
Volume 8 · 2015 · Pages 1–11

A few remarks on “On certain Vandermonde determinants
whose variables separate"

André Pierro de Camargo a · Stefano De Marchi b

Abstract

In the recent paper “On certain Vandermonde determinants whose variables separate” [Linear Algebra
and its Applications 449 (2014) pp. 17–27], there was established a factorized formula for some
bivariate Vandermonde determinants (associated to almost square grids) whose basis functions are
formed by Hadamard products of some univariate polynomials. That formula was crucial for proving
a conjecture on the Vandermonde determinant associated to Padua-like points. In this note we show
that the same formula holds when those polynomials are replaced by arbitrary functions and we
extend this formula to general rectangular grids. We also show that the Vandermonde determinants
associated to Padua-like points are nonvanishing.

1 Introduction
The Padua points [4] are the first known unisolvent set of nodes for explicit full polynomial interpolation in [−1, 1]2 whose
Lebesgue constant has the minimal order of growth O(log2(n)) [2]. In 2009, Bos, De Marchi and Waldron [3] conjectured a
factorized formula for the Vandermonde determinant associated to the Padua points (and to other sets of points sharing the
same structure, named the Padua-like points) and this conjecture was recently proved by De Marchi and Usevich [8]. The
central result of [8] states that some bivariate Vandermonde determinants of size m×m or m× (m+ 1), m≥ 1, whose basis
functions are formed by Hadamard products of some univariate polynomials split into products of univariate Vandermonde
determinants, when evaluated at rectangular grids of size m×m or m× (m+1), respectively. One of the goals of this note is
to generalize that result to more general basis functions and rectangular grids of arbitrary size.

The unisolvence property of the Padua points was established in [2] by exhibiting explicitly the Lagrange polynomials
associated to corresponding interpolation problem. This is equivalent to showing that the Vandermonde determinant
associated to the Padua points is nonvanishing, but [8] do not explain why the factors arising in the factorized formula for
such Vandermonde determinant must be nonvanishing. In fact, the overall structure of these Vandermondians is still not
completely understood. For instance, [8] mentions that some of those factors can be further factorized, but the resulting
prime factors are not so simple to handle.

The other goal of this note is to establish the unisolvence property for all sets of Padua-like points by showing that the
corresponding Vandermonde determinant is indeed nonvanishing.

1.1 Notation
Given a set of multivariate real functions F = { f1(z), f2(z), . . . , fk(z)}, with z ∈ Rk, and a set of points A = {a1, a2, . . . , ak} ⊂
Rk we denote by V DM(A,F) the Vandermonde matrix

�

f j(ai)
� j=1,2...,k

i=1,2...,k
and by vdm(A,F) = det V DM(A,F), its determinant.

Notice that V DM(A,F) depends on the order of the elements of F and A. However, since we are mainly concerned with
the absolute value of vdm(A,F), then the order does not matter. Thus, if F ∈ Rm×n(z) is given as a function matrix and
A ∈ Rm∗n, for example, we will simply write vdm(A,F).

For a function matrix F ∈ Rm×n(z), we shall denote by Fi,: ∈ Rn(z), F:, j ∈ Rm(z) the i-th row and the j-th columm
of F , respectively, and by F:, j:k ∈ Rm×(k− j+1) the submatrix of F matrix formed from the j-th to the k-th columns of F .
Moreover, given function matrices P,Q ∈ Rm×n(z), then P ◦Q will denote their Hadamard (element-wise) product. Finally
diag(V) ∈ Rn×n will denote the diagonal matrix defined by V ∈ Rn and In will denote the identity matrix of order n.

2 On certain multivariate Vandermonde determinants whose variables separate
Our generalization of the central statement of [8] can be stated as follows

aInstituto de Matemática e Estatística, Universidade de São Paulo, Cidade Universitária, Rua do Matão 1010, São Paulo SP, Brazil. CEP 05508-090. Email:
andrecamargo.math@gmail.com, supported by grant 14225012012-0 from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
bUniversity of Padova, Department of Mathematics, Via Trieste, 63, I-35121 PADOVA, Italy. Email: demarchi@math.unipd.it

Camargo · De Marchi 2

Theorem 2.1. Let m, n≥ 1 be positive integers, k =min{m, n}, and P ∈ Rm×n(x),Q ∈ Rm×n(y) be two real valued function
matrices of the form

Q(y) =









q0(y) ∗ ∗ . . . ∗
q0(y) q1(y) ∗ . . . ∗ . . . ∗

...
...

