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Abstract

Phantom bursters were introduced to explain bursting electrical activity in β -cells with different periods.
We study a polynomial version of the phantom bursting model. In particular we analyse the fast subsystem,
where the slowest variable is assumed constant. We find the equilibrium points of the fast subsystem and
analyse their stability. Furthermore an analytical analysis of the existence of Hopf bifurcation points and
the stability of the resulting periodics is performed by studying the sign of the first Lyapunov coefficient.

1 Introduction
The phantom bursting model was introduced to describe the episodic bursting of the pancreatic β -cells, where active phases are
interspersed by silent ones. The model is characterised by two slow and two fast variables with the two slow variables having
very different time scales [1].

In this paper we focus on the analysis of the fast subsystem model where the slowest of the two slow variables is considered
constant, and thus can be used as a bifurcation parameter as made by Pernarowski and DeVries for the model with two fast and
one slow variable in the Liénard form, [5, 2]. Here we want to show that a polynomial, minimal, phantom burster model can
reproduce results obtained with the biophysical phantom burster model introduced in [9], with the advantage that it is easier to
study analytically.

In Section 2 we introduce the complete polynomial phantom bursting model, and then pass to the fast subsystem model in
Section 3. We analyse the existence of the equilibrium points and their stability. Furthermore we focus on the possible Hopf
bifurcation (HB) points and the stability of the emerging periodic solutions by computing and analysing the sign of the first
Lyapunov coefficient. We end the paper with conclusions.

2 The polynomial mathematical model
The polynomial version of the phantom bursting model as introduced in [6] is obtained after nondimensionalization and scaling
of the system of four first-order equations introduced in [1], so called phantom bursting model. This model consist of a subset of
fast variables that govern spiking during the active phase of a burst, and slow negative feedback to switch the spiking on and off.
The fast variables are the membrane potential of the β -cell and the fast K+ current activation variable, respectively. The first slow
variable has a small time constant of a few seconds while the second one has a time constant more than a minute.

The transformation of the phantom burster model reduces the number of the parameters and simplifies the equations allowing
an analytical analysis of the system. This transformation was made as in [12] for the Sherman-Rinzel-Keizer model, the burster
model with two fast variables and a slow one. The model reads (here and in the following over-dots indicate time derivatives)

ü+ F(u)u̇+ G(u) +ρzz1 + z2 +
h1(u)− z1

τ1
+

h2(u)− z2

τ2
= 0,

ż1 =
h1(u)− z1

τ1
,

ż2 =
h2(u)− z2

τ2
,

(1)

where u is the transformed β-cell membrane potential, z1 and z2 are slow variables with z1 faster than z2, τ1 is the z1 time
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constant and τ2 of z2 respectively and

F(u) = a
�

(u− û)2 −η2
�

, (2)

G(u) = u3 − 3(u+ 1),
hi(u) = βi(u− uβi

), i = 1, 2.

The functions F(u), G(u) and hi(u), i = 1,2 have biological interpretations related to the different ionic currents and channel
conductances present in the phantom burster model introduced in [1].

The model (1) is equivalent to a system of four ODEs

u̇= v,

v̇ = −F(u)v − G(u)−ρzz1 − z2 −
h1(u)− z1

τ1
−

h2(u)− z2

τ2
,

ż1 =
h1(u)− z1

τ1
,

ż2 =
h2(u)− z2

τ2
.

(3)

Equating to zero the right hand side of (3) we get the equilibrium point E = (ū, 0, h1(ū), h2(ū)), with ū the root of the cubic

−u3 + (3−ρzβ1 − β2)u+ (3+ρzβ1uβ1
+ β2uβ2

) = 0. (4)

To study the roots of (4) we analyse the sign of the discriminant

∆= 4(3−ρzβ1 − β2)
3 − 27(3+ρzβ1uβ1

+ β2uβ2
)2, (5)

in particular for

• ∆> 0: the equation (4) will have three distinct real roots

• ∆< 0: the equation (4) will have a single real root

• ∆= 0: the equation (4) will have a multiple root, and all of its roots are real.

The polynomial model with two slow variables was analysed by Griffiths and Pernarowski [7, 4], who obtained further results
regarding the analysis of the complete system (3), a slow-subsystem and an averaged fast-subsystem. In contrast to the present
work, they considered both z1 and z2 as slow variables, whereas in the following z1 will be included in the fast subsystem.

