Dolomites Research Notes on Approximation

Identities for a derivation operator and their applications

Mirosław Baran ${ }^{a} \cdot$ Agnieszka Kowalska $^{b} \cdot$ Beata Milówka $^{c} \cdot$ Paweł Ozorka d

Abstract

Let \mathcal{A} be a complex commutative algebra with unity 1 and let $D: \mathcal{A} \longrightarrow \mathcal{A}$ be a derivation operator (a linear operator with the property $D(a b)=b D(a)+a D(b))$. Then for arbitrary $a, b \in \mathcal{A}$ and for all positive integers k we have the following identity

$$
\frac{1}{k!} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j} a^{j} D^{(k)}\left(b a^{k-j}\right)=b D(a)^{k},
$$

where $D^{(k)}$ is k-th iterate of D.
In the paper we consider the algebra $\mathbb{P}\left(\mathbb{C}^{N}\right)$ of polynomials in N complex variables and D a derivation operator related to the A. Markov type inequality $\|D P\| \leq M(\operatorname{deg} P)^{m}\|P\|$. Using the above identity we introduce V. Markov type inequality $\left\|D^{(k)} P\right\| \leq A^{k}(\operatorname{deg} P)^{k m}\left(\frac{1}{k!}\right)^{m-1}\|P\|$. We give a nontrivial example of the A. Markov inequality in the normed algebra where the V. Markov type inequality is not fulfilled. It is also shown that the Markov type condition

$$
\left\|\frac{\partial}{\partial z_{j}} P\right\|_{E} \leq M(\operatorname{deg} P)^{m}\|P\|_{E}, j=1, \ldots N, P \in \mathbb{P}\left(\mathbb{C}^{N}\right)
$$

with positive constants M and m is equivalent to the following

$$
\left\|\sum_{j=1}^{N} \frac{\partial^{2 l} P}{\partial z_{j}^{2 l}}\right\|_{E} \leq M_{l}^{\prime}(\operatorname{deg} P)^{2 l m}\|P\|_{E}, P \in \mathbb{P}\left(\mathbb{C}^{N}\right)
$$

with some positive constant M_{l}^{\prime}. Here $E \subset \mathbb{R}^{N}$ and $l \in \mathbb{Z}_{+}$is fixed.

1 Introduction

Denote by $\mathbb{P}\left(\mathbb{K}^{N}\right)$ the vector space of polynomials in N variables with coefficients in the field $\mathbb{K}(\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C})$. We set $\mathbb{P}_{n}\left(\mathbb{K}^{N}\right)=\left\{P \in \mathbb{P}\left(\mathbb{K}^{N}\right): \operatorname{deg} P \leq n\right\}$. By 1 we mean the constant polynomial $P=1$. Let $\mathbb{P}\left(j, \mathbb{K}^{N-1}\right)$ (resp. $\mathbb{P}_{n}\left(j, \mathbb{K}^{N-1}\right)$) be the subspace of $\mathbb{P}\left(\mathbb{K}^{N}\right)$ (resp. $\mathbb{P}_{n}\left(\mathbb{K}^{N}\right)$) containing only those polynomials that are independent of variable $z_{j}, j=1, \ldots, N$. In the sequel we shall consider a number of norms (and seminorms) in $\mathbb{P}\left(\mathbb{C}^{N}\right)$.

Let us recall that a norm (seminorm) $\|\cdot\|$ is submultiplicative if for every $P, Q \in \mathbb{P}\left(\mathbb{C}^{N}\right),\|P Q\| \leq\|P\| \cdot\|Q\|$ and $\|\mathbf{1}\|=1$. A norm (seminorm) ρ is spectral if for any $P \in \mathbb{P}\left(\mathbb{C}^{N}\right)$,

$$
\rho\left(P^{k}\right)=\rho(P)^{k}, k \geq 1 .
$$

We shall be interested in getting lower estimates for constants M_{k} in the inequality of type $\left\|P^{(k)}\right\| \leq M_{k}(\operatorname{deg} P)^{m k}\|P\|, P \in \mathbb{P}(\mathbb{C})$ and its generalizations. It will be possible for special kinds of norms that satisfy some additional conditions.

A norm (seminorm) $\|\cdot\|$ is factorizable if there exists a submultiplicative norm (seminorm) $\|\cdot\|_{0}$ such that

$$
\|P Q\| \leq\|P\|_{0}\|Q\|, P, Q \in \mathbb{P}\left(\mathbb{K}^{N}\right) .
$$

The optimal $\|\cdot\|_{0}$ is given by the formula

$$
\|P\|_{0}=\sup \left\{\|P Q\|: Q \in \mathbb{P}\left(\mathbb{C}^{N}\right),\|Q\|=1\right\}
$$

A norm $\|\cdot\|$ is factorizable if and only if there exist positive constants C_{l} such that for any $P \in \mathbb{P}\left(\mathbb{K}^{N}\right)$ we have $\left\|x_{l} P\right\| \leq C_{l}\|P\|$, $l=1, \ldots, N$ (this means continuity of linear mappings $P \longrightarrow x_{l} P$, c.f. [7]).
Example 1.1. 1) Each submultiplicative norm (seminorm) is factorizable.
2) A supremum norm is factorizable.

[^0]3) If $\|\cdot\|$ is a submultiplicative norm (seminorm) then, as a special case of known facts, $\rho(P)=\lim _{n \rightarrow \infty}\left\|P^{n}\right\|^{1 / n}=\inf _{n \geq 1}\left\|P^{n}\right\|^{1 / n}$ is a spectral seminorm (often it is a norm).
4) If E is a bounded Borel subset of \mathbb{C}^{N}, μ is a probability measure on E then for each $p \geq 1$ we have the factorizable norm $\|P\|_{p}=\left(\int_{E}|P|^{p} d \mu\right)^{1 / p}$.
5) We define $\|P\|=\sum_{j=0}^{\infty} \alpha_{j} \frac{\left|P^{(j)}(0)\right|}{j!}$ for $P \in \mathbb{P}(\mathbb{K})$, where $\alpha_{j}=1$ for any even integer j and $\left(\alpha_{2 k+1}\right)_{k=0}^{\infty}$ is some unbounded sequence. Then for every $k \in \mathbb{Z}_{+}$, we have $\left\|x^{2 k}\right\|=1$ and $\left\|x^{2 k-1}\right\|=\alpha_{2 k-1}$. So there is no constant C such that for every $k \in \mathbb{Z}_{+},\left\|x^{2 k+1}\right\| \leq C\left\|x^{2 k}\right\|$, thus this norm is not factorizable.
Let $m>0$. A compact subset E of \mathbb{K}^{N} is called a Markov set with the exponent m if for every $P \in \mathbb{P}\left(\mathbb{C}^{N}\right)$ the following Markov inequality holds:
\[

$$
\begin{equation*}
\left\|\frac{\partial}{\partial x_{j}} P\right\|_{E} \leq M(\operatorname{deg} P)^{m}\|P\|_{E}, \text { for } j=1, \ldots, N \tag{m}
\end{equation*}
$$