. . .
. . .

...
...

q0(y) q1(y) . . . qk−1(y) ∗ . . . ∗









, P(x) =









∗ p0(x) p0(x) . . . p0(x) . . . p0(x)
∗ ∗ p1(x) . . . p1(x) . . . p1(x)
...

...
. . .

. . .
...

...
∗ ∗ . . . ∗ pk−1(x) . . . pk−1(x)









,

(1)
for m< n, or

Q(y) =



















q0(y) ∗ . . . ∗
q0(y) q1(y) . . . ∗

...
...

. . .
...

q0(y) q1(y) . . . qk−1(y)
...

...
...

q0(y) q1(y) . . . qk−1(y)



















, P(x) =



















∗ p0(x) p0(x) . . . p0(x)
∗ ∗ p1(x) . . . p1(x)
...

...
. . .

. . .
...

∗ ∗ . . . ∗ pk−2(x)
...

...
...

...
∗ ∗ . . . ∗ ∗



















, (2)

for m≥ n, where q0, q1, . . . , qk−1, p0, p1, . . . , pk−1 are arbitrary functions and ∗ denote also arbitrary (not equal to each other)
functions. Then for X = (x1, . . . , xm) ∈ Rm and Y = (y1, . . . , yn) ∈ Rn, the following equality holds

vdm(X × Y, P ◦Q) = ±

n
∏

j=1

vdm(X , P:, j)

!

�

m
∏

i=1

vdm(Y,Q i,:)

�

. (3)

In [8], m and n were assumed to be almost equal, that is n = m or n = m+1. Moreover, q0, q1, . . . , qk−1 and p0, p1, . . . , pk−1
were assumed to be monic polynomials satisfying

deg(p j) = deg(q j) = j, j = 1,2, . . . , m− 1 (4)

and, in particular,

q0(y) ≡ 1 and p0(x) ≡ 1. (5)

Following Section 3.2 of [8], it turns out that Theorem 2.1 generalizes the factorization property (valid for arbitrary m and
n) for rank-one matrices

Q(y) =









q0(y) q1(y) . . . qn(y)
q0(y) q1(y) . . . qn(y)

...
...

...
q0(y) q1(y) . . . qn(y)









and P(x) =









p0(x) p0(x) . . . p0(x)
p1(x) p1(x) . . . p1(x)

...
...

...
pm(x) pm(x) . . . pm(x)









, (6)

for which (3) is readily obtained by the properties of the Kronecker product. Notice that, by definition of P and Q, when
|m− n| ≥ 2, then the right-hand side of (3) will have at least |m− n| identical factors. However, our numerical experiments
suggested that the presented generalization (Theorem 2.1) of the factorization property is maximal in the sense that its
hypothesis can not be further relaxed.

2.1 Proof of Theorem 2.1
Our proof is by induction on k = min{m, n} and follows the same lines of the argument in [8]. It is easy to see that (3)
holds for k = 1. For instance, if m = 1, then X = (x1), Y = (y1, y2, . . . , yn), P(x) = [u1(x) u2(x) . . . un(x)] and
Q(y) = [v1(y) v2(y) . . . vn(y)] are row vectors and vdm(X × Y, P ◦Q) =

±

�

�

�

�

�

�

�

�

�

u1(x1)v1(y1) u2(x1)v2(y1) . . . un(x1)vn(y1)
u1(x1)v1(y2) u2(x1)v2(y2) . . . un(x1)vn(y2)

...
...

...
u1(x1)v1(yn) u2(x1)v2(yn) . . . un(x1)vn(yn)

�

�

�

�

�

�

�

�

�

= ±

�

n
∏

j=1
u j(x1)

�

�

�

�

�

�

�

�

�

�

v1(y1) v2(y1) . . . vn(y1)
v1(y2) v2(y2) . . . vn(y2)

...
...

...
v1(yn) v2(yn) . . . vn(yn)

�

�

�

�

�

�

�

�

�

.