3 The fast subsystem
To analyse the polynomial version of the phantom burster model in the space of parameters we will assume constant the slowest
variable, z2. It will be used as a bifurcation parameter in the same fashion made by Pernarowski [5], [3] and DeVries in [2]. The
system to study becomes

u̇ = v, (6)

v̇ = −F(u)v − G(u)−ρzz1 − z2 −
h1(u)− z1

τ1
,

ż1 =
h1(u)− z1

τ1
.

Following the same idea as for the complete model we compute the equilibrium of the fast subsystem (6), E∗ = (ū, 0, h1(ū)), with
ū the root of

P(u) = −u3 + (3−ρzβ1)u+ (3+ρzβ1uβ1
− z2) = 0. (7)

The discriminant of P(u) is
∆= 4(3−ρzβ1)

3 − 27(3+ρzβ1uβ1
− z2)

2. (8)

The inequality ∆> 0 (the case of three distinct real roots of P(u) = 0), is satisfied if and only if

3+ρzβ1uβ1
− 2

� |3−ρzβ1|
3

�
3
2

< z2 < 3+ρzβ1uβ1
+ 2

� |3−ρzβ1|
3

�
3
2

. (9)

Solving P(u) = 0 we get z2 = γ(u), where γ(u) is a cubic curve of the shape

γ(u) = −u3 + u(3−ρzβ1) + 3+ρzβ1uβ1
.

The curve γ(u) is represented in Figure 1. It is divided in upper (ZU ), middle (ZM ) and lower (ZL) branch by the right knee
(KR) and the left one (KL) respectively.

Equating to zero γ′(u) one get the two roots

uL = −

√

√3−ρzβ1

3
and uR =

√

√3−ρzβ1

3
,

Dolomites Research Notes on Approximation ISSN 2035-6803



Bulai · Pedersen 5

-1 0 1 2 3
z

2
 

-2

-1

0

1

2

3

u 

Z
U

K
R

Z
M

K
L

Z
L

Figure 1: The curve γ(u) is divided in upper (ZU ), middle (ZM ) and lower (ZL) branch by the the right knee (KR) and the left one (KL)
respectively.

which are real for 3−ρzβ1 > 0. The abscissas of the left and right knee, KL and KR, are

z2,L = γ(uL) = 3+ρzβ1uβ1
− 2

� |3−ρzβ1|
3

�
3
2

and

z2,R = γ(uR) = 3+ρzβ1uβ1
+ 2

� |3−ρzβ1|
3

�
3
2

,

the same expressions obtained solving ∆= 0 in (8) for z2. From (9) we see that for z2 between z2,L and z2,R there are 3 roots,
and only one root to the left of z2,L and to the right of z2,R. If 3−ρzβ1 ≤ 0 then there is always only one root ū.

3.1 Stability analysis of the critical points

To study the stability of the equilibrium points of the fast subsystem (6) we compute the Jacobian matrix

J =











0 1 0

−G′(u)−
β1

τ1
−F(u) −ρz +

1
τ1

β1

τ1
0 −

1
τ1











(10)

and evaluate it at E∗ = (ū, 0, h1(ū)). From the Routh-Hurwitz criteria

det(J −λ) = λ3 + c1λ
2 + c2λ+ c3 = 0 (11)

has three roots with negative real part, thus E∗ is stable, iff

c1 > 0, c3 > 0 and c1c2 > c3 (12)

hold, where

c1 = F(ū) +
1
τ1

(13)

c2 =
F(ū)
τ1
+ G′(ū) +

β1

τ1

c3 =
G′(ū)
τ1

+
β1ρz

τ1
.

For a deeper analysis in the parameter space we use the fact that

γ′(u) = −3u2 + 3−ρzβ1 = −
c3

τ1
.

Since τ1 > 0, analysing the sign of γ′(u) will give us information about the sign of c3. Without losing generality from now on we
will assume a > 0, û> η, û−η≤ uL and û−η≥ uR. The cases where this hypothesis does not hold can be obtained in a similar
way as done below. Studying γ′(u)’s behavior we get
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(i) γ′(u)< 0, (c3 > 0), for values of u< uL . Here two sub cases can be distinguished

(a) F(u)> 0 (u< û−η), c1 > 0: If c2 > 0 all the coefficients of the characteristic polynomial (11) are positive while the
coefficients of det(−J +λ) have alternate signs, thus the eigenvalues have all negative real parts and the equilibrium
points are stable. Notice that in this case if c1c2 − c3 = 0 a HB arise. Otherwise if c2 < 0 two of the eigenvalues will
have positive real parts and the remaining one negative real part, the equilibrium points are unstable.

(b) F(u) < 0 (û−η < u < uL): c1 < 0 two eigenvalues with positive real part and one with negative real part for both
cases c2 < 0 and c2 > 0, the equilibrium points are unstable.