\]

where $\|f\|_{E}=\max \{|f(x)|: x \in E\}$ and M is independent of P. The condition $(\mathcal{M}(m))$ is equivalent to the existence of N linearly independent vectors v_{1}, \ldots, v_{N} and positive constants $m_{j}, M_{j}, j=1, \ldots, N$ such that $m=\max _{1 \leq j \leq N} m_{j}$ and

$$
\left\|D_{v_{j}} P\right\|_{E} \leq M_{j}(\operatorname{deg} P)^{m_{j}}\|P\|_{E} \text { for } j=1, \ldots, N
$$

If E is such a set, we shall write $E \in \mathcal{M}(m)$.
A Markov set fulfilling $(\mathcal{M}(m))$ will be called an A. Markov set or a set with the A. Markov property. This is to distinguish this class of sets from another subclass formed by sets satisfying the V. Markov property, i.e. there exist positive constants M, m such that for all $P \in \mathbb{P}_{n}\left(\mathbb{C}^{N}\right)$ we have

$$
\left\|D^{\alpha} P\right\|_{E} \leq M^{|\alpha|}\left(\frac{1}{|\alpha|!}\right)^{m-1} n^{|\alpha| m}\|P\|_{E}
$$

(in the case $N=1$ the above condition is equivalent to the existence of a constant M_{1} such that $\left\|P^{(k)}\right\|_{E} \leq M_{1}^{k} k!\binom{n}{k}^{m}\|P\|_{E}$.)
If $E=[-1,1] \subset \mathbb{C}$, then the A. Markov inequality holds with $M=1$ and $m=2$. Moreover, if $E=\overline{\mathbb{D}}$ then the A. Markov inequality is satisfied with $m=M=1$ and these constants are the best possible: for each n and $P=T_{n}$, where T_{n} is the n - th Chebyshev polynomial of the first kind, we have $\left\|T_{n}\right\|_{[-1,1]}=1, T_{n}^{\prime}(1)=n^{2}$ and for $P_{n}(z)=z^{n}$ we get $\left\|P_{n}\right\|_{\overline{\mathbb{D}}}=1,\left\|P_{n}^{\prime}\right\|_{\overline{\mathbb{D}}}=n$. Furthermore, the famous V. Markov inequality $\left\|P^{(k)}\right\|_{[-1,1]} \leq T_{\operatorname{deg} P}^{(k)}(1)\|P\|_{[-1,1]}$ implies the V. Markov property for the interval $[-1,1]$. The V . Markov property for the unit disk is easily seen.

Let us remark that applying classical A. Markov inequality k times we obtain $\left\|P^{(k)}\right\|_{[-1,1]} \leq(n(n-1) \cdots(n-k+1))^{2}\|P\|_{[-1,1]}, P \in$ $\mathbb{P}_{n}(\mathbb{C})$, which is, by the V. Markov inequality, sharp. But it gives no more useful information.

The Markov exponent of a A. Markov set E is by definition, the best exponent in $(\mathcal{M}(s))$, i.e., $m(E):=\inf \{s>0: E \in \mathcal{M}(s)\}$. If E is not an A. Markov set, we put $m(E):=\infty$. Similarly we define the Markov exponent with respect to other norms. In the one-dimensional case the constants M and m are related to certain lower bounds of the logarithmic capacity of E (cf. [10],[11]).

The importance of the A. Markov property was explained by W. Pleśniak in [22] (cf. [23], see also [5]). The notion of the Markov exponent was introduced in [9] and we refer the reader to this paper for further properties of $m(E)$ (see also [4] and [19]). The importance of the V. Markov property is a consequence of the surprising fact, proved by M. Baran and L. Białas-Cież that the V . Markov property with the exponent m is equivalent to the Hölder Continuity Property in \mathbb{C}^{N} of the Green function V_{E} with the exponent $\frac{1}{m}$ (see [2]).

We can also consider other norms for polynomials and consider A. Markov and V. Markov properties for these norms. In the next section we shall give a motivation for considering the V. Markov property as a minimal possible growth of the $k-t h$ derivatives.

If a norm $\|\cdot\|$ in $\mathbb{P}\left(\mathbb{K}^{N}\right)$ is fixed then for a multiindex $\alpha \in \mathbb{Z}_{+}^{N}$ we define

$$
\mathcal{M}_{n}(\alpha)=\sup \left\{\left\|D^{\alpha} P\right\|:\|P\|=1, \operatorname{deg} P \leq n\right\}
$$

and if this norm possesses the A . Markov property with respect to $\alpha=e_{l}$ with an exponent s_{l} then we define the Markov factors

$$
M_{k}\left(l, s_{l}\right)=\sup \left\{\left\|D^{k \alpha} P\right\| / n^{k s_{l}}:\|P\|=1, \operatorname{deg} P \leq n, n \geq 1\right\}
$$

In the case $N=1$ we shall simply write $M_{k}(s)$.
In the one dimensional case we can consider the Chebyshev polynomials with respect to a given norm $q=\|\cdot\|$ in $\mathbb{P}(\mathbb{C})$ and the Chebyshev constant.
Definition 1.1. Let $q=\|\cdot\|$ be a fixed norm (seminorm) in $\mathbb{P}(\mathbb{C})$. Define

$$
\begin{gathered}
t_{n}(q):=\inf \left\{\left\|x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}\right\|: a_{0}, \ldots, a_{n-1} \in \mathbb{C}\right\} \\
t(q):=\inf _{n \geq 1} t_{n}(q)^{1 / n}
\end{gathered}
$$

Then $t_{n}(q)$ is the $n-t h$ Chebyshev constant and $t(q)$ is the Chebyshev constant of q. Each monic polynomial T_{n} such that $\left\|T_{n}\right\|=t_{n}(q)$ will be called the $n-$ th Chebyshev polynomial of q. If P is a fixed polynomial in $\mathbb{P}(\mathbb{C})$ then we can define $t(P)=t\left(q_{P}\right)$, where $q_{p}(Q)=\|Q \circ P\|$.