Dolomites Research Notes on Approximation ISSN 2035-6803

Camargo · De Marchi 3

Assuming that (3) holds for k− 1≥ 1, we will prove it for k.
Put N j = vdm(X , P:, j). Following [8], we have vdm(X × Y, P ◦Q)

= ±det









N1 diag(Q:,1(y1)) N2 diag(Q:,2(y1)) . . . Nn diag(Q:,n(y1))
N1 diag(Q:,1(y2)) N2 diag(Q:,2(y2)) . . . Nn diag(Q:,n(y2))

...
...

...
N1 diag(Q:,1(yn)) N2 diag(Q:,2(yn)) . . . Nn diag(Q:,n(yn))









= ±det









q0(y1)N1 N2 diag(Q:,2(y1)) . . . Nn diag(Q:,n(y1))
q0(y2)N1 N2 diag(Q:,2(y2)) . . . Nn diag(Q:,n(y2))

...
...

...
q0(yn)N1 N2 diag(Q:,2(yn)) . . . Nn diag(Q:,n(yn))









= ±det(N1)det









q0(y1)Im N2 diag(Q:,2(y1)) . . . Nn diag(Q:,n(y1))
q0(y2)Im N2 diag(Q:,2(y2)) . . . Nn diag(Q:,n(y2))

...
...

...
q0(yn)Im N2 diag(Q:,2(yn)) . . . Nn diag(Q:,n(yn))









.

Let us assume, initially, that

q0(y1) 6= 0. (7)

Then, by an obvious block elimination process, we obtain

vdm(X × Y, P ◦Q) = ±det(N1)q0(y1)
m M , (8)

with

M = det











N2 diag
�

Q:,2(y2))−
q0(y2)
q0(y1)

Q:,2(y1)
�

. . . Nn diag
�

Q:,n(y2)−
q0(y2)
q0(y1)

Q:,n(y1)
�

...
...

N2 diag
�

Q:,2(yn)−
q0(yn)
q0(y1)

Q:,2(y1)
�

. . . Nn diag
�

Q:,n(yn)−
q0(yn)
q0(y1)

Q:,n(y1)
�











= det







N2 diag
�

Q̃:,1(y2))
�

. . . Nn diag
�

Q̃:,n−1(y2))
�

...
...

N2 diag
�

Q̃:,1(yn))
�

. . . Nn diag
�

Q̃:,n−1(yn))
�







= vdm(X × Ỹ , P:,2:n ◦ Q̃),

where Ỹ = (y2, . . . , yn) and

Q̃(y) :=Q:,2:n(y)−
q0(y)
q0(y1)

Q:,2:n(y1). (9)

• First case: k = n. In this case, we can apply the induction step to the tranpose matrices
�

Q̃
�t

and
�

P:,2:n

�t
to obtain

vdm(X × Y, P ◦Q) = ± det(N1)q0(y1)
m

n
∏

j=2

vdm(X , P:, j)

!

�

m
∏

i=1

vdm(Ỹ , Q̃ i,:)

�

. (10)

Then, notice that, for Q i,:(y) =
�

q0(y) a1(y) . . . an−1(y)
�

, we have vdm(Y,Q i,:) =

det









q0(y1) a1(y1) . . . an−1(y1)
q0(y2) a1(y2) . . . an−1(y2)

...
...

...
q0(yn) a1(yn) . . . an−1(yn)









=

q0(y1)det









a1(y2)−
q0(y2)
q0(y1)

a1(y1) . . . an−1(y2)−
q0(y2)
q0(y1)

an−1(y1)
...

...
a1(yn)−

q0(yn)
q0(y1)

a1(y1) . . . an−1(yn)−
q0(yn)
q0(y1)

an−1(y1)









= q0(y1)vdm(Ỹ , Q̃ i,:)

(11)

Dolomites Research Notes on Approximation ISSN 2035-6803

Camargo · De Marchi 4

and this completes the proof for case (7).
To prove the general case, notice that both sides of (3) vanish when q0(y1) = q0(y2) = . . . = q0(yn) = 0. On the other
hand, if at least one of these values is different from zero, we fall into case (7) through a suitable permutation of the
variables y1, y2, . . . , yn.