(ii) γ′(u) = 0, (c3 = 0), u = uL that corresponds to a saddle node bifurcation point. In fact the characteristic polynomial (11) has
at least one variation in the signs of the coefficients (the same holds for the det(−J +λ)) thus is has an eigenvalue with
positive real part, one with negative real part and one null.

(iii) γ′(u)> 0, (c3 < 0), for values of uL < u< uR, which corresponds to unstable saddle node points. In fact the characteristic
polynomial (11) has at least one variation in the signs of the coefficients (the same holds for the det(−J +λ)) thus it has
an eigenvalue with positive real part and the remaining two with negative real part.

(iv) γ′(u) = 0, (c3 = 0), u= uR, that corresponds to a saddle node bifurcation point, same results as for point (ii).

(v) γ′(u)< 0, (c3 > 0), for values of u> uR, as for case (i), two sub cases are possible

(a) F(u)> 0 (u> û+η), c1 > 0: same as for (ia).
(b) F(u)< 0 (uR < u< û+η): same as for (ib).

Table 1 summarizes the signs of the real parts of the three eigenvalues of (11).

Table 1: An overview of the stability analysis of the fast-subsystem equilibria.

Case Subcases Re(λ) Equilibrium points
(i) (a) − − − Stable equilibrium points

(b) + + − Unstable equilibrium points
(ii) + − 0 Saddle Node Bifurcation point
(iii) + − − Unstable Saddle Node points
(iv) + − 0 Saddle Node Bifurcation point
(v) (a) − − − Stable equilibrium points

(b) + + − Unstable equilibrium points

3.2 Hopf Bifurcation existence

In this section we will analyse the existence and the stability of the Hopf bifurcation of the fast subsystem (6). Conditions for
det(J −λ) = λ3 + c1λ

2 + c2λ+ c3 = 0 to have a pair of pure imaginary roots are c2 > 0 and c3 − c1c2 = 0.
To find values of u at which a HB occur, we solve c3 − c1c2 = 0, i.e.,

G′(ū)
τ1

+
β1ρz

τ1
−
�

F(u) +
1
τ1

��

F(u)
τ1
+ G′(u) +

β1

τ1

�

= 0,

which is equivalent to find the intersection points between F(u) and H(u), where

F(u) = a
�

(u− û)2 −η2
�

, (14)

H(u) =
β1ρzτ1 − β1

1+τ2
1c2

. (15)

To show that at least one root of c3 − c1c2 = 0 exists we analyse F(u) and H(u) separately.

• The analysis of F(u):
F(u) is a parabola of vertex (û,−aη2). If a > 0, F(u) is convex, otherwise is concave. From now on we will assume positive
values of a. Furthermore (û±η, 0) are intersection points with the x axis while (0, û2 −η2) is an intersection point with
the y axis. We will assume û 6= η.

• The analysis of H(u):
H(u) in (14) can be written as

H(u) =
β1ρzτ1 − β1

u2(τ1a+ 3τ2
1)− u(2τ1aû) + (1+τ1aû2 −τ1aη2 − 3τ2

1 + β1τ1)
. (16)

a) Dom H(u) =
�

u ∈ R | s1u2 − s2u+ s3 6= 0
	

, with s1, s2 and s3 defined as the coefficients of the polynomial in the
denominator of H(u) in (16). The roots

u1,2 =
s2 ∓

Æ

s2
2 − 4s1s3

2s1

satisfy u1 < 0 and u2 > 0 and are two vertical asymptotes, in fact

lim
u→u±1

H(u) = ±si gn(β1ρzτ1 − β1)∞

Dolomites Research Notes on Approximation ISSN 2035-6803



Bulai · Pedersen 7

and
lim

u→u±2

H(u) = ∓si gn(β1ρzτ1 − β1)∞.

b) limu→±∞ H(u) = 0si gn(β1ρzτ1−β1), i.e., the x axis (y = 0) is an horizontal asymptote.
c) No symmetries.
d) No intersection with x axis.
e) Intersection with y axis at (0, y∗) with

y∗ =
β1ρzτ1 − β1

(1+τ1aû2 −τ1aη2 − 3τ2
1 + β1τ1)

.

f) Local max/min of H(u):

�

τ1aû
τ1a+ 3τ2

1

,
β1ρzτ1 − β1

1+τ1aû2 −τ1aη2 − 3τ2
1 + β1τ1

�

, depending on the sign of the ordinate.

