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Identities for a derivation operator and their applications

Mirosław Baran a · Agnieszka Kowalska b · Beata Milówka c · Paweł Ozorka d

Abstract

Let A be a complex commutative algebra with unity 1 and let D : A −→ A be a derivation operator
(a linear operator with the property D(ab) = bD(a) + aD(b)). Then for arbitrary a, b ∈ A and for all
positive integers k we have the following identity

1
k!

k
∑

j=0

(−1) j
�

k
j

�

a j D(k)(bak− j) = bD(a)k ,

where D(k) is k-th iterate of D.
In the paper we consider the algebra P(CN ) of polynomials in N complex variables and D a derivation
operator related to the A. Markov type inequality ||DP|| ≤ M(deg P)m||P||. Using the above identity we

introduce V. Markov type inequality ||D(k)P|| ≤ Ak(deg P)km
� 1

k!

�m−1 ||P||. We give a nontrivial example
of the A. Markov inequality in the normed algebra where the V. Markov type inequality is not fulfilled.
It is also shown that the Markov type condition
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≤ M(deg P)m‖P‖E , j = 1, . . . N , P ∈ P(CN )

with positive constants M and m is equivalent to the following
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E

≤ M ′l (deg P)2lm‖P‖E , P ∈ P(CN )

with some positive constant M ′l . Here E ⊂ RN and l ∈ Z+ is fixed.

1 Introduction
Denote by P(KN ) the vector space of polynomials in N variables with coefficients in the field K (K = R or K = C). We set
Pn(KN ) = {P ∈ P(KN ) : deg P ≤ n}. By 1 we mean the constant polynomial P = 1. Let P( j,KN−1) (resp. Pn( j,KN−1)) be the
subspace of P(KN ) (resp. Pn(KN )) containing only those polynomials that are independent of variable z j , j = 1, . . . , N . In the
sequel we shall consider a number of norms (and seminorms) in P(CN ).

Let us recall that a norm (seminorm) || · || is submultiplicative if for every P,Q ∈ P(CN ), ||PQ|| ≤ ||P|| · ||Q|| and ||1|| = 1.
A norm (seminorm) ρ is spectral if for any P ∈ P(CN ),

ρ(Pk) = ρ(P)k, k ≥ 1.

We shall be interested in getting lower estimates for constants Mk in the inequality of type ||P(k)|| ≤ Mk(deg P)mk||P||, P ∈ P(C)
and its generalizations. It will be possible for special kinds of norms that satisfy some additional conditions.

A norm (seminorm) || · || is factorizable if there exists a submultiplicative norm (seminorm) || · ||0 such that

||PQ|| ≤ ||P||0||Q||, P,Q ∈ P(KN ).

The optimal || · ||0 is given by the formula

||P||0 = sup{||PQ|| : Q ∈ P(CN ), ||Q||= 1}.

A norm || · || is factorizable if and only if there exist positive constants Cl such that for any P ∈ P(KN ) we have ||x l P|| ≤ Cl ||P||,
l = 1, . . . , N (this means continuity of linear mappings P −→ x l P, c.f. [7]).

Example 1.1. 1) Each submultiplicative norm (seminorm) is factorizable.

2) A supremum norm is factorizable.
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3) If || · || is a submultiplicative norm (seminorm) then, as a special case of known facts, ρ(P) = lim
n→∞

||Pn||1/n = inf
n≥1
||Pn||1/n is

a spectral seminorm (often it is a norm).

4) If E is a bounded Borel subset of CN , µ is a probability measure on E then for each p ≥ 1 we have the factorizable norm

||P||p =
�∫

E
|P|pdµ

�1/p
.

5) We define ‖P‖ =
∞
∑

j=0
α j
|P( j)(0)|

j! for P ∈ P(K), where α j = 1 for any even integer j and (α2k+1)∞k=0 is some unbounded

sequence. Then for every k ∈ Z+, we have ‖x2k‖= 1 and ‖x2k−1‖= α2k−1. So there is no constant C such that for every
k ∈ Z+, ‖x2k+1‖ ≤ C‖x2k‖, thus this norm is not factorizable.

