3

PADOVA UNIVERSITY PRESS

Dolomites Research Notes on Approximation

Special issue dedicated to Annie Cuyt on the occasion of her 60th birthday, Volume 10 - 2017 - Pages 43-55

Sparse FFT for Functions with Short Frequency Support

Sina Bittens?

Communicated by M. Vianello

Abstract

In this paper we derive a deterministic fast discrete Fourier transform algorithm for a 2n-periodic function
f whose Fourier coefficients with significantly large magnitude are contained inside a support interval of
length B. The algorithm is based on a method for the efficient recovery of B-sparse 27-periodic functions
presented by Iwen in [15]. If a good bound B on the support length is known apriori, our algorithm
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W) arithmetical operations while using O (B ToglogN/B
function f.

) samples of the input
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1 Introduction

Algorithms for the fast Fourier transform (FFT) are of great importance in numerical mathematics, especially in signal and image
processing, but for an arbitrary vector x € CN the effort of O(N log N) arithmetical operations for computing the discrete Fourier
transform (DFT) X is optimal (see [21]). In the case of a sparse input vector X, meaning that only a few of its entries have a
significantly large absolute value, research done in recent years showed that it is possible to develop faster, sublinear-time DFT
algorithms. Many of the presented algorithms (see, e.g., [3, 9, 11, 20, 13, 12, 22]) rely on randomization techniques where the
returned vector is a good approximation with a constant probability less than 1. With this usually tunable, small probability of
failure the fastest of these algorithms estimate the Fourier transform of B-sparse input vectors or functions in only O(BlogN)
time (see, e.g., [12]). Setting B = N? for some 0 < § < 1, the algorithm in [22] achieves a runtime of O(BlogB), where
log N = O(logB). More details about such techniques can be found in a recent survey [10].

Deterministic sparse FFT methods have also been found, for example algorithms modifying Prony’s method (see, e.g.,
[14, 23, 27]), which have complexities of ©O(B*®). However, many Prony-based methods are numerically unstable, as noisy data
leads to a non-singular Hankel system, which causes perturbation of the eigenvectors corresponding to small eigenvalues, and
hence perturbed zeroes of the Prony polynomial. Other deterministic FFT algorithms use arithmetic progressions [1, 2] or the
Chinese Remainder Theorem [15, 16].

In the case of a short support, where all significant entries of the input vector are contained in a support interval of length
B, it is possible to obtain a deterministic algorithm with runtime O(Blog N) using periodized vectors [24]. If the input vector
has real non-negative entries, similar methods allow an algorithm that needs O(Blog Blog(N/B)) arithmetic operations without
requiring the apriori knowledge of a good bound on the support length B [25].

The setting of vectors with short support is, for example, of importance in computer tomography reconstructions and X-ray
microscopy, where the compact support is often known apriori. In our paper we also focus on this case, and will derive an

algorithm for functions with a short frequency support of length B. The approach is based on the sublinear-time method for

) . . . . 2, log* Nlog?(B logN)) ( 2. log* N log(B logN))
general B-sparse functions presented by Iwen in [15], which has a runtime of O(B 2 BloglogN /B and uses O|\ B o BloglogN /B
samples. It relies on reconstructing the energetic frequencies from their residues modulo certain integers with the Chinese
Remainder Theorem, where the residues can be obtained from the DFT of several vectors of equispaced function samples with
lengths that are small compared to the bandwidth of the function.

If the input function f has a frequency support length that is bounded by an apriori known constant B, the technique
logzN /B

introduced in [15] can be strongly simplified and leads to a new algorithm with complexity O(B logB - ToglogN/B

), where only

2
(’)(B li;gloév 1\%) samples of f are being used. One can clearly see that our technique is faster and uses fewer samples; its runtime

and sparsity even scale sub-quadratically in the support length B, which is also the sparsity. A support length B = [N/4], for

lé‘;glz:B) for the algorithm in [15], but only of O(B 1:;5{2:3) for our method.

example, yields a still-sublinear runtime of 0(32
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Choosing B = [+/N 1], for which the algorithm in [15] is not sublinear anymore, we obtain a runtime of O(B ), which only

differs by a factor of 1£g1<2;: 5 from the runtime of O(BlogB) of the algorithm in [24].

