorem 4.2, but if we take the linear invertible change of variables (x1, y1, z1) =
(x + y, y, z) we obtain the algebraic variety V ′ = {(x , y, z) ∈ C3 : z2 − y2 = 25 and z = y2 + x y}.

Figure 3: Example 5.3

For the reverse lexicographical ordering we obtain the following Gröbner basis of I(V ′):

q′1(x , y, z) = z − y2 − x y and q′2(x , y, z) = y4 + 2x y3 + x2 y2 − y2 − 25

and Wν′ = P(x)⊗P3(y) is isomorphic to P(V ′). We consider the set E = {(x , y, z) ∈ V ′ : x ∈ [5,10]}. Observe that E ⊂ R3 is

Figure 4: The set E, Example 5.3.
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the real curve given by the surface intersections shown in Figure 4. From Theorem 4.2 the set E satisfies the Bernstein-Chebyshev
inequality

∥p∥Eδ ≤ M0(δ)Tn

�

2δ
5
+ 1
�

n12m ∥p∥E , p ∈ P(x)⊗P3(y).

By Corollary 4.3 the E has Pleśniak’s property and is L-regular. Moreover, we have the Baran’s radial extremal function of the set
E

ϕ•E(δ) = ϕ
•
[5,10](δ) = h
�

1+
2δ
5

�

= 1+
2
5

�

δ+
p

5δ+δ2
�

.
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[5] M. Baran, W. Pleśniak. Characterization of compact subsets of algebraic varieties in terms of Bernstein type inequalities. Studia Math.,
141:221–233, 2000.

[6] L. Bialas-Ciez, J.-P. Calvi. Invariance of polynomial inequalities under polynomial maps. J. Math. Anal. Appl., 439:449–464, 2016.

[7] L. Bialas-Ciez, J.-P. Calvi, A. Kowalska. Polynomial inequalities on certain algebraic hypersurfaces. J. Math. Anal. Appl., 459:822–838, 2018.

[8] L. Bialas-Ciez, J.-P. Calvi, A. Kowalska. Markov and division inequalities on algebraic sets. submitted.

[9] L. Bialas-Ciez, A. Kowalska. Polynomial meshes on algebraic sets. submitted.

[10] L. Bos, S. Ma’u, S. Waldron. Extremal growth of polynomials. Anal. Math., 46:195-224, 2020.

[11] M. Klimek. Pluripotential Theory. London Mathematical Society Monographs New Series 6, Clarendon Press, Oxford, 1991.
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