Let m> 0. A compact subset E of KN is called a Markov set with the exponent m if for every P ∈ P(CN ) the following Markov
inequality holds:









∂

∂ x j
P









E

≤ M(degP)m‖P‖E , for j = 1, . . . , N , (M(m))

where ‖ f ‖E =max{| f (x)| : x ∈ E} and M is independent of P. The condition (M(m)) is equivalent to the existence of N linearly
independent vectors v1, . . . , vN and positive constants m j , M j , j = 1, . . . , N such that m=max1≤ j≤N m j and

‖Dv j
P‖E ≤ M j(degP)m j‖P‖E for j = 1, . . . , N .

If E is such a set, we shall write E ∈M(m).
A Markov set fulfilling (M(m)) will be called an A. Markov set or a set with the A. Markov property. This is to distinguish this

class of sets from another subclass formed by sets satisfying the V. Markov property, i.e. there exist positive constants M , m such
that for all P ∈ Pn(CN ) we have

‖DαP‖E ≤ M |α|
�

1
|α|!

�m−1

n|α|m‖P‖E

(in the case N = 1 the above condition is equivalent to the existence of a constant M1 such that ‖P(k)‖E ≤ M k
1 k!
�n

k

�m
‖P‖E .)

If E = [−1,1] ⊂ C, then the A. Markov inequality holds with M = 1 and m = 2. Moreover, if E = D then the A. Markov
inequality is satisfied with m= M = 1 and these constants are the best possible: for each n and P = Tn, where Tn is the n - th
Chebyshev polynomial of the first kind, we have ‖Tn‖[−1,1] = 1, T ′n(1) = n2 and for Pn(z) = zn we get ‖Pn‖D = 1, ‖P ′n‖D = n.
Furthermore, the famous V. Markov inequality ‖P(k)‖[−1,1] ≤ T (k)deg P(1)‖P‖[−1,1] implies the V. Markov property for the interval
[−1, 1]. The V. Markov property for the unit disk is easily seen.

Let us remark that applying classical A. Markov inequality k times we obtain ‖P(k)‖[−1,1] ≤ (n(n−1) · · · (n−k+1))2||P||[−1,1], P ∈
Pn(C), which is, by the V. Markov inequality, sharp. But it gives no more useful information.

The Markov exponent of a A. Markov set E is by definition, the best exponent in (M(s)), i.e., m(E) := inf{s>0 : E ∈M(s)}.
If E is not an A. Markov set, we put m(E) :=∞. Similarly we define the Markov exponent with respect to other norms. In the
one-dimensional case the constants M and m are related to certain lower bounds of the logarithmic capacity of E (cf. [10],[11]).

The importance of the A. Markov property was explained by W. Pleśniak in [22] (cf. [23], see also [5]). The notion of the
Markov exponent was introduced in [9] and we refer the reader to this paper for further properties of m(E) (see also [4] and
[19]). The importance of the V. Markov property is a consequence of the surprising fact, proved by M. Baran and L. Białas-Cież
that the V. Markov property with the exponent m is equivalent to the Hölder Continuity Property in CN of the Green function VE
with the exponent 1

m (see [2]).
We can also consider other norms for polynomials and consider A. Markov and V. Markov properties for these norms. In

the next section we shall give a motivation for considering the V. Markov property as a minimal possible growth of the k− th
derivatives.

If a norm || · || in P(KN ) is fixed then for a multiindex α ∈ ZN
+ we define

Mn(α) = sup{||DαP|| : ||P||= 1, deg P ≤ n}

and if this norm possesses the A. Markov property with respect to α= el with an exponent sl then we define the Markov factors

Mk(l, sl) = sup{||DkαP||/nksl : ||P||= 1, deg P ≤ n, n≥ 1}.

In the case N = 1 we shall simply write Mk(s).
In the one dimensional case we can consider the Chebyshev polynomials with respect to a given norm q = || · || in P(C) and

the Chebyshev constant.

Definition 1.1. Let q = || · || be a fixed norm (seminorm) in P(C). Define

tn(q) := inf{||xn + an−1 xn−1 + · · ·+ a0|| : a0, . . . , an−1 ∈ C},

t(q) := inf
n≥1

tn(q)
1/n.

