

Dolomites Research Notes on Approximation

Volume 11 · 2018 · Pages 37-42

On the Uniqueness of an Orthogonality Property of the Legendre Polynomials

L. Bos^{*a*} · A.F. Ware^{*b*}

Communicated by Marco Vianello

Abstract

Recently [1] gave a remarkable orthogonality property of the classical Legendre polynomials on the real interval [-1, 1]: polynomials up to degree *n* from this family are mutually orthogonal under the arcsine measure weighted by the degree-n normalized Christoffel function. We show that the Legendre polynomials are (essentially) the only orthogonal polynomials with this property.

Introduction 1

Let $\Pi_n(\mathbb{R})$ denote the real univariate polynomials of degree at most n and suppose that μ is a probability measure supported on the interval [-1, 1]. With the inner-product

$$\langle p,q\rangle := \int_{-1}^{1} p(x)q(x)d\mu(x),$$

the Gram-Schmidt process applied to the standard monomial polynomial basis results in a sequence $Q_i(x)$, $i = 0, 1, 2, \cdots$, of orthonormal polynomials

$$\langle Q_i, Q_j \rangle = \delta_{ij}$$

Here, as throughout, we assume that μ is non-degenerate in the sense that if $0 \neq p$ is a polynomial, then $\infty > \langle p, p \rangle > 0$. The reproducing kernel for $\Pi_n(\mathbb{R})$, equipped with this inner-product, is then

$$K_n(x,y) := \sum_{i=0}^n Q_i(x)Q_i(y)$$
$$\lambda_n(x) := \frac{1}{K_n(x,x)}$$
(1)

and the function

is known as the associated Christoffel function; it plays an important role in the theory of orthogonal polynomials (see for example the survey article by Nevai [2]).

It is well-known (see e.g. [4]) that

$$\lim_{n \to \infty} \frac{1}{n+1} K_n(x, x) d\mu = \frac{1}{\pi} \frac{1}{\sqrt{1-x^2}} dx,$$

the latter being the so-called arcsine measure which is also the equilibrium measure of complex potential theory for the interval [-1, 1]. The convergence is, in general weak-*, but in some circumstances even locally uniformly on (-1, 1). In other words

$$d\mu = \lim_{n \to \infty} \frac{n+1}{K_n(x,x)} \frac{1}{\pi} \frac{1}{\sqrt{1-x^2}} dx$$

or, equivalently,

$$d\mu = \lim_{n \to \infty} (n+1)\lambda_n(x) \frac{1}{\pi} \frac{1}{\sqrt{1-x^2}} dx.$$

Hence it would not be totally unexpected that

$$\int_{-1}^{1} Q_i(x)Q_j(x) \left[(n+1)\lambda_n(x)\frac{1}{\pi} \frac{1}{\sqrt{1-x^2}} \right] dx \approx \delta_{ij},$$
(2)

^aDept. of Computer Science, University of Verona, Italy

^b Complete Fors@univ.it
^b Dept. of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada e-mail: aware@ucalgary.ca

at least asymptotically.

The result of [1] is that, in the case of $d\mu = (1/2)dx$, so that the orthogonal polynomials $Q_j(x) = P_j^*(x)$, the classical Legendre polynomials suitably orthonormalized, the approximate identity (2) is actually an identity, i.e,

$$\int_{-1}^{1} P_{i}^{*}(x) P_{j}^{*}(x) \left[(n+1)\lambda_{n}(x) \frac{1}{\pi} \frac{1}{\sqrt{1-x^{2}}} \right] dx = \delta_{ij}, \quad 0 \le i, j \le n.$$
(3)

Equivalent identities are

$$\int_{-1}^{1} P_{k}^{*}(x) \left[(n+1)\lambda_{n}(x) \frac{1}{\pi} \frac{1}{\sqrt{1-x^{2}}} \right] dx = \delta_{0,k}, \quad 0 \le k \le 2n.$$
(4)

and

$$\int_{-1}^{1} p(x) \left[(n+1)\lambda_n(x) \frac{1}{\pi} \frac{1}{\sqrt{1-x^2}} \right] dx = \int_{-1}^{1} p(x) \frac{1}{2} dx, \quad \deg(p) \le 2n.$$
(5)

The purpose of this note is to prove the following uniqueness results:

• Supposing that we have a family of polynomials $\{Q_j\}_{j=0,1,\cdots}$ for which

$$\int_{-1}^{1} Q_k(x) \left[(n+1)\lambda_n(x) \frac{1}{\pi} \frac{1}{\sqrt{1-x^2}} \right] dx = \delta_{0,k}, \quad 0 \le k \le 2n.$$
(6)

Theorem 2.1 below shows that, already for n = 1, the *polynomials* $Q_0(x)$ and $Q_1(x)$ must be the first two (normalized) Legendre polynomials. Further, among all Jacobi *measures* (cf. (7) below) the Legendre case is the only one for which this can be true.