In particular, $t(I)=t(q)$, where $I(z)=z$. The above definitions agree with the definition given by P. Halmos for the Chebyshev constant of an element a in a complete complex normed algebra \mathcal{A} (see [13]): we can consider $q(Q)=\|Q(a)\|$. Then it is known (see also [13]) that $t(a)=t(\sigma(a))$, where $\sigma(a)$ is the spectrum of a. Since $\sigma(a)$ is nonempty compact subset of \mathbb{C} it is well known that $t(\sigma(a))=C(\sigma(a))=d(\sigma(a))$, where $C(E)$ is the logarithmic capacity and $d(E)$ is the transfinite diameter of a compact set $E \subset \mathbb{C}$.

Let us observe that $t(P) \geq t(q)^{m}$ if P is a monic polynomial of degree m.
Now we consider the case $N>1$ and for $j=1, \ldots, N$ put

$$
t_{n}(j, q):=\inf \left\{\left\|x_{j}^{n}+a_{n-1} x_{j}^{n-1}+\cdots+a_{0}\right\|: a_{0}, \ldots, a_{n-1} \in \mathbb{P}_{n-1}\left(j, \mathbb{C}^{N-1}\right)\right\} .
$$

A polynomial P of the form $P=x_{j}^{n}+a_{n-1} x_{j}^{n-1}+\cdots+a_{0}$ with $a_{0}, \ldots, a_{n-1} \in \mathbb{P}_{n-1}\left(j, \mathbb{C}^{N-1}\right)$ will be called j-monic.

2 Identities for derivations of polynomials in complex algebras.

Let \mathcal{A} be a complex commutative algebra with unity 1 . Assume that a linear operator $D: \mathcal{A} \longrightarrow \mathcal{A}$ is a derivation, i.e., it satisfies $D(a b)=b D(a)+a D(b)$. This condition, known as the Leibniz rule, is equivalent to the equality $D\left(a^{2}\right)=2 a D(a)$. Denote by $D^{(k)}$ the k-th iterate of D, with $D^{(0)}=I d_{\mathcal{A}}$. A derivation D is locally nilpotent if for an arbitrary $a \in \mathcal{A}$ there exists $k \in \mathbb{Z}_{+}$such that $D^{(k)}(a)=0$. If D is locally nilpotent and $a \neq 0$ then we define $\operatorname{deg}_{D} a:=\max \left\{k \in \mathbb{Z}_{+}: D^{(k)} a \neq 0\right\}$.

If D is a derivation, we can easily get the well known Leibniz formula

$$
D^{(k)}(a b)=\sum_{j=0}^{k}\binom{k}{j} D^{(j)}(a) D^{(k-j)}(b),
$$

that is a generalization of the Leibniz rule for $k=1$. Very recently the following generalization of Leibniz rule was discovered (see [8] for its proof)

$$
\frac{1}{k!} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j} a^{j} D^{(k)}\left(b a^{k-j}\right)=b D(a)^{k} .
$$

A first version was given by Milówka $[18,19]$ in 2005 in the case $\mathcal{A}=\mathbb{P}(\mathbb{C}), D(P)=P^{\prime}, a=P, b=1$. During 7 years nobody has been interested in this deep result. In 2012 P. Ozorka found a general version (with $b=1$) of the Milówka identity and M. Baran observed that the Milówka identity implies a lower estimate for the k-th derivative of polynomials considered on planar A. Markov sets. It was a new beginning of the V. Markov type property, first considered by W. Pleśniak [21].

Let us note a special case of the above generalization of the Leibniz rule. Let $D P=v_{1} D_{1} P+\cdots+v_{N} D_{N} P$, where $P \in \mathbb{P}\left(\mathbb{C}^{N}\right), v_{j} \in$ $\mathbb{R}, v_{1}^{2}+\cdots+v_{N}^{2}=1$. Then we can write

$$
P(x)=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j}\langle x, v\rangle^{j} D^{(k)}\left(\langle x, v\rangle^{k-j} P(x)\right) .
$$

In particular,

$$
\begin{equation*}
P(x)=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j} x_{l}^{j} \frac{\partial^{k}}{\partial x_{l}^{k}}\left(x_{l}^{k-j} P(x)\right), l=1, \ldots, N . \tag{1}
\end{equation*}
$$

Proposition 2.1. Consider a fixed norm $q=\|\cdot\|$ in $\mathbb{P}\left(\mathbb{C}^{N}\right)$ and assume that there exist $l \in\{1, \ldots, N\}$ and $m>0$ such that for every $k \in \mathbb{N}$ there is a positive constant $M_{k}(l, m)$ such that $\left\|\frac{\partial^{k}}{\partial x_{l}^{k}}(Q)\right\| \leq M_{k}(l, m)(\operatorname{deg} Q)^{k m}\|Q\|$ for every $Q \in \mathbb{P}\left(\mathbb{C}^{N}\right)$. Then for the constants $M_{k}(l, m)$ we have

$$
M_{k}(l, m) \geq\|\mathbf{1}\| k!/\left(k^{k m} t_{k}(j, q)\right) \geq\|\mathbf{1}\| k!/\left(k^{k m}\left\|x_{l}^{k}\right\|\right) .
$$

Hence, if q is a factorizable norm with constants C_{j} then we have

$$
M_{k}(l, m) \geq B_{l}^{k}\left(\frac{1}{k!}\right)^{m-1}
$$

with $B_{l}=C_{l}^{-1} e^{-m}$. Thus $\inf _{k \geq 1}\left(k!^{m-1} M_{k}(l, m)\right)^{1 / k}>0$. Such a situation holds in the case $\|Q\|=\|Q\|_{p}=\left(\frac{1}{2} \int_{-1}^{1}|Q(t)|^{p} d t\right)^{1 / p}, p \geq 1$, where is was proved by G. Sroka [25], that $\sup _{k \geq 1}\left(k!M_{k}(2)\right)^{1 / k}<\infty$ (c.f. also [16],[15],[1] for Markov's property in L^{p} norms).

Proof. Applying the identity (1) to $\mathbf{1}$ (or a fact that for an l-monic polynomial P_{k} of degree $k,\left\|P_{k}^{(k)}\right\|=k!\|1\|$) get

$$
\|\mathbf{1}\| \leq \frac{M_{k}(l, m)}{k!} k^{k m} t_{k}(l, q) \leq \frac{M_{k}(l, m)}{k!} k^{k m}\left\|x_{l}^{k}\right\|
$$

and, if q is factorizable,

$$
\|\mathbf{1}\| \leq M_{k}(l, m) \frac{k^{k m}}{k!} C_{l}^{k}\|\mathbf{1}\| .
$$

Hence $M_{k}(l, m) \geq \frac{k!}{k^{k m}} C_{l}^{-k} \geq \frac{k!}{\left(k!e^{k}\right)^{m}} C_{l}^{-k}=\left(\frac{1}{k!}\right)^{m-1} B_{l}^{k}$.

