
Volume 10 · 2017 · Pages 43–50

An Explicit Example of Leave-One-Out Cross-Validation
Parameter Estimation for a Univariate Radial Basis Function
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Abstract

We give an explicit example for the selection of the shape parameter for a certain univariate radial basis
function (RBF) interpolation problem.

1 Introduction
Radial Basis Function interpolation (RBF) is an important method of (multivariate) interpolation of typically scattered data,
which has been much used in applications. The basic form of RBF is as follows. Given a basis function g : R+→ R, the associated
RBF interpolant of a data set {(x j , y j)} ⊂ Rd+1 with n “sites” x j ∈ Rd and function values y j ∈ R, is the function of the form

s(x) =
n
∑

j=1

ai g(|x − x j |) such that s(x i) = yi , 1≤ i ≤ n (if it exists). Typically the basis function g has a so-called shape parameter,

the value of which has an important effect on both the quality of the resulting interpolant as well as the numerical conditioning
of associated interpolation linear system to be solved. For example, for the Gaussian basis function

gλ(x) := exp(−λ‖x‖2
2), λ > 0

small λ≈ 0 gives a basis function nearly constant in a neighbourhood of the origin, while large λ≈∞ gives a basis function, for
all intents, a delta function supported at the origin.

A discussion of practical methods for choosing the shape parameter may be found, for example, in [5, Chapt. 17], where it
may be verified that the problem of selecting the shape parameter is indeed important and, in general, rather difficult. One may
also consult the monographs [4, 7] for more on the theory of RBF.

Given this typical difficulty of analyzing multivariate interpolation procedures, it is often useful to look more carefully at
the univariate case for some suggestion as to how the general case might behave. The goal of this paper is to give an explicit
univariate example of one of the most commonly used procedures for selecting an “optimal” shape parameter, the so-called
Leave-One-Out Cross-Validation procedure, in the hope that it sheds some light on what happens more generally.

2 Leave-One-Out Cross-Validation (LOOCV)
Consider RBF interpolation with a basis function gλ : R+→ R dependent on some shape parameter λ. For a collection of sites
X = {x1, . . . , xn} ⊂ Rd we let

X j := X\{x j}, j = 1, 2, . . . , n

i.e., X j is the set of sites with x j left out. Then, let

s j(x) =
∑

k 6= j

a( j)k gλ(|x − xk|)

such that
s j(xk) = yk, k 6= j.

In other words, s j is the RBF interpolant for the sites X j . We may think of the value s j(x j) as the predicted value of the data at X j
for the left out site x j , and e j := y j − s j(x j), 1≤ j ≤ n, measures its discrepancy with the value in the full dataset.

LOOCV selects the parameter λ to minimize the 2-norm of the vector of discrepancies e j , i.e., to minimize

E(λ) :=
n
∑

j=1

|e j |2.
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Our example will be the LOOCV procedure applied to the functions

gλ(x) := aeλx + be−λx , λ, a, b ∈ R (1)

and sites
0= x1 < x2 < x3 < . . .< xn = 1. (2)

RBF interpolation by such gλ was considered in [1] where it is shown (Theorem 1) that the determinant of the associated
interpolation matrix is

det
�

[gλ(|x i − x j |)]1≤i, j≤n

�

=

(b− a)n−2e−2λ
∑n

j=1 x j

�

n−1
∏

j=1

(e2λx j+1 − e2λx j )

�

�

b2e2λx1 − a2e2λxn
�

.

Naturally, we must restrict the values of a, b ∈ R so that this determinant is non-zero and hence the interpolation problem has a
unique solution.

Given this restriction, it is then shown in [1, Theorem 5] that the cardinal functions, uk (i.e., those linear combinations of the
gλ(| · −x i |) with the property that uk(x i) = δik) are given by

uk(x) = eλ(xk−x)











e2λx−e2λxk−1

e2λxk−e2λxk−1
if x ∈ [xk−1, xk]

e2λx−e2λxk+1

e2λxk−e2λxk+1
if x ∈ [xk, xk+1]

0 otherwise

, 2≤ k ≤ n− 1,

u1(x) = eλ(x1−x)

¨

e2λx−e2λx2

e2λx1−e2λx2
if x ∈ [x1, x2]

0 otherwise
,

un(x) = eλ(xn−x)

¨

e2λx−e2λxn−1

e2λxn−e2λxn−1
if x ∈ [xn−1, xn]

0 otherwise

independently of the values of a and b!
This allows us, for convenience’s sake, to take b = −a with a = 1/(2λ) for which our basis function (1) becomes

gλ(x) =
sinh(λx)
λ

.