- Theorem 2.4 shows that if (6) holds for $n = 0, 1, \dots, N$ and the measure $d\mu(x)$ is *symmetric*, then the $Q_j, 0 \le j \le N$, must be the (normalized) Legendre polynomials.
- Finally, Theorem 2.5 shows that if we make, instead of symmetry, the assumption that (5) holds up to k = 2n + 1 (instead of up just 2n) then also the Q_i , $0 \le j \le N$, must be the (normalized) Legendre polynomials.

2 Uniqueness Results

The Legendre polynomials are the special case of $\alpha = \beta = 0$ for the family of Jacobi polynomials. It is therefore natural to consider the Jacobi measures

$$d\mu_{\alpha,\beta} = c_{\alpha,\beta} (1-x)^{\alpha} (1+x)^{\beta}, \quad \alpha,\beta > -1,$$
(7)

with the constant $c_{\alpha,\beta}$ chosen so that $\mu_{\alpha,\beta}$ is indeed a probability measure.

Theorem 2.1. Suppose that for some probability measure the associated orthonormal polynomials satsify

$$\int_{-1}^{1} Q_k(x) \left[(n+1)\lambda_n(x) \frac{1}{\pi} \frac{1}{\sqrt{1-x^2}} \right] dx = \delta_{0,k}, \quad 0 \le k \le 2n$$

for n = 0 and n = 1. Then $Q_0(x) = P_0^*(x) = 1$ and $Q_1(x) = P_1^*(x)$, the normalized Legendre polynomial. In other words, for n = 1 the only set of orthogonal polynomials $\{Q_0(x), Q_1(x)\}$ that satisfy the identity is the set of orthonormalized Legendre polynomials $\{P_0^*(x), P_1^*(x)\}$. Further, if the probability measure μ is a Jacobi measure (7), then the only case where $Q_1(x) = P_1^*(x)$ is for $\alpha = \beta = 0$. In other words, already for n = 1 the only set of orthogonal Jacobi polynomials that satisfy the identity is in the Legendre case.

Proof of Theorem 2.1. Since we are dealing with a probability measure, $Q_0(x) = 1$. Hence, by assumption we have, for n = 1,

$$\frac{2}{\pi} \int_{-1}^{1} \frac{1}{1+Q_1^2(x)} \frac{1}{\sqrt{1-x^2}} dx = 1, \quad (k=0),$$

$$\frac{2}{\pi} \int_{-1}^{1} \frac{Q_1(x)}{1+Q_1^2(x)} \frac{1}{\sqrt{1-x^2}} dx = 0, \quad (k=1).$$

With the substitution $x = \cos(\theta)$ these become

$$\frac{1}{\pi} \int_{0}^{2\pi} \frac{1}{1 + Q_1^2(\cos(\theta))} d\theta = 1, \quad (k = 0),$$
(8)

$$\frac{1}{\pi} \int_{0}^{2\pi} \frac{Q_1(\cos(\theta))}{1 + Q_1^2(\cos(\theta))} d\theta = 0, \quad (k = 1).$$
(9)

Now suppose that $Q_1(x) = ax + b$ for some constants $a \neq 0, b$.

Lemma 2.2. Let $\omega := (-b+i)/a$. Then we have

$$\frac{1}{\pi} \int_{0}^{2\pi} \frac{1}{1 + Q_{1}^{2}(\cos(\theta))} d\theta = -\frac{2}{a} \Im\left(\frac{1}{\sqrt{\omega^{2} - 1}}\right)$$
$$= \frac{2\nu}{\sqrt{(b^{2} - a^{2} - 1)^{2} + 4b^{2}}}$$

where

$$v := \sqrt{\frac{-(b^2 - a^2 - 1) + \sqrt{(b^2 - a^2 - 1)^2 + 4b^2}}{2}}$$

Proof. It is easy to verify that the two zeros of $1 + (ax + b)^2$ are $x = \omega, \overline{\omega}$. Hence