Considering the analysis above and excluding all the degenerate cases, remaining in the real case, F(u) and H(u) intersect in at
most four points, which are HB points if the inequality F(u)+τ1G′(u)+β1 > 0 holds (c2(u)> 0). Notice that the two asymptotes
u1,2 are the roots of 1+τ2

1c2, which means that two of the four intersection points are HB points. A graphical representation of
the intersection points between F(u) and H(u) can be seen in Figure 2, with the parameters values chosen properly.

Figure 2: The intersection points between the parabola F(u) and H(u). The left most point and the right most one are HB points.

3.3 Hopf Bifurcation criticality

As was shown previously choosing an appropriate set of parameters can lead to the existence of at least one HB point. Assuming
that the fast subsystem has an HB, the characteristic polynomial det(J −λ) = 0 evaluated at E∗(uHB , 0, h1(uHB)), with uHB the
intersection point between F(u) and H(u) such that c2(uHB)> 0, has two imaginary complex roots λ1,2 = ±iω0 and a real one λ3,

det(J −λ) = λ3 −λ3λ
2 +ω2

0λ−λ3ω
2
0.

This implies that

λ3 = −
�

F(u) +
1
τ1

�

and ω0 = ±
√

√ F(u)
τ1
+ G′(u) +

β1

τ1
. (17)

In order to analyse the criticality of the HB, (i.e. to determine the stability of the emerging limit cycle), we can compute the
first Lyapunov coefficient l1(0) of the restricted system on the center manifold at the critical parameter value [8]. If l1(0)< 0,
the bifurcation is supercritical and a unique stable limit cycle bifurcates from the equilibrium point, otherwise if l1(0)> 0, the
bifurcation is subcritical. Next we will describe how the first Lyapunov coefficient of system (6) can be computed. For more
details see Chapter 3 of [8].

Step 1: Since our equilibrium point is not the origin, introducing the new variables

ṽ = v − v̄, ũ= u− ū and z̃1 = z1 − h(z̄1) (18)
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with v̄, ū and z̄1 the values at equilibrium, the new system obtained is

ẋ = J x + R(x),

with

x =





ũ
ṽ
z̃1



 , R(x) =





0
ũṽ(2aû− 2aū)− 3ūũ2 − aṽũ2 − ũ3

0





and J the Jacobian matrix (10). From now on for simplicity we change the variable names ũ→ u, ṽ→ v and z̃1→ z1. As seen
before J has a pair of complex eigenvalues λ1,2 = ±iω0 and a real one λ3 as defined in (17). Using the expression of ω0 in (17),
J21 can be written equivalently J21 = −ω2

0 +
F(u)
τ1

, while the other elements of the Jacobian matrix remain as in (10).

Step 2: We need to compute the eigenvectors, q and p, of J for the eigenvalues λ1,2 = ±iω0, so that Jq = iω0q and
J t p = −iω0p

q ∼







1
iω0

β1(1− iω0τ1)
1+τ2

1ω
2
0






, p ∼







F(u)− iω0
1

(τ1ρz − 1)(−1− iτ1ω0)
1+τ2

1ω
2
0






.

To achieve the proper normalization 〈p, q〉= p̄1q1 + p̄2q2 = 1, one can take, for example

q =







1
iω0

β1(1− iω0τ1)
1+τ2

1ω
2
0






, p =

1
A







F(u)− iω0
1

(τ1ρz − 1)(−1+ iτ1ω0)
1+τ2

1ω
2
0






,

where

A=
2τ2

1ω
2
0F(u)

1+τ2
1ω

2
0

+ i
2ω0(1+ F(u))

1+τ2
1ω

2
0

.

Step 3: Let us now write R(x) in terms of multilinear functions B(x , y) and C(x , y, z)

R(x) =
1
2

B(x , x) +
1
6

C(x , x , x) +O(‖ x ‖4),

with x t , y t and z t ∈ ℜ3,

Bi(x , y) =
3
∑

j,k=1

∂ 2Ri(ξ)
∂ ξ j∂ ξk

|ξ=0 x j yk, i = 1, 2,3

and

Ci(x , y, z) =
3
∑

j,k,l=1

∂ 3Ri(ξ)
∂ ξ j∂ ξk∂ ξl

|ξ=0 x j ykzl , i = 1, 2,3.

B(x , y) =

 

0
2a(û− ū)(x1 y2 + x2 y1)− 6ūx1 y1

0

!

,

C(x , y, z) =

 

0
−2 [a(x2 y1z1 + x1 y1z2 + x1 y2z1) + 3x1 y1z1]

0

!

.

Step 4: We want to compute l1(0) as was made in [8]

l1(0) =
1

2ω0
Re
�

〈p, C(q, q, q̄)〉 − 2〈p, B
�

q, J−1B(q, q̄)
�

〉+ (19)

〈p, B
�

q̄, (2iω0 I − J)−1B(q, q)
�

〉
�

.