Note that
lim
λ→0

gλ(x) = x

and the interpolation becomes one by piecewise linear functions. We will therefore let g0(x) := x .
Remark 1. It is worth noting at this point that as λ increases the cardinal functions become more and more like delta functions.
Indeed, it is easy to verify that

lim
λ→∞

uk(x) =

�

1 for x = xk

0 for x 6= xk.

We will actually set x1 = 0 and xn = 1 and select the parameter λ according to the LOOCV principle of minimizing

E(λ) :=
n−1
∑

j=2

|e j |2

where
e j := s j(x j)− y j , 2≤ j ≤ n− 1

and s j is the interpolant of the sites X j , explicitly

0= x0 < x1 < . . .< x j−1 < x j+1 < . . .< xn = 1. (3)

To calculate the values s j(x j) we will use the formulas for the cardinal functions uk given above. Indeed, let u( j)k be the kth
cardinal function for the sites (3). Then

s j(x) =
n
∑

k=0,k 6= j

yku( j)k (x)

and, in particular, due to the compact support of the cardinal functions,

s j(x j) = y j−1u( j)j−1(x j) + y j+1u( j)j+1(x j).

It is easily verified that then

s j(x j) = y j−1e−λh j−1
e2λh j − 1

e2λh j − e−2λh j−1
+ y j+1eλh j

1− e−2λh j−1

e2λh j − e−2λh j−1
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where, as usual, we have set h j := x j+1 − x j , 1≤ j ≤ n− 1. It follows that

e j := y j −
�

y j−1e−λh j−1
e2λh j − 1

e2λh j − e−2λh j−1
+ y j+1eλh j

1− e−2λh j−1

e2λh j − e−2λh j−1

�

(4)

and

E(λ) =
n−1
∑

j=2

�

y j−1e−λh j−1
e2λh j − 1

e2λh j − e−2λh j−1
+ y j+1eλh j

1− e−2λh j−1

e2λh j − e−2λh j−1
− y j

�2

. (5)

We note that, since the interchange of a and b in the definition (1) of gλ is equivalent to replacing λ by −λ, the formulas for uk
are invariant under this replacement, λ by −λ. Consequently, E(−λ) = E(λ) and E(λ) is an even function.
Remark 2. In case the data comes from y(x) = sinh(αx) for some α ∈ R, we note that then

y(x) = αgα(x) = αgα(|x − x1|), x ∈ [0,1],

i.e., y is in the span of the translates g(| · −x j |) and so its interpolant is itself. Consequently E(α) = 0 and λ= α is the optimal
parameter. Further, as the uk(x) do not depend on the constants a, b in (1), we also have, for example, that the optimal λ = α for
y(x) = exp(αx).
Remark 3. The optimal λ need not be unique. For example, if we take n= 3 with y1 = y3 = 0 then E(λ) = (0− y2)2 is constant
in λ.
Remark 4. An optimal λ may not exist. For example, if we take n= 3 with y1 = y3 = +1 and y2 = −1 then

E(λ) =

�

e−λh1
e2λh2 − 1

e2λh2 − e−2λh1
+ eλh2

1− e−2λh1

e2λh2 − e−2λh1
+ 1

�2

.

As the terms are all positive E(λ)> 1 while, as is easily verified, limλ→∞ E(λ) = 1 (cf. Remark 1).

2.1 The case of a positive concave function

Theorem 2.1. Suppose that y(x)≥ 0 is concave (y ′′(x)≤ 0) for x ∈ [0, 1]. Then λ = 0 is an optimal LOOCV parameter, for any set
of sites (2).

Proof. The discrepancy at x j is given by e j , (4). For λ= 0 this becomes

e(0)j := y j −
�

y j−1

h j

h j−1 + h j
+ y j+1

h j−1

h j−1 + h j

�

. (6)

We claim that for 2≤ j ≤ (n− 1),
e j ≥ e(0)j (≥ 0 since y(x) is concave).

