# A Simple Recipe for Modelling a $d$-cube by Lissajous curves 

Len Bos ${ }^{a}$<br>Communicated by M. Vianello

## Abstract

We give a simple recipe for Lissajous curves that for (certain) numerical purposes can serve as a proxy for the cube $[-1,1]^{d}$.

For $\mathbf{a} \in \mathbb{Z}_{>0}^{d}$ we let

$$
\begin{equation*}
\ell_{\mathbf{a}}(t):=\left(\cos \left(a_{1} t\right), \cos \left(a_{2} t\right), \cdots, \cos \left(a_{d} t\right)\right), t \in \mathbb{R} \tag{1}
\end{equation*}
$$

denote the associated Lissajous curve with frequencies $a_{1}, \cdots, a_{d}$. We note that such curves are given by the fundamental parameter interval $t \in[0, \pi]$.

The recent articles [2] and [3] discuss the use of such Lissajous curves as a proxy for the cube $[-1,1]^{d}$, for the purposes of quadrature, polynomial approximation of a function $f \in C[-1,1]^{d}$ and so-called hyperinterpolation. An emphasis of these articles is on the optimality of the fequencies a. In this paper we give a simple recipe for choosing the frequencies that, although not optimal, can be used for all of the above purposes. We remark that a reader interested in this topic might also consult the very general results of Dencker and Erb [6].
Recipe: Let $n_{1}, n_{2}, \cdots, n_{d} \in \mathbb{Z}_{>0}$ be pairwise co-prime positive integers and let $N:=\prod_{i=1}^{d} n_{i}$. We let

$$
\begin{equation*}
N_{i}:=\frac{N}{n_{i}}, 1 \leq i \leq d \tag{2}
\end{equation*}
$$

and use the notation

$$
\mathbf{a}_{\mathbf{n}}:=\left(N_{1}, N_{2}, \cdots, N_{d}\right)
$$

to denote the $d$-tuple of such frequencies.
Example. For $d=2$ and $n \in \mathbb{Z}_{>0}$, the choice of $n_{1}=n+1$ and $n_{2}=n$ results in the frequencies $\mathbf{a}_{\mathbf{n}}=(n, n+1)$, i.e., those of the underlying curve for the Padova points (cf. [1]).

Below we show the plots of two 3d Lissajous curves. The one on the left is chosen according to the recipe with $n_{1}=3, n_{2}=4$ and $n_{3}=5$. The one on the right with the given frequencies. One sees that the first curve is well-distributed within $[-1,1]^{3}$ while the second exhibits a "concentration" phenomenom. Care must indeed be taken with the choice of the frequncies!

We now proceed to give the properties of Lissajous curves selected according to our Recipe. We use the notation $K:=[-1,1]^{d}$. Proposition 0.1. The Lissajous curves $\ell_{\mathrm{a}_{\mathrm{n}}}(t)$ are well positioned with respect to the Dubiner distance. Specifically, for every $\mathbf{x} \in K$

$$
\min _{0 \leq t \leq \pi} d_{K}\left(\mathbf{x}, \ell_{\mathrm{a}_{\mathrm{n}}}(t)\right) \leq \pi \frac{1}{\min _{1 \leq i \leq d} n_{i}}
$$

Here $d_{K}(\mathbf{x}, \mathbf{y})$ is the Dubiner distance

$$
\begin{aligned}
d_{K}(\mathbf{x}, \mathbf{y}) & :=\sup \left\{\frac{1}{\operatorname{deg}(p)}\left|\cos ^{-1}(p(\mathbf{y}))-\cos ^{-1}(p(\mathbf{x}))\right|: \operatorname{deg}(p) \geq 1,\|p\|_{K} \leq 1\right\} \\
& =\max _{1 \leq j \leq d}\left|\cos ^{-1}\left(y_{j}\right)-\cos ^{-1}\left(x_{j}\right)\right|
\end{aligned}
$$

as discussed and shown in [4, 5].

[^0]


Figure 1: Two Lissajous Curves

Proof. Write $\mathbf{x} \in[-1,1]^{d}$ as $\mathbf{x}=\cos (\boldsymbol{\theta}), \theta_{j} \in[0, \pi], 1 \leq j \leq d$. Let $m_{i} \in \mathbb{Z}_{\geq 0}, 1 \leq i \leq d$, be such that

$$
\left|\frac{2 \pi m_{i}}{n_{i}}-\theta_{i}\right| \leq \frac{\pi}{n_{i}}, \frac{2 \pi m_{i}}{n_{i}} \in[0, \pi], 1 \leq i \leq d .
$$