A similar estimate can be obtained for the operator $D P=Q P^{\prime}$, where $P, Q \in \mathbb{P}(\mathbb{C}), \operatorname{deg} Q=s \geq 0$ (with the leading coefficient a_{s}) and a given factorizable norm $q=\|\cdot\|$.
Proposition 2.2. Consider a fixed factorizable norm $\|\cdot\|$ on $\mathbb{P}(\mathbb{C})$ with constant C and let $Q \in \mathbb{P}(\mathbb{C})$ be a given polynomial with $\operatorname{deg} Q=s \geq 0$. Assume that for the operator $D P=Q P^{\prime}$ we have

$$
\left\|D^{(k)} P\right\| \leq \widehat{M_{k}}(n+(k-1) s)^{k m}\|P\|, P \in \mathbb{P}_{n}(\mathbb{C})
$$

where $\widehat{M_{k}}$ is a constant, $k \geq 1$, then

$$
\widehat{M_{k}} \geq\left(\frac{1}{k!}\right)^{m-1} B^{k} t_{s k}(q) \geq\left(\frac{1}{k!}\right)^{m-1}\left(B t(q)^{s}\right)^{k}
$$

where we can take

$$
B=\left|a_{s}\right|^{s} C^{-1}\left(\max \left(1,\|\mathbf{1}\| e^{-m s}\right)\right)^{-1}\left(e^{m(s+1)}+e^{m s}\right)^{-1} .
$$

Proof. We can write

$$
\begin{gathered}
Q^{k}=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j} x^{j} D^{(k)}\left(x^{k-j}\right), \\
\left\|Q^{k}\right\| \leq \frac{1}{k!} \sum_{j=0}^{k}\binom{k}{j} C^{j}\left\|D^{(k)}\left(x^{k-j}\right)\right\| \\
\leq\|\mathbf{1}\| \frac{\widehat{M_{k}}}{k!} C^{k} \sum_{j=0}^{k}\binom{k}{j}(k-j+(k-1) s)^{k m} \\
\leq\|\mathbf{1}\| \frac{\widehat{M_{k}}}{k!} C^{k} k^{k m} \sum_{j=0}^{k}\binom{k}{j} e^{s(k-1) m} e^{-j m} \\
=\|\mathbf{1}\| \frac{\widehat{M_{k}}}{k!} C^{k} k^{k m} e^{s(k-1) m}\left(1+e^{-m}\right)^{k} .
\end{gathered}
$$

Simple calculations give the needed result.

The next definition is related to the idea of quasianalytic functions and its presentation in Rudin's book [24].
Definition 2.1. If $\|P\|_{0}$ is a seminorm in $\mathbb{P}(\mathbb{C})$ then we put

$$
\begin{gather*}
\|P\|_{r}:=\sum_{k=0}^{\infty} \frac{1}{k!}\left\|D^{(k)} P\right\|_{0} r^{k}, r>0, \\
\|P\|_{m, r}:=\sum_{k=0}^{\infty}\left(\frac{1}{k!}\right)^{m}\left\|D^{(k)} P\right\|_{0} r^{k}, m, r>0 . \tag{2}
\end{gather*}
$$

If $m \geq 1$ and $\|\cdot\|_{0}$ is a submultiplicative seminorm then for every $P, Q \in \mathbb{P}(\mathbb{C})$ we have (we shall apply the following inequality $\frac{1}{k!} \leq \frac{1}{j!(k-j)!}$ which is a consequence of the basic property of $\binom{k}{j}$)

$$
\begin{aligned}
\|P Q\|_{m, r} & =\sum_{k=0}^{\infty}\left(\frac{1}{k!}\right)^{m}\left\|\sum_{j=0}^{k}\binom{k}{j} D^{(j)} P D^{(k-j)} Q\right\|_{0} r^{k} \\
& \leq \sum_{k=0}^{\infty} \sum_{j=0}^{k}\left(\frac{1}{j!(k-j)!}\right)^{m-1} \frac{1}{k!}\binom{k}{j}\left\|D^{(j)} P\right\|_{0}\left\|D^{(k-j)} Q\right\|_{0} r^{k} \\
& =\sum_{k=0}^{\infty} \sum_{j=0}^{k}\left(\frac{1}{j!}\right)^{m}\left\|D^{(j)} P\right\|_{0} r^{j}\left(\frac{1}{(k-j)!}\right)^{m}\left\|D^{(k-j)} Q\right\|_{0} r^{k-j} \\
& =\|P\|_{m, r} \cdot\|Q\|_{m, r} .
\end{aligned}
$$

If $\|x\|_{m, r}<\infty$ then $\|P\|_{m, r}$ is at least a seminorm in $\mathbb{P}(\mathbb{C})$. Such a situation holds if $D P=P^{\prime}$ and $\|P\|_{0}=\sup \{|P(t)|: t \in E\}$, where E is a compact subset of $\mathbb{C}-\|P\|_{m, r}$ is a norm. A large class of other examples is determined by the following lemma.
Lemma 2.3. Let D be a linear derivation such that $D x=Q$ for some $Q \in \mathbb{P}(\mathbb{C})$ with $\operatorname{deg} Q \leq 2$ and $\|\cdot\|_{0}$ be a submultiplicative seminorm in $\mathbb{P}(\mathbb{C})$. Then $\|x\|_{m, r}<\infty$ for every $m>1$ and $r>0$, where $\|\cdot\|_{m, r}$ is defined by (2).

Proof. First, note that for any linear derivation D, which satisfies the assumptions of this lemma and every $k \in \mathbb{Z}_{+}$we have

$$
D^{(k)} x=\sum_{l=0}^{\left[\frac{k-1}{2}\right]} \alpha_{k, l} Q^{l+1}\left(Q^{\prime}\right)^{k-2 l-1}\left(Q^{\prime \prime}\right)^{l}
$$

where [a] denotes the largest integer not greater than a and the constants $\alpha_{k, l}$ are defined by the following recursive relationship:

$$
\begin{gathered}
\alpha_{k, 0}=1 \text { for } k \in \mathbb{Z}_{+}, \alpha_{k, l}=0 \text { for } k \in \mathbb{Z}_{+} \text {and } l>\left[\frac{k-1}{2}\right], \\
\alpha_{k, l}=(k-2 l) \alpha_{k-1, l-1}+(l+1) \alpha_{k-1, l} .
\end{gathered}
$$

By induction one can prove that for every k, l we have $\left|\alpha_{k, l}\right| \leq k!$.
Put $t:=\max \left\{\|Q\|_{0},\left\|Q^{\prime}\right\|_{0},\left\|Q^{\prime \prime}\right\|_{0}\right\}$. We obtain that for every $k \in \mathbb{Z}_{+}$,

$$
\left\|D^{(k)} x\right\|_{0} \leq \sum_{l=0}^{\left[\frac{k-1}{2}\right]} \alpha_{k, l} t^{k} \leq k k!t^{k} .
$$

