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On the approximation of multivariate entire functions by
Lagrange interpolation polynomials

Jean-Paul Calvi a · Phung Van Manh b

Abstract

We show that the intertwining of sequences of good Lagrange interpolation points for approximating
entire functions is still a good sequence of interpolation points. We give examples of such sequences.

1 Introduction
Let Pd(Cn) be the space of polynomials of degree at most d in Cn. Its dimension N n

d equals
�n+d

n

�

. A subset X of N n
d distinct points

in Cn is said to be unisolvent of degree d if, for every function f defined on X , there exists a unique polynomial P ∈ Pd(Cn) such
that P(z) = f (z) for all z ∈ X . This polynomial is called the Lagrange interpolation polynomial of f at X and is denoted by L[X ; f ].
In fact, A is unisolvent if and only if it is not included in an algebraic hyper-surface of degree at most d. There is a natural way of
constructing a unisolvent set, denoted by A⊕ B, of degree d in Cn+m by suitably combining (ordered) unisolvent sets of same
degree A in Cn and B in Cm. This new set, called the intertwining of A and B, preserves many properties of its factors. For example,
in [10], Siciak considered the intertwining of univariate Leja sequences and showed that they provide excellent interpolations
points for holomorphic functions on a neighbourhood of a Cartesian product of plane compact sets. Further sequences were
considered in [1]. In [5], the authors gave a sequence in a compact set in C whose Lebesgue constant grows like a polynomials.
Using a result from [4], they showed that an analogous property holds for the intertwining of these sequences.

In this paper, we are concerned with the problem of approximating multivariate entire functions by Lagrange interpolation
polynomials. Given a sequence Xd of unisolvent sets of degree d in Cn for d = 0,1, . . ., we want to find conditions ensuring
uniform convergence of L[Xd ; f ] to f on every compact subset of Cn for all f ∈ H(Cn). Here H(Cn) stands for the space of all
entire functions in Cn. It is well-known that, if n = 1, a sufficient condition is the boundedness of ∪∞d=0Xd and this is an immediate
consequence of the classical Hermite Remainder Formula. Bloom and Levenberg showed in [3] that this property no longer holds
true in the several variables case. In fact, it is not easy to construct specific unisolvent sets Xd in Cn with n ≥ 2 such that the
above convergence property holds. New examples formed of natural lattices satisfying certain conditions were recently given in
[8]. Here we show (Theorem 3.1) that the above convergence property is preserved under the process of intertwining. Then, we
present examples of sequences satisfying the convergence property and show that their intertwining provides essentially new
sequences.

2 The intertwining sequences
The length of the n-index α= (α1, . . . ,αn) ∈ Nn is defined by |α| :=

∑n
j=1 α j . Note that N n

d is equal to the cardinality of the set
{α ∈ Nn : |α| ≤ d}. Suppose that Nn is ordered by the graded lexicographic order. A tuple of points Ad = (aα : |α| ≤ d) in Cn is
said to be block unisolvent of degree d if, for every 0≤ j ≤ d, (the underlying set of) A j = (aα : |α| ≤ j) is unisolvent of degree j.
A sequence A= (aα : α ∈ Nn) is said to be block unisolvent if Ad = (aα : |α| ≤ d) is unisolvent of degree d for all d ≥ 0.

Definition 2.1. ([4]) Let Ad = (aα : |α| ≤ d) (resp. Bd = (bβ : |β | ≤ d)) be a block unisolvent tuple of degree d in Cn (resp. Cm).
The intertwining of Ad and Bd , denoted by Ad ⊕ Bd , is defined by

Ad ⊕ Bd =
�

(aα,bβ ) : |α|+ |β | ≤ d
�

.

The intertwining of two block unisolvent sequences A and B is defined in the same way. That is, the blocks of A⊕ B are given by

(A⊕ B)d = Ad ⊕ Bd , ∀d ≥ 0.

Note that the intertwining of two tuples depends on the ordering of the corresponding sets. Hence, from now on, we will
work with unisolvent tuples rather than unisolvent sets. If C is another unisolvent tuple of degree d then (A⊕B)⊕C = A⊕ (B⊕C).
Thus we may consider the intertwining of any number of tuples without using parenthesis.