Note that then $m_{i}<n_{i}$. Since by assumption the $n_{i}$ are co-prime, the Chinese Remainder Theorem guarantees the existence of $m \in \mathbb{Z}$ such that

$$
m \equiv m_{i} \bmod n_{i}, \quad 1 \leq i \leq d .
$$

We set $t:=2 \pi m / N$. Then

$$
\begin{aligned}
N_{i} t & =\frac{N}{n_{i}}\left(\frac{2 \pi m}{N}\right) \\
& =2 \pi \frac{m}{n_{i}} \\
& =2 \pi\left(\frac{m_{i}+k_{i} n_{i}}{n_{i}}\right) \text { for some } k_{i} \in \mathbb{Z} \\
& =\frac{2 \pi m_{i}}{n_{i}}+2 k_{i} \pi .
\end{aligned}
$$

Hence, for this value of $t$,

$$
\begin{aligned}
d_{K}\left(\mathbf{x}, \ell_{\mathbf{a}_{\mathrm{n}}}(t)\right) & =\max _{1 \leq i \leq d}\left|\cos ^{-1}\left(\cos \left(N_{i} t\right)\right)-\cos ^{-1}\left(x_{j}\right)\right| \\
& =\max _{1 \leq i \leq d}\left|\cos ^{-1}\left(\cos \left(\frac{2 \pi m_{i}}{n_{i}}+2 k_{i} \pi\right)\right)-\cos ^{-1}\left(x_{j}\right)\right| \\
& =\max _{1 \leq i \leq d}\left|\cos ^{-1}\left(\cos \left(\frac{2 \pi m_{i}}{n_{i}}\right)\right)-\cos ^{-1}\left(x_{j}\right)\right| \\
& =\max _{1 \leq i \leq d}\left|\frac{2 \pi m_{i}}{n_{i}}-\theta_{i}\right| \\
& \leq \max _{1 \leq i \leq d} \frac{\pi}{n_{i}} \\
& =\pi \frac{1}{\min _{1 \leq i \leq d} n_{i}} .
\end{aligned}
$$

Thus, substituting $t$ by $t \bmod \pi$, if necessary, we have our result.

Proposition 0.2. Suppose that we have a sequence of indices $\mathbf{n}^{(n)} \in \mathbb{Z}_{>0}^{d}$ which satisfy the condition of the Recipe and are such that there is some constant $\alpha>2$ such that

$$
\min _{1 \leq i \leq d} n_{i}^{(n)} \geq \alpha n, \quad n=1,2, \cdots .
$$

Then the collection of Lissajous curves $\left\{\ell_{a_{n}^{(n)}}: n=1,2, \cdots\right\}$ forms a Norming Set for polynomials on $K=[-1,1]^{d}$, in that for all polynomials $p(\mathbf{x})$, setting $n=\operatorname{deg}(p)$,

$$
\max _{\mathbf{x} \in K}|p(\mathbf{x})| \leq \sec (\pi / \alpha) \max _{0 \leq t \leq \pi}\left|p\left(\ell_{\mathbf{a}_{\mathrm{n}}^{(n)}}(t)\right)\right| .
$$

Proof. Assume for simplicity that $\|p\|_{K}=1$ and let $\mathbf{x} \in K$ be a point such that $|p(\mathbf{x})|=1$. Multiplying by -1 if necessary, we may assume that $p(\mathbf{x})=1$. By Proposition 0.1 there is a value of $t \in[0, \pi]$ such that for $\mathbf{y}:=\ell_{\mathbf{n}^{(n)}}(t)$,

$$
d_{K}(\mathrm{x}, \mathrm{y}) \leq \frac{\pi}{\alpha n},
$$

which implies that

$$
\frac{1}{n}\left|\cos ^{-1}(p(\mathbf{y}))-\cos ^{-1}(p(\mathbf{x}))\right| \leq \frac{\pi}{\alpha n}
$$

But, as $p(\mathbf{x})=1, \cos ^{-1}(p(\mathbf{x}))=0$ and so we have

$$
\cos ^{-1}(p(\mathrm{y})) \leq \frac{\pi}{\alpha}<\frac{\pi}{2}
$$

Then, since the inverse cosine function is monotonically decreasing, we obtain

$$
p(\mathrm{y}) \geq \cos (\pi / \alpha)>0
$$

and hence,

$$
\|p\|_{K}=1 \leq \sec (\pi / \alpha) p(\mathbf{y}) \leq \sec (\pi / \alpha) \max _{0 \leq t \leq \pi}\left|p\left(\ell_{a_{\mathrm{n}}^{(n)}}(t)\right)\right| .
$$