This paper is structured as follows. First, we fix the notation and recall the aspects of Algorithm 2 in [15] that are relevant for
our setting in §2. In §3 we introduce the simplified algorithm for functions with short frequency support and analyze its runtime
and sampling bounds. Finally, in §4, we give some numerical results and compare the algorithm to the algorithm for vectors with
short support presented in [24].

2 Preliminaries and Required Technical Background

2.1 Preliminaries

Throughout this paper let B < N € N. We always consider a 27t-periodic function

f: [0,27'[]—)@, f(x): Z Cweiu)x

w=—

ﬁ

iz

=
-
iR

with bandwidth N and finite Fourier transform
(e 2]
C(f) T (Cw)w:_{%]_'_l'
We say that a frequency w is energetic if the corresponding Fourier coefficient c,, has a significantly large absolute value,
lcol> ¢

for some threshold parameter ¢ > 0. A function f is called B-sparse if it has only B energetic frequencies. If all energetic
frequencies are contained in a support interval

{wl,w1+1,...,wl+B—1}C{—[%1+1,...,[%J}

of length B, we say that f has short frequency support of length B, and we can write

[>~]

—1
FOY= D oy - €10,
0

o
]

Here, we do not require all frequencies to be energetic; some of the Fourier coefficients may even be zero. We recall the definition

PN M
of the discrete Fourier transform (DFT) of length M, which maps A = (A(j))j."z)1 eCMtoA= (A(a)))[ 2 J[M T € CM via
w=—|7

T\(w)::(FM~A)(w):=$~A 2L AG) Vwe{—[%1+1,...,[%J},

where F,; is the centered M-th Fourier matrix

. (wMj(fl—%]Jrl) . wMjw)Mflo
w,j=

and w,; := e is the M-th primitive root of unity.

This version of the DFT allows us to consider a frequency range {— [ %] +1,..., L%J} centered around O instead of the usual
non-negative frequencies {0,...,N —1}. We will always assume that we can evaluate the input function f at all necessary points,
but that the occurring frequencies and the Fourier coefficients are not known. For any M € N, we denote by A,, the M-length
vector consisting of equidistant samples of f,

Ay = (O = (1 (ZMﬂ))j:l . M

The basic idea of the algorithm is to apply the DFT to several vectors of this type with lengths that are small compared to the
bandwidth N and to thus obtain a method with a runtime that is faster than the O(N log N) runtime of the FFT.
From now on we denote by p;, [ €N, the [-th natural prime number. Additionally, we let p, = 1 for inductive purposes.
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2.2 Reconstruction Procedure for One Frequency

We begin by sketching the ideas of Algorithm 2 in [15] that are required to reconstruct a 27t-periodic input function f : [0,27t] — C
with short frequency support whose length is bounded by B. First we consider a function with only a single energetic frequency
we {— [%] +1,..., L%J} and its Fourier coefficient c,, € C\{0},

f(x)=c, -e*~.
Thus, f is completely determined if we can reconstruct w and c,,. Applying the DFT to the vector A,; of M < N equidistant
samples of f yields that

. 1 M=l —2rijl 2mijew C = j(1—w)
Au= 37 27 -pe =05 ol
j=0 =
Cess ifl=w mod M, { [M-| [MJ}
_ lei—|—=—|[+1,....,] = |;- 2
{0, otherwise, v 2 L2 v

Hence, A,, has exactly one nonzero entry, namely the Fourier coefficient corresponding to w, and its index is the residue of w

modulo M:
2n

— 1 . . ~
Ay(w mod M)=c, = o J c,e' " e dx = f(w).
m
0

Consequently, (2) gives us the value of the Fourier coefficient c,, and the residue of w modulo M without actually knowing either.
If we compute the DFTs of several such vectors, we obtain a system of simultaneous congruencies which can, under certain
conditions, be solved with the Chinese Remainder Theorem (see [18], ch. I, §4).

Theorem 2.1 (Chinese Remainder Theorem (CRT)). Let M, ..., M, be pairwise relatively prime integers and N < l_[le1 M,. Then
there exists a unique solution modulo N of the system of simultaneous congruencies

x =r; mod M,

x =r, mod M.

The unique solution of such a system can be computed in (D(ZZL:1 log M;) time.