Since $\lim _{k \rightarrow \infty} \frac{r t}{k(k+1)^{m-2}}=0$ if $r, t>0$ and $m>1$, we get that $\|x\|_{m, r}<\infty$ if $r>0$ and $m>1$.
Remark 1. In the case $m=1$ we must assume $r<1 / t$ to get that $\|\cdot\|_{r}$ is a submultiplicative seminorm. If r is sufficiently small then, in some sense, each norm $\|\cdot\|_{m, r}$ is close to $\|\cdot\|_{0}$.
Proposition 2.4. If $\|\cdot\|_{0}$ is a given seminorm in $\mathbb{P}(\mathbb{C}), D P=P^{\prime}$ then for arbitrary $m, r>0$ and for all $P \in \mathbb{P}(\mathbb{C})$ the A. Markov type inequality

$$
\left\|P^{\prime}\right\|_{m, r} \leq \frac{1}{r}(\operatorname{deg} P)^{m}\|P\|_{m, r}
$$

holds true.
Proof. From the fact that $P^{(k)}=0$ for $k>\operatorname{deg} P$, assuming $\operatorname{deg} P \geq 1$, we have

$$
\begin{aligned}
\left\|P^{\prime}\right\|_{m, r} & =\sum_{k=0}^{\operatorname{deg} P-1}\left(\frac{1}{k!}\right)^{m}\left\|P^{(k+1)}\right\|_{0} r^{k} \\
& =\frac{1}{r} \sum_{k=0}^{\operatorname{deg} P-1}(k+1)^{m}\left(\frac{1}{(k+1)!}\right)^{m}\left\|P^{(k+1)}\right\|_{0} r^{k+1} \\
& \leq \frac{1}{r}(\operatorname{deg} P)^{m} \sum_{l=1}^{\operatorname{deg} P}\left(\frac{1}{l!}\right)^{m}\left\|P^{(l)}\right\|_{0} r^{l} \leq \frac{1}{r}(\operatorname{deg} P)^{m}\|P\|_{m, r} .
\end{aligned}
$$

The derivation $D P=a P^{\prime}$, where $a \in \mathbb{C}$, is the only possible locally nilpotent derivation in $\mathbb{P}(\mathbb{C})$. In $\mathbb{P}\left(\mathbb{C}^{N}\right), N>1$ the family of locally nilpotent derivations is much richer, we refer to [17] where there is given a criterion. Following [17] we give a few examples: $D P=D_{j} P, j=1, \ldots, N, D P=D_{1} P+\cdots+D_{N} P, D P=D_{1} P+Q\left(x_{1}\right) D_{2} P$ and many others. For locally nilpotent derivations an analogue of Proposition 2.4 holds.
Proposition 2.5. Let D be a locally nilpotent derivation in $\mathbb{P}\left(\mathbb{C}^{N}\right)$. Then $\|D P\|_{m, r} \leq\left(\frac{1}{r}\right)\left(\operatorname{deg}_{D} P\right)^{m}\|P\|_{m, r}$.
In the following theorem we shall see a motivation for considering the above classes of norms.
Theorem 2.6. The A. Markov property with an exponent $m>1$ does not imply the V. Markov property.
Proof. Observe that the V. Markov property with constants A, s implies $\left\|P^{(n)}\right\| \leq A^{n} n!\|P\|$ for $n=\operatorname{deg} P$.
Let $m>1$ and $\|P\|_{0}=|P(0)|$ and consider the norm

$$
\|P\|_{m, r}:=\sum_{k=0}^{\infty}\left(\frac{1}{k!}\right)^{m}\left|P^{(k)}(0)\right| r^{k} .
$$

Then $\left(\mathbb{P}(\mathbb{C}),\|\cdot\|_{m, r}\right)$ is a normed algebra. One can easily see that

$$
\left\|a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}\right\|_{m, r}=\sum_{k=0}^{n}\left(\frac{1}{k!}\right)^{m-1}\left|a_{k}\right| r^{k}
$$

and that $T_{n}=z^{n}$ is the n-th Chebyshev polynomial for the norm $\|\cdot\|_{m, r}$. We have

$$
\left\|T_{n}\right\|_{m, r}=\left(\frac{1}{n!}\right)^{m-1} r^{n},\left\|T_{n}^{(n)}\right\|_{m, r}=n!.
$$

Hence

$$
\left\|T_{n}^{(n)}\right\|_{m, r} /\left\|T_{n}\right\|_{m, r}=(n!)^{m} r^{-n}
$$

and there is no constant A such that $\left\|T_{n}^{(n)}\right\|_{m, r} /\left\|T_{n}\right\|_{m, r} \leq A^{n} n!$.
Let us also observe that by Proposition 2.1 we have

$$
M_{k}(s) \geq r^{-k}(k!)^{m} k^{-k s}
$$

(here $M_{k}(s)$ are constants in inequalities $\left.\left\|P^{(k)}\right\| \leq M_{k}(s)(\operatorname{deg} P)^{k s}\|P\|\right)$ which gives $m\left(\|\cdot\|_{m, r}\right)=m$.

Remark 2. 1) We know that the conditions $\left\|P^{(n)}\right\| \leq A^{n} n!\|P\|,\left\|P^{\prime}\right\| \leq M(\operatorname{deg} P)^{m}\|P\|$ are necessary for the V. Markov property to hold. We can formulate the following problem: are the two conditions sufficient for the V. Markov property? Let us recall that in the case $\|P\|=\|P\|_{E}$, where E is a compact subset of \mathbb{C}, it is known that the A. Markov property implies the needed estimate for n-th derivative (see [10] and [11]).
2) We have $\left\|\left(a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}\right)^{(k)}\right\|_{m, r}$

$$
\begin{aligned}
= & \frac{n!}{[(n-k)!]^{m}}\left|a_{n}\right| r^{n-k}+\frac{n-1}{[(n-k-1)!]^{m}}\left|a_{n-1}\right| r^{n-k-1}+\cdots+k!\left|a_{k}\right| \\
= & \left(\frac{n!}{(n-k)!}\right)^{m} r^{-k}\left[\frac{\left|a_{n}\right|}{(n!)^{m-1}} r^{n}+(n-1)!\left(\frac{n-k}{n!}\right)^{m}\left|a_{n-1}\right| r^{n-1}\right. \\
& \left.+\cdots+k!\left(\frac{(n-k)!}{n!}\right)^{m}\left|a_{k}\right| r^{k}\right] \\
\leq & \left(\frac{n!}{(n-k)!}\right)^{m} r^{-k}\left\|a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots a_{0}\right\|_{m, r} .
\end{aligned}
$$