• Second case: k = m. In this case, the tranpose matrices
�

Q̃
�t

and
�

P:,2:n

�t
have k = m columns, (10) holds by the first

case and we can proceed as before.

2.2 Numerical experiments
In order to check the validity of formula (3), we performed two numerical experiments in R (software for Statistical
computing). The code is annexed in Appendix A.

2.2.1 First experiment

In the first experiment, we fixed m= 3, n= 7,






q0(y) = sin(y)
q1(y) = πy − 4
q2(y) = −5y4 + y2 − 3







p0(x) = cos
�

x2
�

p1(x) = x2 − 7x − 3
p2(x) = x −

p
2 log(x + 2)

Q(y) =





q0(y) y3 −π cos
�

y2 + 7
�

y5 − 2y + 19 −3y5 + 4y4 − 1 log(y) y
q0(y) q1(y) y2 − 2 tan(y) −y7 + y3 − 5 cos(

p
2y) y − 1.2

q0(y) q1(y) q2(y) −
p

2y + 1 4y5 sin(2y) cos(−3y)





and

P(x) =





x4 − 7 p0(x) p0(x) p0(x) p0(x) p0(x) p0(x)
x log(x + 2) x + 1 p1(x) p1(x) p1(x) p1(x) p1(x)

x5 − 1 x2 + 2 x3 − 1.21 p2(x) p2(x) p2(x) p2(x)



 .

Then we sampled (randomly) 104 pairs (X , Y) ∈ [1,5]3 × [1,5]7 and computed the left-hand (lh(3))and the right-hand
(rh(3)) sides of (3).

The frequencies of the computed relative differences log10

�

�

�

lh(3)
rh(3)
− 1

�

�

� are shown in Figure 1. Recalling that this experiment

computes determinants of order even m× n = 21 and that Vandermonde type matrices are ill conditioned in general, a mean
order of 1.e− 10 for the relative difference due to rounding in double precision (i.e. IEEE 754 standard) seems reasonable.

Figure 1: Distribution of the computed relative differences log10

�

�

�

�

lh(3)
rh(3)
− 1

�

�

�

�

of 104 sampled pairs (X , Y) in [1,5]4 × [1, 5]5.

2.3 Second experiment

In the second experiment, we fixed m = 6, n = 4, X =
�

−1,−0.3, 1
e
,
p

2,π
�

and Y = (−1, cos(2), 1, log(10)). Then we

sampled (randomly) 104 pairs (α,β) ∈ [1, 5]6× [1, 5]5 and, for each sampled pair (α,β), we set q0, q1, q2, q3, p0, p1, p2 and
Q and P as follows

Dolomites Research Notes on Approximation ISSN 2035-6803

Camargo · De Marchi 5











q0(y) = |y|+ β1
q1(y) = y2 − β2
q2(y) = −5y4 + β3 y2 − β4
q3(y) = β5 y6 − β2 y + β3











p0(x) =
§

x , , if x < α1
log(x + 4) , if x ≥ α1

p1(x) = α2 x2 +α3 x −α4
p2(x) = α5 sin(x +α6),

Q(y) =















q0(y) y3 − 2y + 2 cos
�

y tan(y)
�

y3 −
p

7y2)
q0(y) q1(y) sin(y + 2) 3y3 − 7
q0(y) q1(y) q2(y)

�

�y − 3 cos(y)
�

�

q0(y) q1(y) q2(y) q3(y)
q0(y) q1(y) q2(y) q3(y)
q0(y) q1(y) q2(y) q3(y)















,

P(x) =















x + cos(x) p0(x) p0(x) p0(x)
α1 x3 −α2 α3 x + 1 p1(x) p1(x)

x5 − 1 x2 + 2 x3 − 1.21 p2(x)
β1 x3 − 2x2 + 2 x6 − 2x3 + β2 sin(x) − cos(x)
β4|x − 1| β1 x β2 x2 β3 log(x + 3)

cos(x) β5 sin(x) πx − tan(x)















and we computed the left-hand (lh(3))and the right-hand (rh(3)) sides of (3).

The frequencies of the computed relative errors log10

�

�

�

lh(3)
rh(3)
− 1

�

�

� are shown in Figure 2. Again, a mean order of 1.e− 12

for the relative difference due to rounding seems reasonable.