Hence, if K,; is known for enough pairwise relatively prime moduli M; < N, l € {1,...,L}, with N < l_[lel M, the CRT
implies that we can uniquely recover the frequency w. The corresponding Fourier coefficient c,, is already given by (2) as

Ay, (0 mod M))=c, Vle{l,...,L}.

This means that, instead of computing the DFT of length N of K;, it suffices to calculate L DFTs of length M; and reconstruct w
from its residues modulo the M.

Example 2.1. Let f: [0,21t] = C, f(x) = ¢"2!%* with bandwidth N = 1000. According to the CRT w will be uniquely determined
modulo N by its residues modulo 10,11 and 13. Locating the nonzero entries of A;,,A;; and A;5, we find that

Ap(0)=1 = w=0mod 10,
X;(l):l = w=1mod 11 and
As(2)=1 = w=2mod 13.

Now we can recover w from its residues,

w =0 mod 10 = w=10a=1 mod 11
= a=10mod 11 = a=11b+10
= w=10-(11b+10) = w=110b+100=2 mod 13
= b=1mod 13 = b=13c+1
= w=110-(13c+1)+100 = =210 mod 1430

for some a, b,c € Z. Since we have w € {— [%] +1,..., [%J} = {—499,...,500}, we find that v = 210. The Fourier coefficient
c,, is given by (2) as L
€, =A10(0)=1.

For this computation three DFTs of length 10, 11 and 13 were necessary; hence only 34 samples instead of N = 1000 samples of
f were used. Moreover, as there also exist fast algorithms for DFTs of vectors of arbitrary length (see, e.g., [5, 26, 7]), the three
DFTs can be computed in 0(213:1 M, log M) time, instead of calculating one DFT with complexity O(N log N). The frequency
reconstruction needs (’)(213:1 log M;) arithmetic operations, which is insignificant compared to the costs of the computation of
the DFTs.

However, as soon as the considered function has more than one energetic frequency, their residues can coincide modulo
various integers, which means that in the case of a B-sparse function the moduli M; cannot be chosen arbitrarily.
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2.3 Reconstruction Procedure for Several Frequencies

Let us now examine a 27m-periodic function f : [0,27n] — C with B distinct frequencies wy, ..., w; € {— [%] +1,..., I_%VJ} and
their Fourier coefficients c,,,,...,¢,, € C\{0},

B
JOED WML
j=1

Since all frequencies are distinct, there exists an s € N such that the frequency residues modulo s do not coincide. This motivated
the use of the notion of separation in [15].

Definition 2.1 (Separation). Lets and B € N and wy, ..., wy € Z be distinct. Then s separates the integers ws, ..., wg if
w;mod s#w; mods Vj,le{l,...,B}, j£L

We assume for the moment that such an s is known. If we apply the DFT to the vector A, of s equidistant samples of f from
(1), we find with the linearity of the DFT that

c ifl = w; mod s,

(,{)17

An={: 1 Vle{—[£1+1,...,[iJ}. 3
Cop» =y mod s, 2 2
0, otherwise,

Hence, 1/&: has exactly B nonzero entries and their indices are the residues of the w; modulo s, as they cannot coincide due to the
separation property of s. However, we also obtain from (3) that, if the Fourier coefficients of some of the frequencies are equal,
we cannot uniquely match the residues modulo s to the frequencies.

In order to apply the CRT for the reconstruction of w;,...,wg, we have to choose the moduli in a way that allows us to
efficiently compute the residues of the frequencies. For this we can use that for all p € N and a, b € Z it holds that

(a=bmodps = a=bmods) < (aZbmodps < a#b mods). 4

Consequently, if s separates the frequencies w;, ..., wg, so does ps for all p € N, which means that we can generate infinitely
many separating natural numbers. However, the ps are of course not pairwise relatively prime anymore. Instead, we use the
residues modulo the p, choosing them such that the CRT holds for them and s. Assuming that the residues modulo ps are known,
we have

a mod p =(a mod ps) mod p Va€eZ, 5)

and can recover the frequencies from their residues modulo the p and s. The simplest way to ensure the prerequisites of the CRT
is to take the L smallest prime numbers ¢4, ..., t; that are relatively prime to s such that