Moreover $\left\|T_{n}^{(k)}\right\|_{m, r} /\left\|T_{n}\right\|_{m, r}=\left(\frac{n!}{(n-k)!}\right)^{m} r^{-k}$. Finally we get

$$
\begin{aligned}
\mathcal{M}_{n}(k) & =\sup _{\operatorname{deg} P \leq n}\left\|P^{(k)}\right\|_{m, r} /\|P\|_{m, r}=\left(\frac{n!}{(n-k)!}\right)^{m} r^{-k} \\
& =\left\|T_{n}^{(k)}\right\|_{m, r} /\left\|T_{n}\right\|_{m, r} .
\end{aligned}
$$

Is a similar situation in other cases, that is does

$$
\sup \left\{\left\|P^{(k)}\right\| /\|P\|: k \leq \operatorname{deg} P \leq n\right\}=\left\|T_{n}^{(k)}\right\| /\left\|T_{n}\right\| ?
$$

There is a number of deep results that gives an affirmative answer in some class of uniform norms, e.g. $\|P\|=\|P\|_{E}$, where $E=\mathbb{D}_{r}$ (the Bernstein inequality), $E=[a, b]$ (the Vladimir Markov inequality) while for $E=[-b,-a] \cup[a, b]$ the problem seems to be open.

A quite different situation is in the case $m=1$. If $\left\|P^{\prime}\right\| \leq A(\operatorname{deg} P)\|P\|$, then $\left\|P^{(k)}\right\| \leq A^{k}\binom{n}{k}\|P\|, n=\operatorname{deg} P$. As a special case of Proposition 2.4 we get $\left\|P^{\prime}\right\|_{r} \leq\left(\frac{1}{r}\right) \operatorname{deg} P\|P\|_{r}$.

Now we prove the following connection between the norms $\|\cdot\|_{r}$ and norms defined by the norm $\|\cdot\|_{0}$.
Proposition 2.7. Let $\|\cdot\|_{0}$ be a submultiplicative norm in commutative algebra \mathcal{A}, fix an element $x \in \mathcal{A}$ and put (for a fixed $r>0$)

$$
\|P\|_{r}=\sum_{k=0}^{\infty} \frac{1}{k!}\left\|P^{(k)}(x)\right\|_{0} r^{k}, P \in \mathbb{P}(\mathbb{C}) .
$$

Then

$$
\begin{equation*}
\sup _{|\zeta| \leq r}\|P(x+\zeta 1)\|_{0} \leq\|P\|_{r} \leq(\operatorname{deg} P+1) \sup _{|\zeta| \leq r}\|P(x+\zeta 1)\|_{0} . \tag{3}
\end{equation*}
$$

Proof. We shall use two facts: $P(x+\zeta 1)=\sum_{k=0}^{\infty} \frac{1}{k!} P^{(k)}(x) \zeta^{k}$ and $P^{(k)}(x)=k!\rho^{-k} \frac{1}{2 \pi} \int_{-\pi}^{\pi} P\left(x+\rho e^{i t} 1\right) e^{-i k t} d t$.
The first equality gives $\sup _{|\zeta| \leq r}\|P(x+\zeta 1)\|_{0} \leq\|P\|_{r}$. From the second equality we get

$$
\frac{1}{k!}\left\|P^{(k)}\right\|_{0} \leq \rho^{-k} \sup _{|\zeta| \leq \rho}\|P(x+\zeta 1)\|_{0},
$$

which permits us to write

$$
\|P\|_{r} \leq \sum_{k=0}^{\operatorname{deg} P}(r / \rho)^{k} \sup _{|\zeta| \leq \rho}\|P(x+\zeta 1)\|_{0}
$$

and putting $\rho=r$ we obtain (3).

Corollary 2.8. Assume that a submultiplicative seminorm $\|\cdot\|_{0}$ is spectral $\left(\left\|a^{n}\right\|_{0}=\|a\|_{0}^{n}, a \in \mathcal{A}, n \in \mathbb{Z}_{+}\right)$. Then the spectral seminorm $\rho_{r}(P)=\lim _{n \rightarrow \infty}\left\|P^{n}\right\|_{r}^{1 / n}=\inf _{n \geq 1}\left\|P^{n}\right\|_{r}^{1 / n}$ is given by

$$
\rho_{r}(P)=\sup _{|\zeta| \leq r}\|P(x+\zeta 1)\|_{0} .
$$

Moreover, if $\mathcal{A}=\mathcal{C}(E)$, where $E \subset \mathbb{C}$ is a compact set, $x=\operatorname{Id}_{E}$ then $\rho_{r}(P)=\|P\|_{E_{(r)}}$ where $E_{(r)}=\{z \in \mathbb{C}$: $\operatorname{dist}(z, E) \leq r\}$ is the r-th metric hull. In particular, if $E=\{0\}$ we get $\rho_{r}(P)=\|P\|_{\overline{\mathbb{D}}_{r}}$.
Proposition 2.9 (C.f. [18], Thm. 3.5). If $\|\cdot\|$ is a spectral seminorm in $\mathbb{P}(\mathbb{C})$ that satisfies the following V. Markov type inequality

$$
\left\|P^{(k)}\right\| \leq A^{k+s}(n+l)^{\alpha} \frac{n^{k m}}{(k!)^{m-1}}\|P\| \text { for all } P \in \mathbb{P}_{n}(\mathbb{C}) \text { and } k \in \mathbb{Z}_{+}
$$

where $s \in \mathbb{R}, M>0, m \geq 1, l, \alpha \geq 0$ are constants, then

$$
\begin{equation*}
\left\|P^{\prime}\right\| \leq A\left(e^{m}+1\right) n^{m}\|P\| . \tag{4}
\end{equation*}
$$

Proof. In the proof we shall again apply the well known inequality $\frac{k^{k}}{k!} \leq e^{k}$. We have, by the Milówka identity,

$$
\begin{aligned}
\left\|P^{\prime}\right\|^{k} & \leq\left(\frac{1}{k!}\right) \sum_{j=0}^{k}\binom{k}{j}\|P\|^{j} A^{k+s}(n(k-j)+l)^{\alpha}(n(k-j))^{k m}\|P\|^{k-j} \\
& \leq A^{k+s}(n k+l)^{\alpha} e^{m k} n^{k m} \sum_{j=0}^{k}\binom{k}{j}(1-j / k)^{k m}\|P\|^{k} \\
& \leq A^{k+s}(n k+l)^{\alpha} e^{m k} n^{k m} \sum_{j=0}^{k}\binom{k}{j} e^{-j m}\|P\|^{k} \\
& =A^{k+s}(n k+l)^{\alpha}\left(e^{m}+1\right)^{k} n^{k m}\|P\|^{k} .
\end{aligned}
$$