Theorem 2.1. ([4]) The tuple Ad ⊕ Bd is block unisolvent of degree d in Cn+m with (Ad ⊕ Bd) j = A j ⊕ B j for 0≤ j ≤ d

The Lagrange interpolation polynomial at Ad ⊕ Bd of a product function is given in the following result which is proved in [4,
Theorem 4.3].
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Theorem 2.2. Let Ad = (aα : |α| ≤ d) (resp. Bd = (bβ : |β | ≤ d)) be a block unisolvent tuple of degree d in Cn (resp. Cm). If
F(z,w) = f (z)g(w) with f : Ad → C and g : Bd → C then

L[Ad ⊕ Bd ; F](z,w) =
∑

j+k≤d

�

L[A j; f ](z)− L[A j−1; f ](z)
�

·
�

L[Bk; g](w)− L[Bk−1; g](w)
�

,

where L[A−1; f ] = L[B−1; g] = 0.

3 Intertwining extremal sequences
We will say that a block unisolvent sequence A ⊂ Cn is extremal if, for all f ∈ H(Cn), the sequence L[Ad ; f ] converges to f
uniformly on every compact subset of Cn as d →∞.

Theorem 3.1. Let A= (aα : α ∈ Nn) (resp. B = (bβ : β ∈ Nm)) be an extremal sequence in Cn (resp. Cm). Then A⊕ B is also an
extremal sequence.

Proof. Let us denote by D
n
(R) = {z ∈ Cn : |zk| ≤ R, k = 1, . . . , n} the closed ball of center the origin and radius R > 0 (with

respect to the norm |z|=max{|zk|, k = 1, . . . , n}). The space of entire functions H(Cn) is endowed with the topology of uniform
convergence on every compact subset of Cn. This topology (of Fréchet space) is denoted by τ and can be defined by the following
family of semi-norms

f 7→ ‖ f ‖Dn(R) = sup{| f (z)| : z ∈ D
n
(R)}, f ∈ H(Cn), R> 0.

Observe that L[Ad ; ·] : H(Cn)→ H(Cn) is a continuous linear operator with respect to the topology τ. Since L[Ad ; f ] converges
to f in τ for all f ∈ H(Cn), we can use the Banach-Steinhaus theorem for the sequence of operators {L[Ad ; ·]}∞d=0 (see e.g. [9,
Chapter 2]). It follows that, for each R1 > 0, there exists R2 > 0 and C1 > 0 depending only on R1 such that

‖L[Ad ; f ]‖Dn(R1)
≤ C1‖ f ‖Dn(R2)

, ∀ f ∈ H(Cn), d ≥ 0. (1)

Consequently,
‖L[Ad ; f ]− L[Ad−1; f ]‖Dn(R1)

≤ 2C1‖ f ‖Dn(R2)
∀ f ∈ H(Cn), d ≥ 0. (2)

Using the same arguments we can also find R3 > R2 > 0 and C2 > 0 depending only on R1 such that

‖L[Bd ; g]− L[Bd−1; g]‖Dm(R1)
≤ 2C2‖g‖Dm(R3)

, ∀g ∈ H(Cm), d ≥ 0. (3)

Of course, we may assume that R3 ≥ 1. For α ∈ Nn and β ∈ Nm, we set fα(z) = zα and gβ (w) =wβ . Let us consider two sequences
of polynomials defined by

p0 = L[A0; fα], p j = L[A j; fα]− L[A j−1; fα] for j ≥ 1;

q0 = L[B0; gβ], qk = L[Bk; gβ]− L[Bk−1; gβ] for k ≥ 1.

Using (2) and (3) we obtain
‖p j‖Dn(R1)

≤ 2C1R|α|2 ≤ 2C1R|α|3 , ∀ j ≥ 0,

and
‖qk‖Dm(R1)

≤ 2C2R|β |3 , ∀k ≥ 0.

Since L[A j; ·] is a projector onto P j(Cn), p j = 0 for all j ≥ |α|+ 1. By the same reason we also get qk = 0 for all k ≥ |β |+ 1.
Therefore we can write

fα = L[A|α|; fα] =
|α|
∑

j=0

p j =
∞
∑

j=0

p j and gβ = L[B|β |; gβ] =
|β |
∑

k=0

qk =
∞
∑

k=0

qk.

Set Pαβ (z,w) = fα(z)gβ (w) = zαwβ . By Theorem 2.2, we have

Pαβ − L[Ad ⊕ Bd ; Pαβ] =
∞
∑

j=0

p j

∞
∑

k=0

qk −
∑

j+k≤d

p jqk

=
∑

j+k≥d+1

p jqk =
∑

j+k≥d+1, j≤|α|,k≤|β |

p jqk.