Then tn(q) is the n−th Chebyshev constant and t(q) is the Chebyshev constant of q. Each monic polynomial Tn such that ||Tn|| = tn(q)
will be called the n− th Chebyshev polynomial of q. If P is a fixed polynomial in P(C) then we can define t(P) = t(qP), where
qp(Q) = ||Q ◦ P||.

Dolomites Research Notes on Approximation ISSN 2035-6803



Baran · Kowalska · Milówka · Ozorka 104

In particular, t(I) = t(q), where I(z) = z. The above definitions agree with the definition given by P. Halmos for the Chebyshev
constant of an element a in a complete complex normed algebra A (see [13]): we can consider q(Q) = ||Q(a)||. Then it is
known (see also [13]) that t(a) = t(σ(a)), where σ(a) is the spectrum of a. Since σ(a) is a nonempty compact subset of C it is
well known that t(σ(a)) = C(σ(a)) = d(σ(a)), where C(E) is the logarithmic capacity and d(E) is the transfinite diameter of
a compact set E ⊂ C.

Let us observe that t(P)≥ t(q)m if P is a monic polynomial of degree m.

Now we consider the case N > 1 and for j = 1, . . . , N put

tn( j, q) := inf{||xn
j + an−1 xn−1

j + · · ·+ a0|| : a0, . . . , an−1 ∈ Pn−1( j,CN−1)}.

A polynomial P of the form P = xn
j + an−1 xn−1

j + · · ·+ a0 with a0, . . . , an−1 ∈ Pn−1( j,CN−1) will be called j-monic.

2 Identities for derivations of polynomials in complex algebras.
Let A be a complex commutative algebra with unity 1. Assume that a linear operator D : A −→A is a derivation, i.e., it satisfies
D(ab) = bD(a) + aD(b). This condition, known as the Leibniz rule, is equivalent to the equality D(a2) = 2aD(a). Denote by D(k)

the k-th iterate of D, with D(0) = IdA. A derivation D is locally nilpotent if for an arbitrary a ∈A there exists k ∈ Z+ such that
D(k)(a) = 0. If D is locally nilpotent and a 6= 0 then we define degD a :=max{k ∈ Z+ : D(k)a 6= 0}.

If D is a derivation, we can easily get the well known Leibniz formula

D(k)(ab) =
k
∑

j=0

�

k
j

�

D( j)(a)D(k− j)(b),

that is a generalization of the Leibniz rule for k = 1. Very recently the following generalization of Leibniz rule was discovered
(see [8] for its proof)

1
k!

k
∑

j=0

(−1) j
�

k
j

�

a j D(k)(bak− j) = bD(a)k.

A first version was given by Milówka [18, 19] in 2005 in the case A = P(C), D(P) = P ′, a = P, b = 1. During 7 years nobody
has been interested in this deep result. In 2012 P. Ozorka found a general version (with b = 1) of the Milówka identity and
M. Baran observed that the Milówka identity implies a lower estimate for the k-th derivative of polynomials considered on planar
A. Markov sets. It was a new beginning of the V. Markov type property, first considered by W. Pleśniak [21].

Let us note a special case of the above generalization of the Leibniz rule. Let DP = v1D1P+· · ·+vN DN P, where P ∈ P(CN ), v j ∈
R, v2

1 + · · ·+ v2
N = 1. Then we can write

P(x) =
1
k!

k
∑

j=0

(−1) j
�

k
j

�

〈x , v〉 j D(k)(〈x , v〉k− j P(x)).

In particular,

P(x) =
1
k!

k
∑

j=0

(−1) j
�

k
j

�

x j
l

∂ k

∂ x k
l

(x k− j
l P(x)), l = 1, . . . , N . (1)

Proposition 2.1. Consider a fixed norm q = || · || in P(CN ) and assume that there exist l ∈ {1, . . . , N} and m> 0 such that for every

k ∈ N there is a positive constant Mk(l, m) such that






∂ k

∂ xk
l
(Q)





≤ Mk(l, m)(degQ)km‖Q‖ for every Q ∈ P(CN ). Then for the constants

Mk(l, m) we have
Mk(l, m)≥ ‖1‖k!/(kkm tk( j, q))≥ ‖1‖k!/(kkm||x k

l ||).
Hence, if q is a factorizable norm with constants C j then we have

Mk(l, m)≥ Bk
l

�

1
k!