Hence

$$
\left\|P^{\prime}\right\| \leq A^{1+s / k}\left(e^{m}+1\right) n^{m}(n k+l)^{\alpha / k}\|P\| .
$$

Letting $k \rightarrow \infty$ we get (4), which finishes the proof.
Now we can use Propositions 2.6 and 2.10 to observe the inequality $\left\|P^{(k)}\right\|_{\bar{\Phi}_{r}} \leq(n+1) r^{-k} n^{k}\|P\|_{\bar{\Phi}_{r}}$ which together with Proposition 2.12 gives a version of the Bernstein inequality.
Corollary 2.10. If $r>0$ is fixed then for all polynomial P we have

$$
\left\|P^{\prime}\right\|_{\overline{\mathbb{D}}_{r}} \leq(e+1) r^{-1}(\operatorname{deg} P)\|P\|_{\overline{\mathbb{D}}_{r}} .
$$

With the help of the Chebyshev polynomials T_{n} of the first kind or their derivatives we can consider the estimates for derivatives of polynomials with respect to the uniform norm on $[-1,1]$. Let $\left(U_{j}\right)_{j \geq 0}$ be the family of Chebyshev polynomials of the second kind that are orthogonal on $[-1,1]$ with respect to the measure $d \mu=\sqrt{1-t^{2}} d t$. We have $\left\|U_{j}\right\|_{[-1,1]}=j+1, U_{j}^{(k)}=\frac{1}{j+1} T_{j+1}^{(k+1)}$ and $\left\|U_{j}^{(k)}\right\|_{[-1,1]} \leq \frac{1}{2^{k-1}} \frac{(j+1)^{2 k+1}}{k!}$.

We can write $P(z)=\sum_{j=0}^{n} a_{j}(P) U_{j}(z)$, where

$$
a_{j}(P)=\frac{2}{\pi} \int_{-1}^{1} P(t) U_{j}(t) \sqrt{1-t^{2}} d t
$$

with $\left|a_{j}(P)\right| \leq\|P\|_{[-1,1]}$ (see [14], p. 35). Hence we get

$$
\begin{gathered}
\left\|P^{(k)}\right\|_{[-1,1]} \leq \sum_{j=0}^{n} \left\lvert\, a_{j}(P)\left\|U_{j}^{(k)}\right\|_{[-1,1]} \leq \frac{1}{k!2^{k-1}} \sum_{j=0}^{n}(j+1)^{2 k+1}\|P\|_{[-1,1]}\right. \\
\leq \frac{4 e^{2}}{k!2^{k-1}} n^{2+2 k}\|P\|_{[-1,1]} .
\end{gathered}
$$

Applying now Proposition 2.12 we obtain the following version of the A. Markov inequality.
Corollary 2.11. $\left\|P^{\prime}\right\|_{[-1,1]} \leq \frac{e^{2}+1}{2}(\operatorname{deg} P)^{2}\|P\|_{[-1,1]}$.

Remark 3. In the multivariate case we can consider the following norms

$$
\|P\|_{\mathbf{m}, \mathrm{r}}=\sum_{\alpha \in \mathbb{N}^{N}} \frac{1}{\left(\alpha_{1}!\right)^{m_{1}}} \cdots \frac{1}{\left(\alpha_{N}!\right)^{m_{N}}}\left\|D^{\alpha} P\right\|_{0} r_{1}^{\alpha_{1}} \cdots r_{N}^{\alpha_{N}}
$$

where $\mathbf{m}=\left(m_{1}, \ldots, m_{N}\right), m_{j}>0, \mathbf{r}=\left(r_{1}, \ldots, r_{N}\right), r_{j}>0$. We can easily get

$$
\left\|D_{j} P\right\|_{\mathrm{m}, \mathrm{r}} \leq \frac{1}{r_{j}}\left(\operatorname{deg}_{j} P\right)^{m_{j}}\|P\|_{\mathrm{m}, \mathrm{r}}, j=1, \ldots, N
$$

where $\operatorname{deg}_{j} P=\operatorname{deg}_{D_{j}} P \leq \operatorname{deg} P$. If $m_{j} \geq 1, j=1, \ldots, N$ then $\|P\|_{\mathrm{m}, \mathrm{r}}$ is a submultiplicative seminorm. We can deal with the spectral radius and some other problems as in the case presented above.

3 Testing operators for the A. Markov property.

The family of operators $\mathcal{T}=\left\{S_{j}\left(D_{1}, \ldots, D_{N}\right), j=1, \ldots s\right\}$, where each S_{j} is a homogeneous polynomial, is a testing family for the A. Markov property if $\left\|S_{j}\left(D_{1}, \ldots, D_{N}\right) P\right\| \leq M_{j}(\operatorname{deg} P)^{m_{j}}\|P\|, j=1, \ldots, s$ implies $\left\|D_{j} P\right\| \leq M(\operatorname{deg} P)^{m}\|P\|, j=1, \ldots, N$. If $m=m_{j} / \operatorname{deg} S_{j}, j=1, \ldots s$, such a family will be called a strong testing family.

Proposition 3.1 ([7]). a) Let $\mathcal{T}=\left\{\left(D_{1}\right)^{k_{1}}, \ldots,\left(D_{N}\right)^{k_{N}}\right\}$, where $k_{j} \in \mathbb{Z}_{+}, k_{j} \geq 2,1 \leq j \leq N$ is a testing family in the case of the uniform norm on a compact set E. This is a strong testing family.
b) An example of a testing family, which consists of exactly one element is given by $\mathcal{T}=D_{1} D_{2} \ldots D_{N}$. In general, it is not a strong testing family.

One can ask about the existence of a strong testing family, which consists of exactly one element. The situation is better if we consider $E \subset \mathbb{R}^{N}$.
Theorem 3.2. Let E be a compact subset of $\mathbb{R}^{N}, N \geq 2$. If $k \in \mathbb{Z}_{+}$then $\mathcal{T}=\left\{\Delta_{2 k}=\left(D_{1}\right)^{2 k}+\cdots+\left(D_{N}\right)^{2 k}\right\}$ is a strong testing family. In particular the Laplace operator gives a strong testing family.