Thus, for (z,w) ∈ D
n
(R1)×D

m
(R1) and d ≥ 0, since R3 ≥ 1, we have

|Pαβ (z,w)− L[Ad ⊕ Bd ; Pαβ](z,w)| ≤
∑

j+k≥d+1, j≤|α|,k≤|β |

2C1R|α|3 2C2R|β |3

≤
∑

j≤|α|,k≤|β |

4C1C2R|α|+|β |3

= 4C1C2(|α|+ 1)(|β |+ 1)R|α|+|β |3

≤ C1C2(|α|+ |β |+ 2)2R|α|+|β |3 . (4)
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Given F ∈ H(Cn+m). The Taylor expansion of F is of the following form,

F(z,w) =
∑

(α,β)∈Nn+m

cαβ Pαβ (z,w). (5)

Since Lagrange operators are linear continuous and L[Ad ⊕ Bd ; Pαβ] = Pαβ when |α|+ |β | ≤ d, we have

F − L[Ad ⊕ Bd ; F] =
∑

|α|+|β |≥d+1

cαβ
�

Pαβ − L[Ad ⊕ Bd ; Pαβ]
�

. (6)

Take R4 > 2R3, for all (α,β) ∈ Nn+m, Cauchy’s inequalities [7, Theorem 2.27] give the following estimates for the coefficients of
the Taylor series,

|cαβ | ≤
‖F‖Dn+m(R4)

R|α|+|β |4

.

Combining this with (4) we obtain

‖F − L[Ad ⊕ Bd ; F]‖Dn+m(R1)
≤

∑

|α|+|β |≥d+1

‖F‖Dn+m(R4)

R|α|+|β |4

C1C2(|α|+ |β |+ 2)2R|α|+|β |3

= C3‖F‖Dn+m(R4)

∑

|γ|≥d+1

(|γ|+ 2)2
�

R3/R4)
�|γ|

= C3‖F‖Dn+m(R4)

∞
∑

j=d+1

( j + 2)2
�

j + n+m− 1
j

�

�

R3/R4

� j
,

where γ = (α,β), C3 = C1C2. Since 2R3 < R4 the series
∑∞

j=1( j + 2)2
� j+n+m−1

j

��

R3/R4)
� j

is convergent. Thus
∑∞

j=d+1( j +

2)2
� j+n+m−1

j

�� R3
R4

� j
→ 0 as d →∞. It follows that

‖F − L[Ad ⊕ Bd ; F]‖Dn+m(R1)
→ 0 as d →∞.

This completes the proof.

Since any bounded sequence of complex numbers is extremal, the following result, already observed in [3], follows directly
from Theorem 3.1.

Corollary 3.2. If Ak = {ak j}∞j=0 is bounded sequences in C for k = 1, . . . , n, then A := A1 ⊕ A2 ⊕ · · · ⊕ An is an extremal sequence in
Cn.

Remark 1. As pointed out in [8, Remark 3.10] if ∪∞d=0Ad has no limit points then (Ad) cannot be an extremal sequence. Indeed,
in that case, see [7, Theorem 7.2.11], there exists an entire function f 6= 0 such that f (a) = 0 for all a ∈ ∪∞d=0Ad . It follows
that L[Ad ; f ] = 0 for all d ≥ 0. Hence L[Ad ; f ](z) does not tend to f (z) whenever f (z) 6= 0. We conjecture that if ∪∞d=0Ad is
unbounded then there exists an entire function f such that L[Ad ; f ] does not converge to f uniformly on every compact subset of
Cn.

4 Construction of extremal sequences
We briefly present the construction of extremal sequences in Cn recently introduced in [8]. A hyperplane ` in Cn is defined by an
equation `= {z ∈ Cn : 〈n,z〉+ c = 0}. From now on, we will assume that the (normal) vector in the definition of the hyperplane
is a unit vector, i.e. ‖n‖ = 1 where ‖ · ‖ denotes the euclidean norm. For convenience, we write `(z) = 〈n,z〉+ c and ˜̀(z) = 〈n,z〉.
A set H of n hyperplanes in Cn is said to be in general position if their intersection is a singleton, that is ∩n

j=1` j = {ϑH}. If
` j(z) = 〈n j ,z〉+ c j , then H is in general position if and only if det(n1, . . . ,nn) 6= 0. Here and subsequently, we confuse {ϑH} with
ϑH . More generally, a family Hd = {`1, . . . ,`d} of d ≥ n hyperplanes in Cn is said to be in general position if

1. Every H ∈
�Hd

n

�

(H a subset of n hyperplanes of Hd) is in general position;

2. The map H ∈
�Hd

n

�

7→ ϑH = ∩`∈H` is one-to-one, i.e., ϑH 6= ϑH′ for H 6= H ′.