$$\frac{1}{\pi} \int_0^{2\pi} \frac{1}{1+Q_1^2(\cos(\theta))} d\theta = \frac{1}{\pi} \int_0^{2\pi} \frac{1}{1+(a\cos(\theta)+b)^2} d\theta$$
$$= \frac{1}{\pi a^2} \int_0^{2\pi} \frac{1}{(\cos(\theta)-\omega)(\cos(\theta)-\overline{\omega})} d\theta$$
$$= \frac{1}{\pi a^2} \frac{1}{\omega-\overline{\omega}} \int_0^{2\pi} \left\{ \frac{1}{\cos(\theta)-\omega} - \frac{1}{\cos(\theta)-\overline{\omega}} \right\} d\theta.$$

But substituting $z = e^{i\theta}$ and converting to a contour integral around the unit circle, one easily sees that

$$\frac{1}{\pi} \int_0^{2\pi} \frac{1}{\cos(\theta) - \omega} d\theta = -\frac{2}{\sqrt{\omega^2 - 1}}$$

where the branch of the square root is chosen so that $|\omega + \sqrt{\omega^2 - 1}| > 1$. It follows directly then that

$$\frac{1}{\pi} \int_0^{2\pi} \frac{1}{1 + Q_1^2(\cos(\theta))} d\theta = -\frac{2}{a} \Im\left(\frac{1}{\sqrt{\omega^2 - 1}}\right).$$

The rest of the Lemma follows upon confirming that

$$(u+iv)^2 = a^2(\omega^2 - 1)$$

with *v* as defined above and u := -b/v. \Box

Lemma 2.3. With the above notation, we have

$$\frac{1}{\pi} \int_0^{2\pi} \frac{\cos(\theta)}{1 + Q_1^2(\cos(\theta))} d\theta = -2\frac{b}{a} \frac{\nu^2 - 1}{\nu\sqrt{(b^2 - a^2 - 1)^2 + 4b^2}}.$$

Proof. The proof is elementary, using the same technique as for the previous Lemma. We omit the details. □

٦

From the two Lemmas, the two conditions (8) and (9) may be expressed as:

$$\frac{2\nu}{D} = 1, \quad (k = 0),$$
 (10)

$$-2b\frac{v^2-1}{v\sqrt{D}} + b = 0, \quad (k=1).$$
(11)

where we use the same notation as above for v and have introduced

$$D := (b^2 - a^2 - 1)^2 + 4b^2.$$

First of all, we claim that b = 0 for otherwise, if $b \neq 0$, then (11) simplifies to

$$2\frac{\nu^2 - 1}{\nu\sqrt{D}} = 1.$$

Substituting $\sqrt{D} = 2\nu$ (from (10)), then $2(\nu^2 - 1)/(2\nu^2) = 1$, but this is clearly not possible. Hence b = 0, indeed. In this case $D = (a^2 + 1)^2$, $\nu = \sqrt{a^2 + 1}$ and the condition (10) becomes

$$2\frac{\sqrt{a^2+1}}{a^2+1} = 1 \iff a = \pm\sqrt{3},$$

as is easily seen. Since we may assume, with out loss of generality, that a > 0, we have $a = \sqrt{3}$ and

$$Q_1(x) = \sqrt{3}x = P_1^*(x)$$

The proof of the Theorem will be completed by verifying that in the Jacobi case $Q_1(x) = P_1^*(x) = \sqrt{3}x$ implies that $\alpha = \beta = 0$. But (see e.g. [3])

$$Q_1(x) = \sqrt{\frac{\alpha + \beta + 3}{4(\alpha + 1)(\beta + 1)}} \{ (\alpha + \beta + 2)x + (\alpha - \beta) \}.$$

 $O_1(x) = \sqrt{2\alpha + 3x}$

Hence b = 0 iff $\alpha = \beta$ in which case

and $\sqrt{2\alpha + 3} = \sqrt{3} \iff \alpha = 0. \square$

Theorem 2.4. Suppose that μ is now a symmetric probability measure (i.e., invariant under $x \to -x$) so that the associated orthonormal polynomials are even or odd according to their degree. Suppose that

$$\int_{-1}^{1} Q_k(x) \left[(n+1)\lambda_n(x) \frac{1}{\pi} \frac{1}{\sqrt{1-x^2}} \right] dx = \delta_{0,k}, \quad 0 \le k \le 2n$$

for $n = 0, 1, 2, \dots, N$. Then

$$Q_j(x) = P_j^*(x), \quad 0 \le j \le N,$$

the orthonormalized Legendre polynomials.