-

-1 L
s- t; <N <s- t;, ged(t;,s)=1 Vie{l,...,L}.
1=1 1=1

We show now how the residues modulo t;s can be computed efficiently. In order to simplify the notation, we just consider an
arbitrary prime p and the frequency w;, but the same procedure works for all primes t; and all energetic w;. From (3) we know
that L N

A,(w; mod ps) =c,, =A(w; mod s),
so the residue of w; modulo ps can be found by comparison with its residue modulo s. Set r, := w; mod s. Then w; is of the

form
w,=ryta-s

for an a € Z, and its residue modulo ps satisfies
w; mod ps = (ry+as) mod ps =1, +(a mod p)-s=:ry+ by, s 6)

for by, :=a mod p € {0,...,p—1}. Thus there are only p possibilities for the residue of w; modulo ps. Recall that due to the
separation property of s we have

-mods Vje{2,...,B}.

w; mod s # w;

Then
(w;+bs) mod s # w; mods Vje€{2,...,B},
and therefore (4) yields that
(wq + bs) mod ps # w; mod ps Vj€{2,...,B}

for all b € {0,...,p — 1}. Consequently, none of the p possible values w; + bs for the residue of w; modulo ps from (6) can
coincide with the residue of another energetic frequency w; modulo ps for j # 1. Exactly one of the p values A, (r, + bs), where
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be{0,...,p—1}, is not zero but equal to A, (r,) = C,,; hence we can determine w; mod ps by comparing A,(r,) and KP\S(rO +bs)
for all possible values of b,

w; mod ps=ry+ by, s

54

A, (ro) — A (ro + bs)| - )

A (ro) = Aps(ro + by '5)| 0 {gnir;—n

Having found the residue of w; modulo ps from (7), its residue modulo p can be calculated with the help of (5). After computing
the residues modulo all t;, we can uniquely reconstruct w, from its residues modulo s, t;, ..., t;. Since s separates all occurring
frequencies, the Fourier coefficient c,,, is given by (3) as

Cory =A (w, mod s).

The remaining frequencies and their coefficients can be found analogously.

3 Recovery of Functions with Short Frequency Support

So far we just assumed that an s that separates all energetic frequencies is known. However, for arbitrary B-sparse functions, as
in [15], this is impossible. With some combinatorial constructions one can guarantee that at least more than half of K integers
s1,--+,Sg, satisfying certain additional properties, separate all energetic frequencies, and apply median techniques to find the
correct frequencies and coefficient estimates. In the case of functions with short frequency support, though, this approach can be
simplified.

3.1 Algorithm for Functions with Short Frequency Support

Having recalled the ideas of Algorithm 2 in [15] that are necessary for our setting, we can now consider functions of the form

-]

—1
=D copay €,

J

Il
<)

where all energetic frequencies are contained in the B-length interval {9, ..., w; +B—1}. Then we already know that B separates
all of them. In the reconstruction procedure outlined in §2.3 the moduli we used were the L smallest primes t; that do not divide
BwithN <B- ]_LLzl t;. To simplify the estimation of the runtime and sample bounds, and to avoid collision with the ¢;, we set s
as the smallest power of 2 that is greater than B,

s:=2% where a:=|log,B|+1.

Then t,,...,t; can be chosen as the L smallest odd primes satisfying

L—-1 L
B~Htl<NSB-!—[tl, )
=1 =1

and, for inductive purposes, we set t, := 1. As s is greater than B, it still separates the B energetic frequencies w;, w;+1,...,w;+
B — 1. Furthermore, s is relatively prime to all small odd primes t;,...,t;, so we can indeed uniquely recover the frequencies
from their residues modulo s, t, ..., t;.

Remark 1. Using the reconstruction procedure with s is just applying Algorithm 2 in [15] to the first element of a B-majority
selective collection of sets, #, whose elements do not have to be primes (see [15], §3). The combinatorial considerations
necessary for the general case of B energetic frequencies are rendered redundant by the fact that for functions with short frequency
support of length B we always find an s = 2* > B that separates all energetic frequencies, so we do not require s to separate any
B-element subset of {—[%] +1,..., L%J} anymore.