The set ΘHd
= {ϑH : H ∈

�Hd
n

�

}, formed of
�d

n

�

points, is called a natural lattice of order d. Chung and Yao in [6] showed that
ΘHd

is unisolvent of degree d − n. Let us set Hk = {`1, . . . ,`k} for n≤ k ≤ d. Then ΘHk
⊂ ΘHk+1

. Therefore, we can arrange ΘHd
in order to obtain a block unisolvent tuple of degree d − n. From now on, it is called a block natural tuple. According to this
ordering, we can write

ΘHk
= (θα : α ∈ Nn, |α| ≤ k− n).

Note that there are exactly
�k−1

n−1

�

points θα with |α|= k− n and

{θα : |α|= k− n} ⊂ `k, n≤ k ≤ d.

Finally observe that
|α|< k− n =⇒ θα 6∈ `k.
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Theorem 4.1 ([6]). Let Hd = {`1, . . . ,`d} be a family of d ≥ n hyperplanes in general position in Cn. If ` j is given by ` j = {z ∈ Cn :
〈n j ,z〉+ c j = 0} and f is a function defined on ΘHd

, then

L[ΘHd
; f ](z) =

∑

H∈(Hd
n )

f (ϑH)L(ΘHd
,ϑH ;z), (7)

where the fundamental Lagrange interpolation polynomial (FLIP) is given by

L(ΘHd
,ϑH ;z) =

∏

`∈Hd\H

`(z)
`(ϑH)

, H ∈
�

Hd

n

�

. (8)

Definition 4.1. ([8]) A sequence H= (`k : k = 1, 2, . . . ) of hyperplanes in Cn is said to be regular if the following assumptions
hold.

1. Hd := {`1, . . . ,`d} is in general position in Cn for all d ≥ n.

2. lim infd→∞ hHd
> 0, where

hHd
=
�

min
¦ ∏

`∈Hd\K

|˜̀(nK)|
‖nK‖

: K ∈
�

Hd

n− 1

�

©�
1

d−n+1

and nK is a non-zero vector that is parallel to the complex line ∩`∈K`.

Theorem 4.2 ([8]). Let H= (`k : k = 1, . . . ,∞) be a regular sequence of hyperplanes in Cn such that ΘH := ∪∞d=nΘHd
is bounded.

Then the sequence (ΘHd
: d = n, n+ 1, . . . ) is extremal.

Here the sequence (ΘHd
: d = n, n+ 1, . . . ) is a result of arranging the set ΘH such that the first

�d
n

�

elements of the sequence
form the set ΘHd

. The following result gives an explicit regular sequence.

Theorem 4.3 ([8]). Let n≥ 2 and a > 0. Let {tk}∞k=1 be a sequence in [−a, a] such that |t j − tk| ≥ M/d for j 6= k and 1≤ j, k ≤ d,
where M is a positive constant. Set Td = {t1, . . . , td} for d ≥ n. We denote by Θd the subset of Cn consisting of

�d
n

�

points and defined
by

Θd =
¦

ϑU =
�

(−1)n−1σn(U), (−1)n−2σn−1(U), · · · ,σ1(U)
�

: U ∈
�

Td

n

�

©

,

where σ j(U) is the j-th elementary symmetric polynomial of n elements in U. Then Θd ⊂ Θd+1 and we can arrange the set ∪∞d=nΘd to
obtain an extremal sequence in Cn.

It is not difficult to construct sequences (tk) satisfying the above assumption. Here is an example. Choose t1 = 1/2 and, for
k ≥ 0, having constructed t1, . . . , t2k we choose t2k+1, . . . , t2k+1 in

§

j
2k+1

: j = 1, . . . , 2k+1
ª

\ {t1, . . . , t2k}.

Such a sequence is included in [0,1] and satisfies,

{t1, t2, . . . , t2k}=
§

j
2k

: j = 1, . . . , 2k
ª

, k = 1,2, . . . .