Proof of Theorem 2.4. The case N = 1 was done (in more generality) in Theorem 2.1. We proceed by induction. The idea of the proof will be clear already from the the N = 2 case. Here $Q_0(x) = P_0^*(x)$ and $Q_1(x) = P_1^*(x) = \sqrt{3}x$. We wish to show that $Q_2(x) = P_2^*(x)$. Now, $K_1(x, x) = 1^2 + (\sqrt{3}x)^2 = 1 + 3x^2$ and so from the n = 1 case we must have

$$2\int_{-1}^{1} \frac{Q_2(x)}{1+3x^2} \frac{1}{\pi} \frac{1}{\sqrt{1-x^2}} dx = 0.$$

But from the Legendre case we know that

$$2\int_{-1}^{1} \frac{1}{1+3x^2} \frac{1}{\pi} \frac{1}{\sqrt{1-x^2}} dx = 1$$

while

$$2 = 2\int_{-1}^{1} \frac{1+3x^2}{1+3x^2} \frac{1}{\pi} \frac{1}{\sqrt{1-x^2}} dx = 6\int_{-1}^{1} \frac{x^2}{1+3x^2} \frac{1}{\pi} \frac{1}{\sqrt{1-x^2}} dx + 1$$

implies that

$$2\int_{-1}^{1} \frac{x^2}{1+3x^2} \frac{1}{\pi} \frac{1}{\sqrt{1-x^2}} dx = \frac{1}{3}.$$

Then writing $Q_2(x) = ax^2 + b$ (it is even by hypothesis) we have

$$0 = 2 \int_{-1}^{1} \frac{Q_2(x)}{1+3x^2} \frac{1}{\pi} \frac{1}{\sqrt{1-x^2}} dx = a/3 + b$$

so that b = -a/3. Consequently

$$Q_2(x) = \frac{a}{3}(3x^2 - 1) = cP_2^*(x)$$

for some constant *c*, as the Legendre polynomial $P_2(x) = 3x^2 - 1$.

Consequently,

$$K_2(x,x) = 1 + 3x^2 + Q_2^2(x) = 1 + 3x^2 + c^2(P_2^*(x))^2.$$

If now,

$$3\int_{-1}^{1} \frac{1}{K_2(x,x)} \frac{1}{\pi} \frac{1}{\sqrt{1-x^2}} dx = 1$$

then by the Legendre case,

$$1 = 3 \int_{-1}^{1} \frac{1}{1 + 3x^2 + (P_2^*(x))^2} \frac{1}{\pi} \frac{1}{\sqrt{1 - x^2}} dx$$

= $3 \int_{-1}^{1} \frac{1}{1 + 3x^2 + c^2(P_2^*(x))^2} \frac{1}{\pi} \frac{1}{\sqrt{1 - x^2}} dx.$

But if $c^2 > 1$ then $1+3x^2+c^2(P_2^*(x))^2 > 1+3x^2+(P_2^*(x))^2$ (except at a finite set of points) and if $c^2 < 1$ then $1+3x^2+c^2(P_2^*(x))^2 < 1+3x^2+(P_2^*(x))^2$ (except at a finite set of points). Hence we must have $c^2 = 1$ for these two integrals to be equal. It follows that $Q_2(x) = P_2^*(x)$ (the sign is unimportant).

Now for the general case. Suppose then that the Theorem is true for a certain $N \ge 2$. We will show that then it also is true for N + 1. By the induction hypothesis

$$K_N(x,x) = k_N(x,x) := \sum_{k=0}^{N} (P_k^*(x))^2,$$

the kernel for the Legendre case, and

$$K_{N+1}(x,x) = k_N(x) + Q_{N+1}^2(x).$$

We claim that from our assumptions $Q_{N+1}(x) = cP_{N+1}^*(x)$ for some constant *c*. To see this just note that by the Gram-Schmidt process

$$Q_{N+1}(x) = C\{x^{N+1} - \sum_{j=0}^{N} \langle x^{N+1}, Q_j(x) \rangle Q_j(x)\}$$

for some normalization constant *C*. Since x^{N+1} is of opposite parity to $Q_N(x)$, $\langle x^{N+1}, Q_N(x) \rangle = 0$ and we actually have

$$Q_{N+1}(x) = C\{x^{N+1} - \sum_{j=0}^{N-1} \langle x^{N+1}, Q_j(x) \rangle Q_j(x)\}.$$