To see this, first note that

e j ≥ e(0)j

⇐⇒ y j −
�

y j−1e−λh j−1
e2λh j − 1

e2λh j − e−2λh j−1
+ y j+1eλh j

1− e−2λh j−1

e2λh j − e−2λh j−1

�

≥ y j −
�

y j−1

h j

h j−1 + h j
+ y j+1

h j−1

h j−1 + h j

�

⇐⇒ y j−1

h j

h j−1 + h j
+ y j+1

h j−1

h j−1 + h j

≥ y j−1e−λh j−1
e2λh j − 1

e2λh j − e−2λh j−1
+ y j+1eλh j

1− e−2λh j−1

e2λh j − e−2λh j−1
.

Since, by assumption, y j±1 ≥ 0, for this it suffices to show that

h j

h j−1 + h j
≥ e−λh j−1

e2λh j − 1

e2λh j − e−2λh j−1
(7)

and
h j−1

h j−1 + h j
≥ eλh j

1− e−2λh j−1

e2λh j − e−2λh j−1
. (8)

To see (7). set x := λh j−1 and y := λh j . Then
h j

h j−1 + h j
=

y
x + y
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while

e−λh j−1
e2λh j − 1

e2λh j − e−2λh j−1
=

ex+2y − ex

e2(x+y) − 1

≤
y

x + y
(by Lemma 2.2 below)

=
h j

h j−1 + h j
.

Similarly, for (8), set x := λh j and y := λh j−1 so that

eλh j
1− e−2λh j−1

e2λh j − e−2λh j−1
=

ex+2y − ex

e2(x+y) − 1

≤
y

x + y
(by Lemma 2.2 below)

=
h j−1

h j−1 + h j
.

�
Lemma 2.2. For all x , y > 0,

e2y+x − ex

e2(x+y) − 1
≤

y
x + y

.

Proof. This holds iff

e2y+x − ex

y
≤

e2(x+y) − 1
x + y

⇐⇒ ex e2y − 1
y

≤
e2(x+y) − 1

x + y

⇐⇒
e2y − 1

y
≤ e−x e2(x+y) − 1

x + y

⇐⇒ h(y)≤ e−x h(x + y)

for h(t) := (e2t − 1)/t.
Hence consider, for a fixed y > 0,

f (x) := e−x h(x + y).

We need to show that f (x)≥ h(y) = f (0), x ≥ 0, i.e., that the minimum of f on [0,∞) is f (0). To see this we calculate

f ′(x) = −e−x h(x + y) + e−x h′(x + y)
= e−x{h′(x + y)− h(x + y)}.

But by Lemma 2.3, h′(x + y)≥ h(x + y) and so f ′(x)≥ 0 and f is increasing on [0,∞). �
Lemma 2.3. Let

h(t) :=
e2t − 1

t
(with h(0) := limt→0 h(t) = 2). Then, for t ≥ 0, h′(t)≥ h(t).

Proof. We calculate

h′(t) =
2te2t − e2t + 1

t2
.

Hence h′(t)≥ h(t)

⇐⇒
(2t − 1)e2t + 1

t2
≥

e2t − 1
t

⇐⇒ (2t − 1)e2t + 1≥ t(e2t − 1)

⇐⇒ (t − 1)e2t + 1≥ −t

⇐⇒ (t − 1)e2t + 1+ t ≥ 0.

Now, if t ≥ 1, (t − 1)≥ 0 and this latter inequality is clearly true. On the other hand, if 0≤ t < 1, then (t − 1)< 0, and

(t − 1)e2t + 1+ t ≥ 0

⇐⇒ 1+ t ≥ (1− t)e2t

⇐⇒
1+ t
1− t

≥ e2t ,

which is true by Lemma 2.4. �
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Lemma 2.4. For 0≤ t < 1,

e2t ≤
1+ t
1− t

.

Proof. The Taylor series for e2t is

e2t = 1+
∞
∑

k=1

2k

k!
tk.

while the Taylor series for (1+ t)/(1− t) is

1+ t
1− t

=
2

1− t
− 1

= 2
∞
∑

k=0

tk − 1

= 1+
∞
∑

k=1

2tk.