Figure 2: Distribution of the computed relative differences log10

�

�

�

�

lh(3)
rh(3)
− 1

�

�

�

�

of 104 sampled pairs (α,β) in [1, 5]6 × [1,5]5.

3 On the Vandermonde determinant associated to Padua-like points
Let us consider the univariate Chebyshev-Lobatto grid of n+ 1 points

Cn+1 =

�

zn
j = cos

�

(j − 1)π
n

�

, j = 1,2, . . . , n+ 1

�

(12)

and its disjoint decomposition

C o
n+1 =

¦

zn
j , j = 1,2, . . . , n+ 1, j odd

©

C e
n+1 =

¦

zn
j , j = 1,2, . . . , n+ 1, j even

©

.
(13)

The Padua points [2] Pn for interpolation in [−1,1]2 is defined as follows

Pn = (C
o
n+1 × C o

n+2)∪ (C
e
n+1 × C e

n+2) ⊂ Cn+1 × Cn+2. (14)

Dolomites Research Notes on Approximation ISSN 2035-6803

Camargo · De Marchi 6

This set has cardinality equal to the dimension N =
�

n+ 2
2

�

of the space Πn(R2) of bivariate polynomials of total degree

less than or equal to n. A fundamental property of the Padua points is that they are self intersections and boundary contacts
of the following Lissajous curve

γ(t) = (cos((n+ 1)t), cos(nt)), t ∈ [0,π]. (15)

Erb [9] recently considered more general Lissajous curves for generating nodes for interpolation in [−1, 1]2, namely

γp(t) = (cos((n+ p)t), cos(nt)), t ∈ [0,π], (16)

where n and n+ p are coprime. It was show in [9] that, for each value of p, the self intersections of the corresponding curve
can be arranged in two rectangular grids. For p = 1, nodes characterized by this property were previously referred to as
Padua-like points [8, 3]. Formally, the generic Padua-like points are formed by the union of two disjoint grids,

An := Ao
n ∪Ae

n (17)

where

Ao
n =

¦

(x2i+1, y2 j+1), 0≤ i ≤ n
2
, 0≤ j ≤ n

2

©

Ae
n =

¦

(x2i , y2 j), 0≤ i ≤ n
2
, 0≤ j ≤ n

2
+ 1

©
(18)

and {x i}ni=1, {yi}ni=1 are two sets containing n distinct elements each (the grids in (18) are displayed for n even. The case n
odd is similar). In this section we show that the Vandermonde determinant associated to the generic Padua-like points (17)
with respect to the basis of monomials

Bn = {xα yβ |α+ β ≤ n,α≥ 0,β ≥ 0} (19)

is nonvanishing. For the sake of simplicity, we will consider only n even. We will also assume that

x i < x j and yi < y j , for i < j. (20)

Let

Tn = {xα yβ |0≤ α,β ≤ n} and T e
n =

�

a(x)B n
2−1

�

∪
�

b(y)B n
2−1

�

, (21)

where a(x) and b(y) are the annihilating polynomials of the points in Ao
n, that is

a(x) =

n
2
∏

i=0

(x − x2i+1), b(y) =

n
2
∏

j=0

(y − y2 j+1). (22)

It is shown in [8] that the Vandermonde determinant vdm(An,Bn) associated to the Padua-like points (17) with respect
to the monomial basis (19) can be written as

vdm(An,Bn) = ±vdm(Ao
n,T n

2
)× vdm(Ae

n,T e
n
2
). (23)

The first factor in the right-hand side of (23) is equal [3] to

±

∏

0≤i< j≤n/2

(x2 j+1 − x2i+1)

!n/2+1
∏

0≤i< j≤n/2

(y2 j+1 − y2i+1)

!n/2+1

(24)

and, therefore, is nonvanishing. Moreover, the version of Theorem 2.1 in [8] is used to show that the second factor in the
right-hand side of (23) factors as

vdm(Ae
n,T e

n
2
) = ±





n
2+1
∏

j=1

vdm(X , P:, j)









n
2
∏

i=1

vdm(X ,Q i,:)



 , (25)

where

X =
n

x2i |1≤ i ≤
n

2

o

, Y =
n

y2i |1≤ i ≤
n

2
+ 1

o

, (26)

Q(y) =













1 b(y) y b(y) . . . y
n
2−1 b(y)

1 y b(y)
. . .