There is also a quadrature formula with respect to the product Chebyshev measure:

$$
d \mu_{K}:=\frac{1}{\pi^{d}} \prod_{j=1}^{d} \frac{1}{\sqrt{1-x_{j}^{2}}} d x_{j} .
$$

Proposition 0.3. For the frequency tuple $\mathbf{n} \in \mathbb{Z}_{>0}^{d}$ satisfying the condition of the Recipe, let

$$
m:=\min _{1 \leq i \neq j \leq d} n_{i}+n_{j}
$$

Then for all polynomials $p(\mathbf{x})$ with $\operatorname{deg}(p) \leq m-1$,

$$
\begin{equation*}
\int_{[-1,1]^{d}} p(\mathbf{x}) d \mu_{K}=\frac{1}{\pi} \int_{0}^{\pi} p\left(\ell_{\mathrm{a}_{\mathrm{n}}}(t)\right) d t . \tag{3}
\end{equation*}
$$

Proof. Proposition 1 of [3] shows that there is quadrature formula (3) if and only if

$$
\nexists 0 \neq \mathbf{b} \in \mathbb{Z}^{d}, \sum_{i=1}^{d}\left|b_{i}\right| \leq m
$$

such that

$$
\sum_{i=1}^{d} N_{i} b_{i}=0
$$

i.e., there are no "small" solutions of the homogeneous linear diophantine equation $\sum_{i=1}^{d} N_{i} x_{i}=0$.

Let us suppose then that for $\mathbf{b} \in \mathbb{Z}^{d}, \sum_{i=1}^{d} N_{i} b_{i}=0$. We will show that then necessarily $\sum_{i=1}^{d}\left|b_{i}\right| \geq m$. To see this, first note that, by construction $n_{i}$ divides evenly into $N_{j}$, for $j \neq i$ while $\operatorname{gcd}\left(n_{i}, N_{i}\right)=1$. Then write, for each $1 \leq i \leq d$,

$$
N_{i} b_{i}=-\sum_{j \neq i} N_{j} b_{j} .
$$

Since $n_{i}$ divides into the right it must also divide into the left and hence, as $n_{i}$ and $N_{i}$ are co-prime, $b_{i}$ is divisible by $n_{i}$. Consequently, if $b_{i} \neq 0,\left|b_{i}\right| \geq n_{i}, 1 \leq i \leq d$. Since clearly, at least two of the $b_{i}$ are non-zero, we have

$$
\sum_{i=1}^{d}\left|b_{i}\right| \geq \min _{1 \leq i \neq j \leq d} n_{i}+n_{j}=m,
$$

as claimed.
Corollary 0.4. If $\mathbf{n} \in \mathbb{Z}_{>0}^{d}$ is a tuple satisfying the condition of the Recipe and is such that $n_{i} \geq n, 1 \leq i \leq d$, then there is a Quadrature Formula (3) for $m=2 n$.
Proof. We need only note that then in Proposition $0.3 m \geq 2 n+1$, as we can have at most one index $n_{i}=n$.
We remark that once we have a quadrature rule with accuracy $2 n$ we can discretize the univariate integral in (3) to obtain a discrete Hyperinterpolation formula. We refer the reader to [2, 3] for further details.

We also remark that if the $n_{i}$ are all $O(n)$ then the frequencies $N_{i}$ are all $O\left(n^{d-1}\right)$ and this order is optimal to have a Quadrature Formula (3), as also discussed in [2, 3].

## References

[1] L. Bos, M. Caliari, S. De Marchi, M. Vianello and Y. Xu, Bivariate Lagrange interpolation at the Padua points: the generating curve approach, J. Approx. Theory 143 (2006), 15-25.
[2] L. Bos, S. De Marchi and M. Vianello, Trivariate polynomial approximation on Lissajous curves, IMA J. Numer. Anal. 37 (2017), 519-541.
[3] L. Bos, S. De Marchi and M. Vianello, Polynomial approximation on Lissajous curves in the $d$-cube, Appl. Numer. Math., published online January 26, 2017.
[4] L. Bos, N. Levenberg and S. Waldron, Metrics Associated to Multivariate Polynomial Inequalities, in Advances in Constructive Approximation, Vanderbilt 2003, M. Neamtu and E.B. Saff eds., Nashboro Press, 2004.
[5] L. Bos, N. Levenberg and S. Waldron, Pseudometrics, Distances and Multivariate Polynomial Inequalities, J. Approx. Theory 153 (2008), 80-96.
[6] P. Dencker and W. Erb, Multivariate polynomial interpolation on Lissajous-Chebyshev curves, arXiv:1511.04564v1.


[^0]:    ${ }^{a}$ Department of Computer Science, University of Verona (Italy).