But, from the induction hypothesis, $Q_j(x) = P_j^*(x)$, $0 \le j \le N$, and so

$$Q_{N+1}(x) = C\{x^{N+1} - \sum_{j=0}^{N-1} \langle x^{N+1}, P_j^*(x) \rangle P_j^*(x)\}.$$

But on the one hand

$$\int_{-1}^{1} Q_k(x) \left[(N+1) \frac{1}{K_N(x.x)} \frac{1}{\pi} \frac{1}{\sqrt{1-x^2}} \right] dx = \delta_{0,k}, \quad 0 \le k \le 2N$$

is equivalent to

$$\int_{-1}^{1} p(x) \left[(N+1) \frac{1}{K_N(x,x)} \frac{1}{\pi} \frac{1}{\sqrt{1-x^2}} \right] dx = \int_{-1}^{1} p(x) d\mu, \quad \deg(p) \le 2N$$

while $K_N(x, x) = k_N(x, x)$ informs us that, for deg $(p) \le 2N$,

$$\int_{-1}^{1} p(x)d\mu = \int_{-1}^{1} p(x) \left[(N+1)\frac{1}{K_N(x,x)} \frac{1}{\pi} \frac{1}{\sqrt{1-x^2}} \right] dx$$
$$= \int_{-1}^{1} p(x) \left[(N+1)\frac{1}{k_N(x,x)} \frac{1}{\pi} \frac{1}{\sqrt{1-x^2}} \right] dx$$
$$= \int_{-1}^{1} p(x) \frac{1}{2} dx$$

by the Legendre case. It follows that for $0 \le j \le N - 1$,

$$\langle x^{N+1}, P_j^*(x) \rangle = \int_{-1}^1 x^{N+1} P_j^*(x) d\mu = \int_{-1}^1 x^{N+1} P_j^*(x) \frac{1}{2} dx$$
(12)

and hence

$$Q_{N+1}(x) = C\{x^{N+1} - \sum_{j=0}^{N-1} \langle x^{N+1}, P_j^*(x) \rangle P_j^*(x) \}$$

= $C\{x^{N+1} - \sum_{j=0}^{N-1} \langle x^{N+1}, P_j^*(x) \rangle_{\text{legendre}} P_j^*(x) \}$
= $CP_{N+1}^*(x).$

(for a possibility different constant *C*). The remainder of the argument is exactly as in the N = 1 case. \Box

Notice that for a symmetric measure the Christoffel function $\lambda_n(x)$ is an even function. Hence the identity (5) also holds for $p(x) = x^{2n+1}$, both integrals being zero. In particular, for the Legendre case, (5) holds for deg $(p) \le 2n + 1$. If for a measure μ we assume (5) deg $(p) \le 2n + 1$, then we also have uniqueness.

41

Theorem 2.5. Suppose that μ is a probability measure supported on [-1, 1] with the property that

$$\int_{-1}^{1} Q_k(x) \left[(n+1)\lambda_n(x) \frac{1}{\pi} \frac{1}{\sqrt{1-x^2}} \right] dx = \delta_{0,k}, \quad 0 \le k \le 2n+1$$

for $n = 0, 1, 2, \dots, N$. Then

$$Q_j(x) = P_i^*(x), \quad 0 \le j \le N,$$

the orthonormalized Legendre polynomials.

Proof of Theorem 2.5. Just note that, with these assumptions, the inner product formula (12) holds also for j = N and hence we have again $Q_{N+1}(x) = CP_{N+1}^*(x)$. The rest of the argument proceeds as before. \Box

References

- [1] L. Bos, N. Levenberg, A. Narayan and F. Piazzon. An Orthogonality Property of the Legendre Polynomials. Constr. Approx. 45 (2017), 65–81.
- [2] P. Nevai. Géza Freud, orthogonal polynomials and Christoffel functions. A case study. J. Approx. Theory, Vol. 48, No. 1 (1986), 3 167.
- [3] G. Szego. Orthogonal Polynomials. AMS, 1939.
- [4] V. Totik. Asymptotics for Christoffel functions for general measures on the real line. Journal d'Analyse Mathématique, Vol. 81, No. 1 (2000), 283 – 303.