...
...

...
. . .

. . . y b(y)
1 y . . . y

n
2−1 b(y)













(27)

Dolomites Research Notes on Approximation ISSN 2035-6803

Camargo · De Marchi 7

and

P(x) =











a(x) 1 1 . . . 1
xa(x) a(x) x . . . x

...
. . .

. . .
. . .

...
x

n
2−2a(x) . . . xa(x) a(x) x

n
2−2











. (28)

It is also mentioned in [8] that the factors in (25) can be further factorized. Notice, for example, that, for every k ≤ n
2
,

vdm(X , P:, j) = det



















1 x2 . . . x j−2
2 a(x2) x2a(x2) . . . x

n
2− j
2 a(x2)

1 x4 . . . x j−2
4 a(x4) x4a(x4) . . . x

n
2− j
2 a(x4)

1 x6 . . . x j−2
6 a(x6) x6a(x6) . . . x

n
2− j
6 a(x6)

...
...

...
...

...
...

1 xn . . . x j−2
n a(xn) xna(xn) . . . x

n
2− j
n a(xn)



















(29)

is a polynomial in x2k which vanishes at X/{x2k}. Therefore, it follows that vdm(X , P:, j) must be divisible by
∏

r<s
(x2s − x2r).

The polynomial
vdm(X , P:, j)
∏

r<s
(x2s − x2r)

(30)

can be regarded as a generalization of some Schur functions (where a(x) = x k, for some k > j − 2 [11]). Nevertheless, it is
not easy in general to obtain further information on such polynomials [5, 6, 7], including characterizing all sets of nodes for
which (30) is nonvanishing. Fortunately, in our case, we can directly infer that all factors in (25) are different from zero.

Theorem 3.1. Let m = n
2
. For each j ∈ {1,2, . . . m+ 1}, i ∈ {1,2 . . . , m} and X ,Y, P and Q defined in (26–28), we have

vdm(X , P:, j) 6= 0 and vdm(Y,Q i,:) 6= 0.

Proof. Let us prove the statement for P. The cases j = 1 and j = m+ 1 are straightforward. For j = m+ 1,

vdm(X , P:, j) = det









1 x2 . . . xm−1
2

1 x4 . . . xm−1
4

...
...

...
1 xn . . . xm−1

n









(31)

is an ordinary Vandermonde determinant and it factors as
∏

r<s
(x2s − x2r), as it is well known [10]. And, for j = 1, one has

vdm(X , P:, j) =

�

m
∏

i=1
a(x2i)

�

vdm(X , P:,m+1).

For 2≤ j ≤ m fixed, let v =
�

v1 v2 . . . vm

�t
∈ Rm such that

V DM(X , P:, j)× v = 0, (32)

where V DM(X , P:, j) denotes the Vandermonde matrix on the right-hand side of (29). If v 6= 0, it follows by (29) that
x2, x4, . . . , x2m are roots of the the nonzero polynomial

g(x) :=

j−2
∑

k=0

vk x k

!

︸ ︷︷ ︸

r(x)

+a(x)

m
∑

k= j−1

vk x k− j+1

!

︸ ︷︷ ︸

s(x)

, (33)

that is g(x) must be divisible by c(x) :=
m
∏

`=1
(x − x2`) (notice that, in this case, both r(x) and s(x) must be different from

zero). Therefore, we must have

r(x) + a(x)s(x) = u(x)c(x), (34)

where deg(u(x)) ≤ deg
�

xm− ja(x)
�

− deg(c(x)) = (m− j) + (m+ 1)−m = m+ 1− j.
Now consider the polynomial h(x) = r(x)u(x). We have

h(x) + a(x)s(x)u(x) = u(x)2c(x) (35)

Dolomites Research Notes on Approximation ISSN 2035-6803

Camargo · De Marchi 8

and

deg(h(x))≤ j − 2+m+ 1− j = m− 1. (36)

We shall proceed by showing that h(x) must have at least m real roots, which will contradict (36). As a consequence, no
v 6= 0 can be a solution of (32) and our proof will be complete.