This formula does not require a preliminary transformation of the system into its eigenbasis, and it expresses l1(0) using
original, linear, quadratic and cubic terms, assuming that only the critical (ordinary and adjoint) eigenvectors of the Jacobian
matrix are known. I is the identity matrix and (·)−1 represent the inverse matrix.

Step 5: We start by computing B(q, q), B(q, q̄), C(q, q, q̄)

B(q, q) =

 

0
4a(û− ū)iω0 − 6ū

0

!

, B(q, q̄) =

 

0
−6ū

0

!

and
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C(q, q, q̄) =

 

0
−2(aiω0 + 3)

0

!

and we conclude with computing B
�

q, J−1B(q, q̄)
�

and B
�

q̄, (2iω0 I − J)−1B(q, q)
�

B
�

q, J−1B(q, q̄)
�

=







0

−
36ū2

G′(u) + β1ρz
+

12a(û− ū)ūiω0

G′(u) + β1ρz
0






and

B
�

q̄, (2iω0 I − J)−1B(q, q)
�

=







0

M
�

2a(û− ū)
�

−2ω2
0 +

iω0

τ1

�

− 6ū
�

2iω0 +
1
τ1

��

0







with

M =
4a(û− ū)iω0 − 6ū
3Det(J)− 6iω3

0

and Det(J) = −
β1ρz

τ1
+

G′(ū)
τ1

.

Step 5: Once we have B(q, q), B(q, q̄), C(q, q, q̄), B
�

q, J−1B(q, q̄)
�

and B
�

q̄, (2iω0 I − J)−1B(q, q)
�

, l1(0) the first coefficient of
Lyapunov (19) can be found. We remind that 〈·, ·〉 is the scalar product in C2. We will not report here the whole expression of
l1(0), since we need only to evaluate its sign. Hence, it is enough to implement the formula in a mathematical software.

3.4 Numerical simulations

The numerical simulations were made with AUTO [10] as implemented in XPPAUT [11] and with Matlab. A set of parameters
was found such as to have two HBs, one supercritical on the upper branch of the γ(u) curve and a second one, subcritical, on the
lower branch respectively, as in [9]. Figure 3 shows the obtained bifurcation diagram of the fast subsystem (7) with respect to z2,.

-3 -2 -1 0 1 2 3
z

2
 

-2

-1

0

1

2

3

4

u 

UHB

HC

LHB

Figure 3: The bifurcation diagram of the fast subsystem (7) with respect to z2. Green continuous line represent the stable equilibrium points
while the dashed red line represent the unstable equilibrium points. The max and min of the stable limit cycles emerging from the upper HB
are represented with green dots, while unstable periodics are indicated in blue. On the middle branch a homoclinic point (HC) is present. The
parameter values are: û= 1.5, η= 0.4, a = 0.25, β1 = 0.9, uβ1

= −2, τ1 = 120 and ρz = 1.

In Figure 4 are represented the three solutions in time of the complete system (1), in particular from left to the right the
transformed membrane potential u and the two slow variables z1 and z2, respectively.
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Figure 4: From left to the right the transformed membrane potential u and the two slow variables z1 and z2, of the complete system (1),
respectively. The parameter values are: û= 1.5, η= 0.4, a = 0.25, β1 = 0.9, uβ1

= −2, τ1 = 120, ρz = 1, uβ2
= −0.5, β2 = 1.8 and τ2 = 3000.
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4 Conclusions
Assuming constant the slowest of the two slow variables of the polynomial phantom bursting model we get a three dimensional
fast subsystem. Our analysis is different from the original analysis of phantom bursting [1, 6] where both z1 and z2 are treated as
parameters, and the fast subsystem is two dimensional, effectively reducing the analysis to traditional bursting as in [2, 5]. The
equilibrium points of the three dimensional fast subsystem were found and an analysis of their stability was made. The scenario
found in [9], where two HBs can arise, a supercritical HB and a subcritical one respectively, is also found for the polynomial
version of the phantom bursting model. In particular the method used to analyse the stability of the HBs points is the one
introduced in Kuznetsov [8], where the sign of the first Lyapunov coefficient is analysed.

The analytical findings are confirmed by numerical simulations, in particular we found a set of parameter values for which
two HBs can arise for the fast subsystem. The trajectories in time of the complete system were computed numerically, and here
once more can be seen the different time scales of the variables, in particular the transformed membrane potential u is the faster
one while z1 and z2 the slowest, with z1 faster than z2.
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