�m−1

with Bl = C−1
l e−m. Thus inf

k≥1

�

k!m−1Mk(l, m)
�1/k

> 0. Such a situation holds in the case ‖Q‖= ‖Q‖p =
�

1
2

∫ 1

−1
|Q(t)|pd t

�1/p
, p ≥ 1,

where is was proved by G. Sroka [25], that sup
k≥1
(k!Mk(2))

1/k <∞ (c.f. also [16],[15],[1] for Markov’s property in Lp norms).

Proof. Applying the identity (1) to 1 (or a fact that for an l-monic polynomial Pk of degree k, ||P(k)k ||= k!||1||) get

||1|| ≤
Mk(l, m)

k!
kkm tk(l, q)≤

Mk(l, m)
k!

kkm||x k
l ||

and, if q is factorizable,

||1|| ≤ Mk(l, m)
kkm

k!
C k

l ||1||.

Hence Mk(l, m)≥ k!
kkm C−k

l ≥
k!

(k!ek)m C−k
l =

�

1
k!

�m−1
Bk

l .
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A similar estimate can be obtained for the operator DP =QP ′, where P,Q ∈ P(C), degQ = s ≥ 0 (with the leading coefficient
as) and a given factorizable norm q = || · ||.
Proposition 2.2. Consider a fixed factorizable norm || · || on P(C) with constant C and let Q ∈ P(C) be a given polynomial with
degQ = s ≥ 0. Assume that for the operator DP =QP ′ we have

||D(k)P|| ≤ÓMk(n+ (k− 1)s)km||P||, P ∈ Pn(C),

where ÓMk is a constant, k ≥ 1, then

ÓMk ≥
�

1
k!

�m−1

Bk tsk(q)≥
�

1
k!

�m−1

(Bt(q)s)k,

where we can take
B = |as|sC−1(max(1, ||1||e−ms))−1(em(s+1) + ems)−1.

Proof. We can write

Qk =
1
k!

k
∑

j=0

(−1) j
�

k
j

�

x j D(k)(x k− j),

||Qk|| ≤
1
k!

k
∑

j=0

�

k
j

�

C j ||D(k)(x k− j)||

≤ ||1||
ÓMk

k!
C k

k
∑

j=0

�

k
j

�

(k− j + (k− 1)s)km

≤ ||1||
ÓMk

k!
C kkkm

k
∑

j=0

�

k
j

�

es(k−1)me− jm

= ||1||
ÓMk

k!
C kkkmes(k−1)m(1+ e−m)k.

Simple calculations give the needed result.

The next definition is related to the idea of quasianalytic functions and its presentation in Rudin’s book [24].

Definition 2.1. If ‖P‖0 is a seminorm in P(C) then we put

‖P‖r :=
∞
∑

k=0

1
k!
‖D(k)P‖0rk, r > 0,

‖P‖m,r :=
∞
∑

k=0

�

1
k!

�m

‖D(k)P‖0rk, m, r > 0. (2)

If m≥ 1 and ‖ · ‖0 is a submultiplicative seminorm then for every P,Q ∈ P(C) we have (we shall apply the following inequality
1
k! ≤

1
j!(k− j)! which is a consequence of the basic property of

�k
j

�

)

‖PQ‖m,r =
∞
∑

k=0

�

1
k!

�m










k
∑

j=0

�

k
j

�

D( j)PD(k− j)Q











0

rk

≤
∞
∑

k=0

k
∑

j=0

�

1
j!(k− j)!

�m−1 1
k!

�

k
j

�

‖D( j)P‖0‖D(k− j)Q‖0rk

=
∞
∑

k=0

k
∑

j=0

�

1
j!

�m

‖D( j)P‖0r j
�

1
(k− j)!