Proof. Assume that $\left\|\left(D_{1}\right)^{2 k} P+\cdots+\left(D_{N}\right)^{2 k} P\right\|_{E} \leq A(\operatorname{deg} P)^{m_{1}}\|P\|_{E}$.
First we consider polynomials with real coefficients. We can write

$$
\sum_{l=1}^{N}\left(D_{l} P\right)^{2 k}=\frac{1}{(2 k)!} \sum_{j=0}^{2 k}(-1)^{j}\binom{2 k}{j} P^{j} \Delta_{2 k}\left(P^{2 k-j}\right)
$$

By similar arguments as in the proof of Proposition 2.12 we get

$$
\left\|D_{j} P\right\|_{E} \leq\left\|\left(\sum_{l=1}^{N}\left(D_{l} P\right)^{2 k}\right)^{\frac{1}{2 k}}\right\|_{E} \leq M(\operatorname{deg} P)^{\frac{m_{1}}{2 k}}\|P\|_{E}, j=1, \ldots, N
$$

where $M=A^{\frac{1}{2 k}}\left(1+e^{-\frac{m_{1}}{2 k}}\left((2 k)^{m_{1}} /(2 k)!\right)^{\frac{1}{2 k}}\right.$.
If $P=P_{1}+i P_{2}$, where P_{1} and P_{2} have real coefficients, then we can consider the family of polynomials $P_{\theta}=\cos \theta P_{1}+$ $\sin \theta P_{2}, \theta \in[0,2 \pi]$. By the previous case we obtain $\left\|D_{j} P_{\theta}\right\|_{E} \leq M(\operatorname{deg} P)^{\frac{m_{1}}{2 k}}\left\|P_{\theta}\right\|_{E}$. Since

$$
\sup _{\theta \in[0,2 \pi]}\left|D_{j} P_{\theta}\right|=\left|D_{j} P\right|, \sup _{\theta \in[0,2 \pi]}\left|P_{\theta}\right|=|P|
$$

we have $\left\|D_{j} P\right\|_{E} \leq M(\operatorname{deg} P)^{\frac{m_{1}}{2 k}}\|P\|_{E}, j=1, \ldots, N$.

Acknowledgment. M. Baran and A. Kowalska were partially supported by the NCN grant No. 2013/11/B/ST1/03693.

References

[1] M. Baran, New approach to Markov inequality in L^{p} norms. Approximation Theory, in Memory of A. K. Varma, N. K. Govil and alt. (eds.), Marcel Dekker, New York, 75-85, 1998.
[2] M. Baran, L. Białas-Cież, Hölder Continuity of the Green Function and Markov Brothers' Inequality. Constr. Approx. 40:121-140, 2014.
[3] M. Baran, L. Białas-Cież. Hölder Continuity of the Green Function. Markov-type inequality and a capacity telated to HCP. Dolomites Reserach Notes on Approximation, 7:16-21, 2014.
[4] M. Baran, L. Białas-Cież, B. Milówka, On the best exponent in Markov’s inequality, Potential Anal. 38:635-651, 2013.
[5] M. Baran, A. Kowalska, Sets with the Bernstein and generalized Markov properties, Ann. Polon. Math. 111(3):259-270, 2014.
[6] M. Baran, A. Kowalska, Asymptotic Markov's exponent, 2015, in preparation.
[7] M. Baran, B. Milówka, P. Ozorka, Markov's property for k-th derivative, Ann. Polon. Math. 106:31-40, 2012.
[8] M. Baran, P. Ozorka, Derivation operators and Markov's type property for k-th iterates, 2015, in preparation.
[9] M. Baran, W. Pleśniak, Markov's exponent of compact sets in \mathbb{C}^{n}, Proc. Amer. Math. Soc. 123:2785-2791, 1995.
[10] L. Białas-Cież, Markov Sets in \mathbb{C} are not polar, Bull. Pol. Acad. Sci. 46(1):83-89, 1998.
[11] L. Białas-Cież, M. Jȩdrzejowski, Transfinite Diameter of Bernstein Sets in \mathbb{C}^{N}, J. of Inequal. \& Appl. 7(3):393-404, 2002.
[12] T. Bloom, J.-P. Calvi, On multivariate minimal polynomials, Math. Proc.Camb. Phil. Soc. 129:417-431, 2000.
[13] F.F. Bonsall, J. Duncan, Complete Normed Algebras, Springer Verlag, Berlin-Heidelberg-New York, 1973.
[14] P. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities, Springer, Berlin, 1995, Graduate Texts in Mathematics 161.
[15] P. Goetgheluck, On Markov's inequality on locally Lipshitzian compact subsets of \mathbb{R}^{N} in L^{p}-Spaces, J. Approx. Theory 49:303-310, 1987.
[16] E. Hille, G. Szegö, J. Tamarkin, On some generalization of a theorem of A. Markoff, Duke Math. J. 3:729-739, 1937.
[17] M. Karaś, Locally Nilpotent Monomial Derivations, Bull. Pol. Acad. Sc. Math. 52(2):119-121, 2004.
[18] B. Milówka, Markov’s inequality and a generalized Pleśniak condition, East Jour. of Approx. 11(3):291-300, 2005.
[19] B. Milówka, Markov's property for derivatives of order k, PhD thesis (in Polish), 1-45, 2006.
[20] P. Ozorka, Applications of the complex method of interpolation to polynomial inequalities, PhD thesis (in Polish), 1-65, 2011.
[21] W. Pleśniak, Quasianalytic functions in the sense of Bernstein, Dissertationes Mathematicae, CXLVII, Warszawa, 1977.
[22] W. Pleśniak, Markov's inequality and the existence of an extension operator for \mathcal{C}^{∞} function, J. Approx. Theory 61:106-117, 1990.
[23] W. Pleśniak, Inégalité de Markov en plusieurs variables, Int. J. Math. Sci. Art. ID 24549:1-12, 2006.
[24] W. Rudin, Real and Complex Analysis, Mc Graw-Hill, 1974.
[25] G. Sroka, Constants in V. A. Markov's inequality in L^{p} norms, J. Approx. Theory 194:27-34, 2015.

[^0]: ${ }^{a}$ Institute of Mathematical and Natural Science, State Higher Vocational School in Tarnow, Mickiewicza 8, 33-100 Tarnów, Poland.
 E-mail: miroslaw.baran.tarnow@gmail.com
 ${ }^{b}$ Institute of Mathematics, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland. E-mail: kowalska@up.krakow.pl
 ${ }^{c}$ Institute of Mathematical and Natural Science, State Higher Vocational School in Tarnow, Mickiewicza 8, 33-100 Tarnów, Poland. E-mail: bmilowka@wp.pl
 ${ }^{d}$ Institute of Mathematical and Natural Science, State Higher Vocational School in Tarnow, Mickiewicza 8, 33-100 Tarnów, Poland. E-mail: pozorka@op.pl