Now it is easy to confirm by induction that 2k/k!≤ 2, k = 1,2, . . . . Hence, comparing Taylor series, we are done. �

2.2 The case of equally spaced sites

Here we consider the sites x j := ( j − 1)h, 1≤ j ≤ n for h := 1/(n− 1). In this the e j simplify to

e j = y j −
1

eλh + e−λh

�

y j−1 + y j+1

	

= y j −
1
2

sech(λh)
�

y j−1 + y j+1

	

and

E(λ) =
n−1
∑

j=2

�

y j −
1
2

sech(λh)
�

y j−1 + y j+1

	

�2

.

Since, as noted previously, E(−λ) = E(λ) we minimize over the interval [0,∞). We easily calculate

E′(λ) = h sech(λh)tanh(λh)

×
n−1
∑

j=2

�

y j −
1
2

sech(λh)
�

y j−1 + y j+1

	

�

�

y j−1 + y j+1

	

= h sech(λh)tanh(λh)

×

¨

n−1
∑

j=2

y j(y j−1 + y j+1)−
1
2

sech(λh)
n−1
∑

j=2

(y j−1 + y j+1)
2

«

= h sech(λh)tanh(λh)
�

A−
1
2

sech(λh)B
�

where we have set

A :=
n−1
∑

j=2

y j(y j−1 + y j+1) and B :=
n−1
∑

j=2

(y j−1 + y j+1)
2.

First note that h sech(λh)tanh(λh) = 0 iff λ= 0 which is already an endpoint of our interval. The case of B = 0 is a bit special.
For then, for λ > 0, sgn(E′(λ)) = sgn(A). Hence, then, λ= 0 is the minimum if A> 0, there is no minimum if A< 0 and E(λ) is
constant if A= 0.

Suppose then that B 6= 0. Then, as B > 0 and sech(t)≤ 1, if A≥ B/2 then E′(λ)> 0 for λ > 0 and λ = 0 is the unique optimal
parameter.

In case A≤ 0 then E′(λ)< 0 for λ > 0 and again there is no minimum on [0,∞).
Otherwise, in case 0< A< B/2 then there is a critical point given by

sech(λh) = 2A/B, λ=
1
h

sech−1(2A/B)

which must necessarily be the optimum λ.
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If we let n→∞ we may observe that for y(x) ∈ C2[0, 1],

2A
B
=

2
∑n−1

j=2 y j(y j−1 + y j+1)
∑n−1

j=2(y j−1 + y j+1)2

=
2h
∑n−1

j=2 y j(y j−1 + y j+1)

h
∑n−1

j=2(y j−1 + y j+1)2

=
4
∫ 1

0
(y(x))2d x + 2h2

∫ 1

0
y(x)y ′′(x)d x +O(h3)

4
∫ 1

0
(y(x))2 + 4h2

∫ 1

0
y(x)y ′′(x)d x +O(h3)

=
1+ 1

2 h2
∫ 1

0
y(x)y ′′(x)d x/

∫ 1

0
(y(x))2d x +O(h3)

1+ h2
∫ 1

0
y(x)y ′′(x)d x/

∫ 1

0
(y(x))2d x +O(h3)

= 1−
h2

2

∫ 1

0
y(x)y ′′(x)d x
∫ 1

0
(y(x))2d x

+O(h3).

In the case that
∫ 1

0

y(x)y ′′(x)d x ≥ 0

this expression is at most 1 (for h sufficiently large). Assuming this to be the case and using the fact that

sech−1(t) = log

�

1+
p

1− t2

t

�

,

we obtain that, for large n the optimal parameter is then

λ=

√

√

√

√

∫ 1

0
y(x)y ′′(x)d x
∫ 1

0
(y(x))2d x

+O(h).