�m

‖D(k− j)Q‖0rk− j

= ‖P‖m,r · ‖Q‖m,r .

If ‖x‖m,r <∞ then ‖P‖m,r is at least a seminorm in P(C). Such a situation holds if DP = P ′ and ‖P‖0 = sup{|P(t)| : t ∈ E},
where E is a compact subset of C - ‖P‖m,r is a norm. A large class of other examples is determined by the following lemma.

Lemma 2.3. Let D be a linear derivation such that Dx = Q for some Q ∈ P(C) with degQ ≤ 2 and ‖ · ‖0 be a submultiplicative
seminorm in P(C). Then ‖x‖m,r <∞ for every m> 1 and r > 0, where ‖ · ‖m,r is defined by (2).
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Proof. First, note that for any linear derivation D, which satisfies the assumptions of this lemma and every k ∈ Z+ we have

D(k)x =
[ k−1

2 ]
∑

l=0

αk,lQ
l+1(Q′)k−2l−1(Q′′)l ,

where [a] denotes the largest integer not greater than a and the constants αk,l are defined by the following recursive relationship:

αk,0 = 1 for k ∈ Z+,αk,l = 0 for k ∈ Z+ and l >
�

k− 1
2

�

,

αk,l = (k− 2l)αk−1,l−1 + (l + 1)αk−1,l .

By induction one can prove that for every k, l we have |αk,l | ≤ k!.
Put t :=max{‖Q‖0,‖Q′‖0,‖Q′′‖0}. We obtain that for every k ∈ Z+,

‖D(k)x‖0 ≤
[ k−1

2 ]
∑

l=0

αk,l t
k ≤ kk!tk.

Since lim
k→∞

r t
k(k+1)m−2 = 0 if r, t > 0 and m> 1, we get that ||x ||m,r <∞ if r > 0 and m> 1.

Remark 1. In the case m= 1 we must assume r < 1/t to get that || · ||r is a submultiplicative seminorm. If r is sufficiently small
then, in some sense, each norm || · ||m,r is close to || · ||0.

Proposition 2.4. If || · ||0 is a given seminorm in P(C), DP = P ′ then for arbitrary m, r > 0 and for all P ∈ P(C) the A. Markov type
inequality

||P ′||m,r ≤
1
r
(deg P)m||P||m,r

holds true.

Proof. From the fact that P(k) = 0 for k > deg P, assuming deg P ≥ 1, we have

||P ′||m,r =
deg P−1
∑

k=0

�

1
k!

�m

||P(k+1)||0rk

=
1
r

deg P−1
∑

k=0

(k+ 1)m
�

1
(k+ 1)!

�m

||P(k+1)||0rk+1

≤
1
r
(deg P)m

deg P
∑

l=1

�

1
l!

�m

||P(l)||0r l ≤
1
r
(deg P)m||P||m,r .

The derivation DP = aP ′, where a ∈ C, is the only possible locally nilpotent derivation in P(C). In P(CN ), N > 1 the family
of locally nilpotent derivations is much richer, we refer to [17] where there is given a criterion. Following [17] we give a few
examples: DP = Dj P, j = 1, . . . , N , DP = D1P + · · · + DN P, DP = D1P +Q(x1)D2P and many others. For locally nilpotent
derivations an analogue of Proposition 2.4 holds.

Proposition 2.5. Let D be a locally nilpotent derivation in P(CN ). Then ‖DP‖m,r ≤
�

1
r

�

(degD P)m‖P‖m,r .

In the following theorem we shall see a motivation for considering the above classes of norms.

Theorem 2.6. The A. Markov property with an exponent m> 1 does not imply the V. Markov property.

Proof. Observe that the V. Markov property with constants A, s implies ‖P(n)‖ ≤ Ann!‖P‖ for n= deg P.
Let m> 1 and ‖P‖0 = |P(0)| and consider the norm

‖P‖m,r :=
∞
∑

k=0

�

1
k!

�m

|P(k)(0)|rk.

Then (P(C),‖ · ‖m,r) is a normed algebra. One can easily see that

‖anzn + an−1zn−1 + · · ·+ a0‖m,r =
n
∑

k=0

�

1
k!