Due to the block structure of the energetic frequencies it is enough to perform the reconstruction procedure for a single
energetic frequency ¢ and find the remaining ones by examining whether the absolute values of the Fourier coefficients of the
2B —1 frequencies in {& —B+1,&—B+2,...,& + B —1} are significantly large. All of the at most B energetic frequencies have
to be contained in this set, as the distance of any energetic frequency w to & can be at most B— 1. The Fourier coefficients are
given without any further computation, since they are just the significantly large entries of Ktl\s . The 2B —1 possibly energetic,
consecutive frequencies will not be distinct modulo s, but they are separated by t,s = 3s, so their Fourier coefficients are given by
(3) as

Co =Z3\S(w mod 3s)

forall we {&d—B+1,...,&+B—1}. The frequency & can be obtained from the index of the largest magnitude entry and the
residues modulo the t;, as the indices of all significantly large entries of KS are the residues of the energetic frequencies modulo s.
We summarize this procedure in Algorithm 1, which finds the energetic frequencies and the Fourier coefficients of a function
f with bandwidth N and short frequency support length bounded by B.
The function extended_gcd in line 16 finds the greatest common divisor g of two integers a and b using the extended
Euclidean algorithm, as well as two integers u and v satisfying Bézout’s identity,

g =gcd(a, b) =ua+vb.

In Algorithm 1 we always have g =1 by choice of s and t4,...,t;.
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Algorithm 1 Algorithm for Functions with Short Frequency Support

Input: 27-periodic function f, integers B < N, accuracy level ¢.
Output: The set R of at most B energetic frequencies of f and the vector x of estimates for their Fourier coefficients.

2

11:
12:

13:
14:
15:
16:
17:
18:
19:
20:

21:
22:
23:
24:
25:
26:

Initialize R « @

1
2: Find L and the smallest odd primes t,,...,t; s.t. B- ]_LL;1 t;<N<B- ]_LL:1 t.
3:
4
5

Set s := 2%, where a :=|log, B|+ 1.

: for [ from 0 to L do

: tys—1
2mj
Ags < (f (F))J’:o
Atls — DFT[Atls]
: end for
IDENTIFICATION OF ONE OF THE ENERGETIC FREQUENCIES
. Ty < argmax |AS 6] )|. > & =r, mod s for an energetic frequency &.

Jj€{0,...,s—1}

: for [ from 1 to L do
10:

bpin < argmin ( As(ro) — A (b s +1p) )
be{o,...,t;—1}
1 (b * s + 1) mod ¢; > =r; mod t.

end for

RECONSTRUCTION OF & FROM ITS RESIDUES
Set=0,®=ryand n=s.
while ! < L do

Setl=1+1
(g,u,v) « extended_gcd(n, t;) > g =1 by choice of s, tq,...,t;.
d=n(((r—&) -u) mod t))+ &
n= tl ‘n
end while

Set & = & mod n and shift & into the range {—[%] +1,..., L%J}, since N < n.
IDENTIFICATION OF THE REMAINING FREQUENCIES AND COEFFICIENTS
forwf/ro\mc?)—B+1 to@+B—1do
if |A, ;(w mod t;5)| > ¢ then
R—RU{w}
x(w) <—Z3\s(w mod 3s)
end if
end for
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3.2 Runtime and Sample Bounds

Proving runtime and sample bounds for Algorithm 1 requires some preliminary results about the occurring sums of prime numbers.
Recall that we have to compute DFTs of length t;s for alll € {0, ..., L}, so we have to estimate the number of necessary samples,

L
>, ©)
=0

of the input function, and the runtime of the computation of the DFTs,

L L L
O(Z tlslog(tls)) = O(sZtl logt, +slogsZtl). (10)
1=0

1=0 =0

First we estimate the largest of the small odd primes, t;. The following result about the smallest M primes p;,..., py, including
p1 = 2, has been shown in [17], Lemma 4.

Lemma 3.1. Denote by p, the l-th prime and let B< N € N. If M € N satisfies

there exists a constant a > 0 with

N
=log—=+0| —————
P =108 B ’ exp (a,/loglog %)

Lemma 3.2. Denote by p, the l-th prime and by t; the l-th odd prime. Let B < N € N. If L € N satisfies

there exists a constant a > 0 with

2N
t, =log?+(9

Proof. We have that

By Lemma 3.1 there exists an a > 0 such that

2N
thpL+1=log?+O — ZO(logE).
exp (a loglog—)

Further, we recall Lemma 5 and 6 in [17] about general sums of prime numbers.