3 Comparison with a Maximum Likelihood Estimate
In the context of Kriging, in which RBF interpolation is embedded in a statistical context, it has been suggested to use a Maximum
Likelihood Estimate (MLE) for the optimal parameter. Here, the interpolation matrix R ∈ Rn×n given by R = [gλ(|x i − x j |)]1≤i, j≤n,
is interpreted as a covariance matrix for a certain family of n random variables. As such R is assumed to be positive definite, and
then the MLE parameter turns out be the λ (see e.g. [6]) for which

m(λ) := |det(R)|1/n|y tR−1 y| (9)

is a minimum.
In the case of our example, the interpolation matrix is not positive definite (it is however conditionally definite on a (n− 1)-

dimensional subspace) and hence the statistical interpretation of Kriging does not directly apply. However, one may nevertheless
attempt to minimize the expression (9) and compare with the LOOCV parameter. Indeed doing so reveals an interesting relation
between the two approaches. We concentrate on the case of equally spaced sites, x j = ( j − 1)h, 1≤ j ≤ n, h := 1/(n− 1).

First note that from Propositions 3.1 and 3.2 of [1] we have then that

R−1 =
λ

2sinh(hλ)
×



















− sinh((1−h)λ)
sinh(λ) 1 0 · · · 0 sinh(hλ)

sinh(λ)
1 −2cosh(hλ) 1 0 · · · 0
0 1 −2 cosh(hλ) 1 · · · 0
· · ·
· · ·
0 · · · 0 1 −2cosh(hλ) 1

sinh(hλ)
sinh(λ) 0 · · · 0 1 − sinh((1−h)λ)

sinh(λ)



















.
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Let M :=
2sinh(hλ)

λ
R−1 be the above matrix. We caluclate

y t M y = y1

§

−
sinh((1− h)λ)

sinh(λ)
y1 + y2 +

sinh(hλ)
sinh(λ)

yn

ª

+
n−1
∑

i=2

yi {yi−1 − 2 cosh(hλ)yi + yi+1}

+ yn

§

sinh(hλ)
sinh(λ)

y1 + yn−1 −
sinh((1− h)λ)

sinh(λ)
yn

ª

= hy1

§

y2 − y1

h
+

1
h

�

1−
sinh((1− h)λ)

sinh(λ)

�

y1 +
sinh(hλ)
h sinh(λ)

yn

ª

+ h2
n−1
∑

i=2

§

yi
yi−1 − 2yi + yi+1

h2
+ 2y2

i

�

1− cosh(hλ)
h2

�ª

+ hyn

§

sinh(hλ)
h sinh(λ)

y1 +
yn−1 − yn

h
+

1
h

�

1−
sinh((1− h)λ)

sinh(λ)

�

yn

ª

.

Then taking the limit as h→ 0+, we see that

lim
h→0+

1
h

y t M y = y(0)
�

y ′(0) +λ coth(λ)y(0) +
λ

sinh(λ)
y(1)

�

+

∫ 1

0

y(x)y ′′(x)d x −λ2

∫ 1

0

y2(x)d x

+ y(1)
�

−y ′(1) +λ coth(λ)y(1) +
λ

sinh(λ)
y(0)

�

.

Now, notice that m(λ) being a positive value will be minimized if for some λ, y tR−1 y = 0, or, equivalently, y t M y = 0. If we
were to ignore the boundary terms involving the values of y(x) and y ′(x) at x = 0, 1 this would happen (approximately) when

∫ 1

0

y(x)y ′′(x)d x −λ2

∫ 1

0

y2(x)d x = 0,

i.e., for

λ=

√

√

√

√

∫ 1

0
y(x)y ′′(x)d x
∫ 1

0
(y(x))2d x

,

i.e., for essentially the same value as the LOOCV parameter in this circumstance!
However, the boundary terms do alter this optimal value of the parameter. In Figure 1 below we give the plots of the resulting

interpolants for the LOOCV parameter (λ = 1.000658) and the MLE estimate computed numerically (λ = 2.563091) and n = 13.
The MLE interpolant is noticably worse. However, we emphasize that as R is not positive definite the MLE approach is technically
not applicable. It is nontheless interesting, that apart from the boundary effects the two approaches provide the same parameter
estimate, in this circumstance.

4 Conclusions
We have given a univariate example where it is possible to give explicit values for the optimal LOOCV parameter for RBF
interpolation. We do not claim that this is a practical example – we give it only in the hope that it may provide some small insight
into the difficult general problem of RBF parameter selection.
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