�m−1

|ak|rk

and that Tn = zn is the n-th Chebyshev polynomial for the norm ‖ · ‖m,r . We have

‖Tn‖m,r =
�

1
n!

�m−1

rn, ‖T (n)n ‖m,r = n!.
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Hence
‖T (n)n ‖m,r/‖Tn‖m,r = (n!)mr−n

and there is no constant A such that ‖T (n)n ‖m,r/‖Tn‖m,r ≤ Ann!.
Let us also observe that by Proposition 2.1 we have

Mk(s)≥ r−k(k!)mk−ks,

(here Mk(s) are constants in inequalities ‖P(k)‖ ≤ Mk(s)(deg P)ks||P||) which gives m(‖ · ‖m,r) = m.

Remark 2. 1) We know that the conditions ‖P(n)‖ ≤ Ann!‖P‖, ‖P ′‖ ≤ M(deg P)m‖P‖ are necessary for the V. Markov property to
hold. We can formulate the following problem: are the two conditions sufficient for the V. Markov property? Let us recall that in
the case ‖P‖= ‖P‖E , where E is a compact subset of C, it is known that the A. Markov property implies the needed estimate for
n-th derivative (see [10] and [11]).

2) We have ‖(anzn + an−1zn−1 + · · ·+ a0)(k)‖m,r

=
n!

[(n− k)!]m
|an|rn−k +

n− 1
[(n− k− 1)!]m

|an−1|rn−k−1 + · · ·+ k!|ak|

=
�

n!
(n− k)!

�m

r−k
� |an|
(n!)m−1

rn + (n− 1)!
�

n− k
n!

�m

|an−1|rn−1

+ · · ·+ k!
�

(n− k)!
n!

�m

|ak|rk
�

≤
�

n!
(n− k)!

�m

r−k‖anzn + an−1zn−1 + . . . a0‖m,r .

Moreover ‖T (k)n ‖m,r/‖Tn‖m,r =
�

n!
(n−k)!

�m
r−k. Finally we get

Mn(k) = sup
deg P≤n

‖P(k)‖m,r/‖P‖m,r =
�

n!
(n− k)!

�m

r−k

= ‖T (k)n ‖m,r/‖Tn‖m,r .

Is a similar situation in other cases, that is does

sup{‖P(k)‖/‖P‖ : k ≤ deg P ≤ n}= ‖T (k)n ‖/‖Tn‖?

There is a number of deep results that gives an affirmative answer in some class of uniform norms, e.g. ‖P‖ = ‖P‖E , where
E = Dr (the Bernstein inequality), E = [a, b] (the Vladimir Markov inequality) while for E = [−b,−a]∪ [a, b] the problem seems
to be open.

A quite different situation is in the case m= 1. If ‖P ′‖ ≤ A(deg P)‖P‖, then ‖P(k)‖ ≤ Ak
�n

k

�

‖P‖, n= deg P. As a special case
of Proposition 2.4 we get ‖P ′‖r ≤

�

1
r

�

deg P‖P‖r .
Now we prove the following connection between the norms ‖ · ‖r and norms defined by the norm ‖ · ‖0.

Proposition 2.7. Let ‖ · ‖0 be a submultiplicative norm in commutative algebra A, fix an element x ∈A and put (for a fixed r > 0)

‖P‖r =
∞
∑

k=0

1
k!
‖P(k)(x)‖0rk, P ∈ P(C).

Then
sup
|ζ|≤r
‖P(x + ζ1)‖0 ≤ ‖P‖r ≤ (deg P + 1) sup

|ζ|≤r
‖P(x + ζ1)‖0. (3)

Proof. We shall use two facts: P(x + ζ1) =
∞
∑

k=0

1
k! P(k)(x)ζk and P(k)(x) = k!ρ−k 1

2π

π
∫

−π
P(x +ρei t1)e−ikt d t.