Fix d ∈ N∗ and take k such that 2k−1 < d ≤ 2k. By construction, for 1≤ i < j ≤ d, there are distinct integers ni and n j such that
t i = ni/2

k and t j = n j/2
k so that

|t i − t j |=
|ni − n j |

2k
≥

1
2k
≥

1
2d

.

5 Bivariate extremal sequences in a prescribed convex set
The second condition in Definition 4.1 depends only on the normal vectors for the hyperplanes. The following theorem implies
that, having a sequence of normal vectors satisfying 2 in Definition 4.1, we can construct a sequence of corresponding hyperplanes
producing a natural lattices whose points belong to a given convex set.

Theorem 5.1. Let Hd = {`1, . . . ,`d} be d complex lines in general position in C2 such that normal vectors of the `k ’s belong to R2.
Let n ∈ R2 be a (unit) vector which normal to none of the `k, k = 1, . . . , d. Let further Ω be an open convex subset of C2 (or R2)
containing ΘHd

. Then there exists a complex line ` whose normal vector is n such that Hd ∪ {`} in general position and ΘHd∪{`} ⊂ Ω.

Proof. We may assumed that n= (1,0), hence no ` j is parrallel to the y-axis and their equation are of the form,

` j = {z : a jz1 − z2 + c j = 0}, j = 1, . . . , d. (9)

Since the hyperplanes are in general position, the coefficients a1, . . . , ad are pairwise distinct. We will assume that a1 < a2 <
· · ·< ad . For 1≤ j < k ≤ d, let ϑ jk denote the intersection of ` j and `k. It is readily seen that

ϑ jk = (z
( jk)
1 , z( jk)2 ) =

�

−
c j − ck

a j − ak
,

a j ck − akc j

a j − ak

�

.
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Note that for every 1< j < d we have
z(1 j)

1 6= z(1d)
1 and z( jd)1 6= z(1d)

1 .

Indeed, if, for instance, z(1 j)
1 = z(1d)

1 then `1 passes through two points whose first coordinates are identity which implies that `1 is
parallel to the vertical axis and this contradicts (9). We will prove that we may take `(z) = z1 − z(1d)

1 + ε with ε small.
For 1< j < d, a direct computation gives

(z(1 j)
1 − z(1d)

1 )(z( jd)1 − z(1d)
1 ) =

−(cd a j − cd a1 − c1a j − c j ad + c j a1 + c1ad)2

(ad − a1)2(a j − a1)(ad − a j)
< 0, (10)

where the inequality follows from the assumption on the ordering of the ai . Now, (10) implies that z(1d)
1 lies in the open segment

(z(1 j)
1 , z( jd)1 ). Hence the line `(z) = z1 − z(1d)

1 intersects the line segment [ϑ1 j ,ϑ jd] at a point ϑ j lying in the relative interior of the
segment. By hypothesis [ϑ1 j ,ϑ jd] ⊂ ` j ∩Ω and ϑ j = `∩ ` j ∈ Ω for 1 < j < d. Observe that if `∩ ` j = ϑ j = ϑi = `∩ `i then the

common value coincide with ϑi j = `i ∩ ` j . We take `(z) = z1 − z(1d)
1 + ε where ε is chose small enough so that z1d

1 + ε still lies in

(z(1 j)
1 , z( jd)1 ) (for every j) and so that ` does not meet any point in ΘHd

. There are at most N 2
d−2 values of ε that fail to meet the

criterion. The theorem is proved.

Observe that, in the above construction, the new points (on the hyperplane `) are included in the convex hull of the previous
points. By repeating the process we obtain the following corollary in which the points are included in the triangle (in Ω) formed
by the first three points.

Corollary 5.2. Let V = {n j}∞j=1 be a sequence of unit vectors in R2 such that any two vectors of V are not parallel. Then for any
given open convex set Ω ⊂ C2 we can construct a sequence H = {` j}∞j=1 of lines in general position in C2 such that n j is a normal
vector of ` j for j ≥ 1, and ΘH = {` j ∩ `k : j 6= k} ⊂ Ω.

The following example shows that a similar property as in Proposition 5.1 does not hold in general as soon as n ≥ 3. For
convenience we work with R3.