Lemma 3.3. For all R € N it holds that
R? R?
> p=gmro( L),
2logR log“R

p<R
p prime

R? R?
logp=—+0 :
Z plogp 2 (logR)

P<R
p prime

and

We can now estimate the sums in (9) and (10).
Lemma 3.4. Denote by t; the l-th odd prime. Let B< N € Nand L € N such that

Then we have

L log2 ¥ L N
Ztlz(’)(&) and z:tllogtl:O(log2 E)
1=0

= loglog%
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Proof. For the first claim we apply the first result from Lemma 3.3 and find

S S p=—ttsof L
L= p_2logtL '

= p<n log2 t;
p prime
Using the estimate
log %N . 2N
t, =log—+0 , with A=exp| a\|loglog— |,
A B
from Lemma 3.2, we obtain
28 \\2 0z 2¥ \\2
L (log%-k(’)(logf )) (1og%+o(1 che: )
Z tl = log 2N +0 log 2N
1=0 210g(log% +(9( 0 )) log? (log% +(9( 0 ))
( log> &
log log%

For the second claim we employ the second result from Lemma 3.3, which yields

> 2 Lok
t;logt; < plogpz—-i—(’)( )
= 2 logt;

psty
p prime
2N \\2 0z 2V \\2
(log%N +O(—1°gAB )) (log%N + O(l gAB ))
= 2 +O 1 2N
log (log% +O( o ))
N
=0(1 2—).
(Og B

Combining all of these estimates, we can prove the following main result.

Theorem 3.5. Let B< N €N, w,; € {—{%] +1,..., L%J —B+ 1} and f : [0,271t] — C be a function with short frequency support
length bounded by B and bandwidth N, i.e.,

[>~]

—1
FO) =D sy e,

j
Then Algorithm 1 returns all energetic frequencies and Fourier coefficients of f in

log? ¥
(@] (B logB - g—BN)
loglog &

log* ¥
O(B~g—BN).
loglog %

Proof. Itis evident from the construction of Algorithm 1 that it returns the correct frequencies and Fourier coefficients, disregarding
numerical errors. We can now calculate the runtimes of the different parts of Algorithm 1 using the observations made above.
The computational costs necessary to compute the small odd primes t;,...,t; can be disregarded. Even if we choose a
bandwidth N = 10%° and a support length B = 1, the largest required prime, t, = O(log %), is 31. Usually one would consider
greater support lengths, which means that even fewer t; sufficed. Hence, the t; can easily be found from precomputed lists of
small primes in O(log %’) time.
Since FFT algorithms with runtime O(M log M) also exist for vectors of arbitrary length M (see [5, 26, 7]), the DFTs in lines

4 to 7 require
L L L
o (Z t;s log(tls)) =0 (s Z t;logt; +slogsz tl)
1=0

=0 =0
arithmetical operations. With Lemma 3.4 and s = O(B) we obtain

L 2 N

E : N log” 7
O( tlslog(tls)) :O(BIOgZE -‘rBlogB —Eﬂ)

=0 3

loglog
=0 (Blog2 N (1 + IOLBN))
B loglog 3
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Finding the largest magnitude entry of A, in line 8 needs O(s) operations. The computation of the residues of an energetic

frequency in lines 9 to 12 has a complexity of
L 2N
log® &
O(Zfl) = O(g—BN)
= loglog 3

The runtime of the extended Euclidean algorithm extended_gcd(n, t;) in line 16 can be proven to be O(logt;), since t; <n
for all I (see [6], ch. 31.2). Therefore lines 13 to 20 require (Q(ZIL:1 log t;) operations, which is insignificant compared to the
runtime of lines 9 to 12. Finally, identifying the remaining frequencies in lines 21 to 26 has a runtime of O(B).

Combining all these results yields an overall arithmetical complexity of

10) (Z tlslog(tls)) +0O(E)+0 (Z tl) +0(B)
=0

=0

N logB N
=O(Blog2—(l+LN)+B+log—+B)
B loglog 3 B

log® &
=0 (BlogB . g—BN)
loglog 3

Further, we obtain with Lemma 3.4 that Algorithm 1 has a sampling complexity of

L log* ¥
se=ofs ).