The first equality gives sup
|ζ|≤r
‖P(x + ζ1)‖0 ≤ ‖P‖r . From the second equality we get

1
k!
‖P(k)‖0 ≤ ρ−k sup

|ζ|≤ρ
‖P(x + ζ1)‖0,

which permits us to write

‖P‖r ≤
deg P
∑

k=0

(r/ρ)k sup
|ζ|≤ρ
‖P(x + ζ1)‖0

and putting ρ = r we obtain (3).
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Corollary 2.8. Assume that a submultiplicative seminorm ‖ · ‖0 is spectral (‖an‖0 = ‖a‖n
0, a ∈ A, n ∈ Z+). Then the spectral

seminorm ρr(P) = lim
n→∞

‖Pn‖1/n
r = inf

n≥1
‖Pn‖1/n

r is given by

ρr(P) = sup
|ζ|≤r
‖P(x + ζ1)‖0.

Moreover, if A= C(E), where E ⊂ C is a compact set, x = IdE then ρr(P) = ‖P‖E(r) where E(r) = {z ∈ C : dist(z, E)≤ r} is the r-th
metric hull. In particular, if E = {0} we get ρr(P) = ‖P‖Dr

.

Proposition 2.9 (C.f. [18], Thm. 3.5). If ‖ · ‖ is a spectral seminorm in P(C) that satisfies the following V. Markov type inequality

‖P(k)‖ ≤ Ak+s(n+ l)α
nkm

(k!)m−1
‖P‖ for all P ∈ Pn(C) and k ∈ Z+,

where s ∈ R, M > 0, m≥ 1, l,α≥ 0 are constants, then

‖P ′‖ ≤ A(em + 1)nm‖P‖. (4)

Proof. In the proof we shall again apply the well known inequality kk

k! ≤ ek. We have, by the Milówka identity,

‖P ′‖k ≤
�

1
k!

� k
∑

j=0

�

k
j

�

‖P‖ jAk+s(n(k− j) + l)α(n(k− j))km‖P‖k− j

≤ Ak+s(nk+ l)αemknkm
k
∑

j=0

�

k
j

�

(1− j/k)km‖P‖k

≤ Ak+s(nk+ l)αemknkm
k
∑

j=0

�

k
j

�

e− jm‖P‖k

= Ak+s(nk+ l)α(em + 1)knkm‖P‖k.

Hence
‖P ′‖ ≤ A1+s/k(em + 1)nm(nk+ l)α/k‖P‖.

Letting k→∞ we get (4), which finishes the proof.

Now we can use Propositions 2.6 and 2.10 to observe the inequality ‖P(k)‖Dr
≤ (n + 1)r−knk‖P‖Dr

which together with
Proposition 2.12 gives a version of the Bernstein inequality.

Corollary 2.10. If r > 0 is fixed then for all polynomial P we have

‖P ′‖Dr
≤ (e+ 1)r−1(deg P)‖P‖Dr

.

With the help of the Chebyshev polynomials Tn of the first kind or their derivatives we can consider the estimates for derivatives
of polynomials with respect to the uniform norm on [−1, 1]. Let (U j) j≥0 be the family of Chebyshev polynomials of the second

kind that are orthogonal on [−1,1] with respect to the measure dµ=
p

1− t2d t. We have ‖U j‖[−1,1] = j + 1, U (k)j =
1

j+1 T (k+1)
j+1

and ‖U (k)j ‖[−1,1] ≤
1

2k−1
( j+1)2k+1

k! .

We can write P(z) =
n
∑

j=0
a j(P)U j(z), where

a j(P) =
2
π

1
∫

−1

P(t)U j(t)
p

1− t2d t

with |a j(P)| ≤ ‖P‖[−1,1] (see [14], p. 35). Hence we get

‖P(k)‖[−1,1] ≤
n
∑

j=0

|a j(P)‖U
(k)
j ‖[−1,1] ≤

1
k!2k−1

n
∑

j=0

( j + 1)2k+1‖P‖[−1,1]

≤
4e2

k!2k−1
n2+2k‖P‖[−1,1].

Applying now Proposition 2.12 we obtain the following version of the A. Markov inequality.