Let ` j = {x ∈ R3 : x j = 0} for j = 1, 2, 3, `4 = {x ∈ R3 : x1 + x2 + x3 − 1= 0} and `c
5 = {x ∈ R

3 : 2x1 + x2 + 3x3 − c = 0}. We
denote by n its normal vector, n = (2, 1, 3). Suppose that {ϑi jk} = `i ∩ ` j ∩ `k with 1≤ i < j < k ≤ 4 and {ϑi j5} = `i ∩ ` j ∩ `c

5 with
1≤ i < j ≤ 4. It is easily seen that ϑ123,ϑ124,ϑ134 and ϑ234 are four vertices of the standard simplex in R3. Direct computations

give ϑ135 = (0, c, 0), ϑ245 = (3−c, 0, c−2). For ε > 0, the open ball Bε := B(( 1
2 , 1

2 , 1
2 ),
q

3
4 + ε) contains ϑi jk with 1≤ i < j < k ≤ 4.

We show that when ε is small enough (for example ε= 1
10 ) then ϑ135 or ϑ245 does not lie in Bε. Indeed, set ϑ = ( 1

2 , 1
2 , 1

2 ). Then
‖ϑ−ϑ135‖2 = (c− 1

2 )
2 + 1

2 and ‖ϑ−ϑ245‖2 = 2(c− 5
2 )

2 + 1
4 . For every c ∈ R, one of the two numbers (c− 1

2 )
2 + 1

2 , 2(c− 5
2 )

2 + 1
4 is

greater than 3
4 + ε with ε= 1/10, which proves the claim.

6 The intertwining of natural lattices
We now show that the intertwining A⊕ B of two arrays of degree d ≥ 2 is never a natural lattice. In particular the intertwining of
two natural lattice is not a natural lattice and this shows that the application of Theorem 3.1 to the sequences introduced in
Section 4 provides essentially new extremal sequences.

Theorem 6.1. Let Ad = (aα : α ∈ Nn, |α| ≤ d) ⊂ Cn (resp. Bd = (bβ : β ∈ Nm, |β | ≤ d) ⊂ Cm) be block unisolvent tuples of degree
d ≥ 2. Then A⊕ B is not a natural lattice.

Proof. We assume the contrary, that is, confusing A⊕ B with its underlying set,

A⊕ B = ΘH with H= {`1, . . . ,`m+n+d}

where the `i ’s are hyperplanes in general position in Cn+m, and look for a contradiction. As before, we denote by (z,w) an
element of Cn+m with z ∈ Cn and w ∈ Cm. First, observe that if f is a function that depends only on z then

L[A⊕ B; f ](z,w) = L[A; f ](z). (11)

Indeed, the right-hand side is a polynomial of degree at most d in z, hence in (z,w) and it matches f at all points (aα,bβ ) with
|α|+ |β | ≤ d. Let us apply the above relation with f = L[A,aα;z] the FLIP for aα ∈ A, |α| = d. The right-hand side of (11) equals
to L[A,aα;z]. Since (aα,b0) ∈ A⊕ B = ΘH, for some S = S(α) ∈

�{1,2,...,m+n+d}
n+m

�

we have

(aα,b0) = ϑS = ∩i∈S`i .

Using Theorem 4.1 we see at once that the left-hand side of (11) is equal to
∏

i 6∈S

`i(z,w)
`i(ϑS)

. Hence

L[A,aα;z] =
∏

i 6∈S

`i(z,w)
`i(ϑS)

.
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Let us write S′(α) = {1, . . . , n+m} \ S(α). Hence for every i ∈ S′(α), `i(z,w) is a divisor of L[A,aα; z], this implies that `i does
not depend on w. Thus, for any i ∈ S′(α), the normal vector ni to `i belongs to Cn × {0}. The same reasoning works with any α
of length d. Now, we have one-to-one map

{(aα,b0) : |α|= d} ⊂ ΘH −→ S′(α) ∈
�

{1, . . . , m+ n+ d}
d

�

.

Let U denote the union of the S′(α). The above reasoning shows that for every i in U , ni ∈ Cn × {0}. Now, if the cardinality of U
is N then there at most

�N
d

�

sets S′(α), while, on the other hand, we know that there are exactly
�n+d−1

d

�

such sets (as this is the
number of the (aα,b0)). It follows that N cannot be smaller than n+ d − 1. So, since d ≥ 2, N ≥ n+ 1. Hence, we have at least
n+ 1 vectors ni in Cn × {0} and this contradicts the fact that the hyperplanes are in general position.
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