4 Numerical Results

Hereafter, we present some numerical results regarding the runtime of Algorithm 1 and its performance for noisy input data.
Due to the fact that we find the energetic frequency & in line 8 by choosing the index of the element of 1/&\5 that has the largest
absolute value, we always correctly identify an interval of length 2B — 1 centered around ¢ that contains the frequency support,
as long as the noise does not dominate the original signal. Hence, our algorithm is still stable for noisy input data.

Additionally, we will compare it to the deterministic sparse inverse FFT algorithm for noisy input data presented by Plonka
and Wannenwetsch in [24] (Algorithm 2), which recovers a vector x € €2’ with short support length B from its Fourier transform
% by considering periodizations x¥) € C? of x,

N 21
X(j):( Z Xk+2jl) forje{[long]+1,...,J}.
=0 k=0

For noisy input data this can be achieved with an arithmetical complexity of O(BlogN), where O(B + log N) samples of the
input vector are being used. However, their approach requires that the length of the input vector x is a power of 2, whereas
our algorithm works for arbitrary bandwidths N of f. In order to be able to compare these two algorithms, we always consider
bandwidths that are of the form N = 27 in the following numerical experiments. Both algorithms have been implemented in
MATLAB, and the code is freely available in [4, 28].

Further, we want to compare our method to MATLAB’s £ft function, which is a fast and highly optimized implementation of
the fast Fourier transform, based on the FFTW library (see [19, 8]).

For sake of completeness we also compute the average runtimes of Algorithm 2 in [15] from numeric experiments for the short
support lengths B =10 and B = 100. As our method is essentially a simplification of that algorithm, using L 4+ 1 DFTs of length
t;s each instead of K(L + 1) DFTs of length ,5;, where t, ~ f;, and the separating primes satisfy §; = O(s) and s; < -+ < sy, it
will always be significantly faster than Algorithm 2 in [15], which is also evident by consideration of their theoretical runtimes of

log® ¥
o (B logB - g—BN)
loglog 7
of Algorithm 1 and

o (BZ log® N log*(BlogN)log” & )
log®B loglog%

of Algorithm 2 in [15].

Figure 1 shows the average runtimes of Algorithm 1, Algorithm 2 introduced by Plonka and Wannenwetsch in [24], Algorithm
2 presented by Iwen in [15] and MATLAB’s ££t for 100 random input functions or vectors, where the absolute values of the real
and imaginary parts of the Fourier coefficients are bounded by 10.

Of course any comparison of the implementation of the first three algorithms with the highly optimized implementation fft
of the FFT must be flawed; however, we note that Algorithm 1 is much faster than both £ft and Algorithm 2 in [24] for support
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Figure 1: Average runtimes of Algorithm 1, Algorithm 2 in [24], Algorithm 2 in [15] and MATLAB’s £t for 100 random input functions with
support length B, bandwidth N = 22° and threshold ¢ = 107,

lengths up to B = 1000 ~ +/N and that Algorithm 2 in [24] is as fast as £ft for the same short support lengths. For greater
support lengths both algorithms for functions with short frequency support perform much slower than £ft, whose runtime
O(N logN) is independent of the support length, whereas the short support algorithms both have runtimes that are almost linear
or linear in B. Additionally, it can be seen that the runtime of Algorithm 1 increases much faster in the support length B than the
runtime of Algorithm 2 in [24]. As expected, even for a support of length B = 100 the runtime of Algorithm 2 in [15] is several
orders of magnitude greater than the runtime of any of the other considered algorithms, and it also increases much faster in B.
Due to its very large runtime we will only consider the sampling complexity of this algorithm and not its performance for noisy
input data.