Corollary 2.11. ‖P ′‖[−1,1] ≤
e2+1

2 (deg P)2‖P‖[−1,1].
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Remark 3. In the multivariate case we can consider the following norms

‖P‖m,r =
∑

α∈NN

1
(α1!)m1

· · ·
1

(αN !)mN
‖DαP‖0rα1

1 · · · r
αN
N ,

where m= (m1, . . . , mN ), m j > 0, r= (r1, . . . , rN ), r j > 0. We can easily get

‖Dj P‖m,r ≤
1
r j
(deg j P)m j‖P‖m,r, j = 1, . . . , N ,

where deg j P = degDj
P ≤ deg P. If m j ≥ 1, j = 1, . . . , N then ‖P‖m,r is a submultiplicative seminorm. We can deal with the

spectral radius and some other problems as in the case presented above.

3 Testing operators for the A. Markov property.

The family of operators T = {S j(D1, . . . , DN ), j = 1, . . . s}, where each S j is a homogeneous polynomial, is a testing family for
the A. Markov property if ‖S j(D1, . . . , DN )P‖ ≤ M j(deg P)m j‖P‖, j = 1, . . . , s implies ‖Dj P‖ ≤ M(deg P)m‖P‖, j = 1, . . . , N . If
m= m j/deg S j , j = 1, . . . s, such a family will be called a strong testing family.

Proposition 3.1 ([7]). a) Let T = {(D1)k1 , . . . , (DN )kN }, where k j ∈ Z+, k j ≥ 2, 1 ≤ j ≤ N is a testing family in the case of the
uniform norm on a compact set E. This is a strong testing family.

b) An example of a testing family, which consists of exactly one element is given by T = D1D2 . . . DN . In general, it is not a strong
testing family.

One can ask about the existence of a strong testing family, which consists of exactly one element. The situation is better if we
consider E ⊂ RN .

Theorem 3.2. Let E be a compact subset of RN , N ≥ 2. If k ∈ Z+ then T = {∆2k = (D1)2k + · · ·+ (DN )2k} is a strong testing family.
In particular the Laplace operator gives a strong testing family.

Proof. Assume that ‖(D1)2k P + · · ·+ (DN )2k P‖E ≤ A(deg P)m1‖P‖E .
First we consider polynomials with real coefficients. We can write

N
∑

l=1

(Dl P)
2k =

1
(2k)!

2k
∑

j=0

(−1) j
�

2k
j

�

P j∆2k(P
2k− j).

By similar arguments as in the proof of Proposition 2.12 we get

‖Dj P‖E ≤













�

N
∑

l=1

(Dl P)
2k

�
1

2k













E

≤ M(deg P)
m1
2k ‖P‖E , j = 1, . . . , N ,

where M = A
1

2k (1+ e−
m1
2k ((2k)m1/(2k)!)

1
2k .

If P = P1 + iP2, where P1 and P2 have real coefficients, then we can consider the family of polynomials Pθ = cosθ P1 +
sinθ P2, θ ∈ [0, 2π]. By the previous case we obtain ‖Dj Pθ‖E ≤ M(deg P)

m1
2k ‖Pθ‖E . Since

sup
θ∈[0,2π]

|Dj Pθ |= |Dj P|, sup
θ∈[0,2π]

|Pθ |= |P|,

we have ‖Dj P‖E ≤ M(deg P)
m1
2k ‖P‖E , j = 1, . . . , N .
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[4] M. Baran, L. Białas-Cież, B. Milówka,On the best exponent in Markov’s inequality, Potential Anal. 38:635-651, 2013.

[5] M. Baran, A. Kowalska, Sets with the Bernstein and generalized Markov properties, Ann. Polon. Math. 111(3):259–270, 2014.

[6] M. Baran, A. Kowalska,Asymptotic Markov’s exponent, 2015, in preparation.

[7] M. Baran, B. Milówka, P. Ozorka, Markov’s property for k-th derivative, Ann. Polon. Math. 106:31–40, 2012.

[8] M. Baran, P. Ozorka, Derivation operators and Markov’s type property for k-th iterates, 2015, in preparation.

Dolomites Research Notes on Approximation ISSN 2035-6803



Baran · Kowalska · Milówka · Ozorka 110
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