Next we examine the quality of the frequency and coefficient reconstructions for noisy input data. For Algorithm 1 and £ft
we assume that the we can only sample a 27-periodic function g = f + 7, where f has exact short support of length B, i.e., c, =0
if w is not contained in the support, and n: [0,27] — C satisfies that its vector of Fourier coefficients ¢(n) € CV is uniformly
distributed noise. For Algorithm 2 in [24] we create disturbed Fourier data y € CN by adding uniform noise ¢ € CN to X,

y:=X+e.
We measure the noise with the SNR value,
c X
SnR = 20-Togy, U o4 SR i 20 1og,, IEle.
lletmll llell,

Recall that Algorithm 1 reconstructs the Fourier coefficients from function values, and that £ft can be applied to the vector of N
equidistantly chosen function values. Algorithm 2 in [24], on the other hand, recovers a vector from its Fourier transform, which
means that their outputs are contained in different domains. Figures 2 and 3 depict the average reconstruction errors

llx—x'1l,

N
where x denotes the original Fourier transform or input vector, respectively, and x’ the reconstruction by the corresponding
algorithm applied to noisy input data for support lengths B =100 and B = 1000. While the algorithm presented in this paper
does not reconstruct the input function quite as well as Algorithm 2 in [24], whose reconstruction error is about half an order of
magnitude smaller, it still returns results with slightly smaller reconstruction errors than £ft for both support lengths B = 100
and B = 1000.

Another aspect we want to investigate are the sampling requirements. If obtaining samples of f takes a lot of computational
effort, reducing the number of samples might be more important than reducing the runtime of the algorithm. Figure 4 shows the
ratio between the number of used samples and the bandwidth N = 2%° for varying support lengths for Algorithm 1, Algorithm 2
in [24], Algorithm 2 in [15] and fft.

One can see that Algorithm 1 is efficient from a sampling point of view for support lengths B that are up to one order of
magnitude smaller than the bandwidth, as in that case less than the N samples necessary for an FFT are used. Algorithm 1 has a
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Figure 2: Average reconstruction errors [|x—x'||, /N of Algorithm 1, Algorithm 2 in [24] and £t for 100 random input functions with uniformly
distributed noise, support length B =100, N =220 and ¢ = 107*.
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Figure 3: Average reconstruction errors ||[x—x’||4/N of Algorithm 1, Algorithm 2 in [24] and ££t for 100 random input functions with uniformly
distributed noise, support length B = 1000, N = 220 and ¢ = 107%.

samples per bandwidth ratio that is, even for B = 100, several orders of magnitude smaller than the one of Algorithm 2 in [15].
This is not surprising, since our method uses L + 1 vectors that are essentially a subset of the K(L + 1) sampling vectors for the
latter method, which already requires more than N samples for a function with sparsity 10 for N = 22°,

If one just compares the number of used samples, the samples per bandwidth ratio of Algorithm 1 is even an order of
magnitude greater than the one of Algorithm 2 in [24]. However, even though that algorithm only uses a small number of
samples, it is apriori not known which entries of the input vector will be required, as they are found adaptively. Hence, Algorithm
2 in [24] has to be able to access the complete N-length Fourier data vector ¥ as an input. Algorithm 1, on the other hand, uses
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Figure 4: Number of used samples per bandwidth N = 220 for varying support lengths B for Algorithm 1, Algorithm 2 in [24], Algorithm 2 in
[15] and fft.

all Zf:o t;s samples of f, but we can compute apriori from the bound B on the support length and the bandwidth N at which
2mj

points of the form 7. the function f has to be evaluated.

5 Conclusion

In this paper we developed a deterministic fast discrete Fourier transform algorithm for the recovery of 2r-periodic functions
with short frequency support. However, there are still some open questions. One could investigate whether related techniques
can be used for other types of sparse input functions, e.g., functions where the energetic frequencies are contained in 2, 3 or n
disjoint intervals of length B.

One of the reviewers suggested a different way of adapting Algorithm 2 in [15] for input functions with short support, namely
to just use K separating primes 2B < s; < - -+ < s for which the CRT can be applied, instead of choosing one separating s and the
small primes ¢4,..., t;. Utilizing the short frequency support, it appears that this approach would have a runtime of

B+1logN)logN B+1logN B +1logN B+1logN
(’)(( +0g2)0g log( +1log )log( +logN ( +log ))),
log”B logB logB logB

while using

B+1logN)logN B+1logN
0(( ogz)og log( 0g ))
log“B logB
samples of the input function, which is even faster and requires fewer samples than the algorithm proposed herein. This lower

sampling complexity could even lead to samples per bandwidth ratios that are smaller than the ones obtained for Algorithm 2 in
[24]. We will investigate this method and possible implementations for noisy input data in the future.
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