Let H = {ξ1,ξ2, . . . ,ξ`} be the list of real roots of h(x), counted with multiplicity, that is, ξi = ξ j may occur for i 6= j, but
we will treat them as distinct objects. Let ϕ : {1, 2, . . . , m} → H be the function constructed inductively as follows: Assume
that ϕ is already defined in {0,1, . . . , i − 1} ∩ {1, 2, . . . , m} and we shall define it for i ≥ 1.

• If u(x2i+1) = 0, then we set ϕ(i) := ξ j for some element ξ j in H which corresponds to x2i+1.

• If u(x2i+1) 6= 0, there are two possibilities

– If u(x2i−1) = 0, then, by (22) and (34), we have r(x2i−1) = 0. Therefore, x2i−1 is a multiple root of h(x). In
particular, besides of ϕ(i − 1) (when it exists), there is at least one other element ξk in H which corresponds to
x2i−1. Then we set ϕ(i) := ξk.

– If u(x2i−1) 6= 0, then (35) shows that h(x2i−1)h(x2i+1) = u(x2i−1)4c(x2i−1)c(x2i+1) and this quantity is negative,
because, by (20), c(x) has only one root (simple) in [x2i−1, x2i+1]. This shows that h(x) must have at least one
real root ξ j in]x2i−1, x2i+1[and we set ϕ(i) := ξ j .

It is easy to see that the ϕ defined above is injective (notice, for example, that ϕ(i) ∈ [x2i−1, x2i+1] ∀ i). Hence, we must
have #H = `≥ m and we are done.

References
[1] Bos, L., De Marchi, S., and M. Vianello, Trivariate polynomial aproximation on Lissajous curves. arXiv:1502.04114 [math.NA] (2015)

[2] Bos, L., Caliari, M., De Marchi, S., Vianello, M., and Y. Xu, Bivariate Lagrange interpolation at the Padua points: the generating curve
approach. Journal of Aproximation Theory 143 (1) (2006) pp. 15–25.

[3] Bos, L., De Marchi, S. and S. Waldron, On the Vandermonde Determinant of Padua-like Points. Dolomites Research Notes on Approxima-
tion 2 (2009) pp. 1–15.

[4] Caliari, M., De Marchi, S., and M. Vianello, Bivariate Lagrange interpolation on the square at new nodal sets. Applied Mathematics and
Computation 165 (2005) pp. 261–274.

[5] De Marchi, S., On computing the factors of generalized Vandermonde determinants. Recent Advances in Applied and Theoretical
Mathematics World Scientific and Engineering Society (2000) pp. 140–2144.

[6] De Marchi, S., Polynomials arising in factoring generalized Vandermonde determinants: an algorithm for computing their coefficients.
Mathematical and Computer Modelling 34 (3-4) (2001) pp. 271–281.

[7] De Marchi, S., Polynomials arising in factoring generalized Vandermonde determinants II: A condition for monicity. Applied Mathematics
Letters 15 (5) (2002) pp. 627–632.

[8] De Marchi, S. and K. Usevich, On certain multivariate Vandermonde determinants whose variables separate. Linear Algebra and its
Applications 449 (2014) pp. 17–27.

[9] Erb, W., Bivariate Lagrange interpolation at the node points of Lissajous curves - the degenerate case. arXiv:1503.00895 (2015).

[10] Krattenthaler, C., Advanced determinantal calculus. Séminaire Lotharingien Combin. (electronic) 42 (1999).

[11] Macdonald, I., Symmetric functions and Hall polynomials. Oxford university prees. New york (2008).

A R code
R script for testing the factorization of the multivariate Vandermonde determinant.
In the following, q_0, q_1, q_2, q_3, p_0,p_1, p_2, p_3 are funcions of the variables (x
for p and y for q) Q and P are function matrices of x and y which depend also on q_0, q_1,
q_2, q_3 and p_0,p_1, p_2, p_3, respectively.

General settings.
##

VDMlin = function(Y,Q,q_0,q_1,q_2,q_3,i) # This funcion computes the Vandermonde determinant
{ res = NULL # taken from the i-th row of Q and the vector Y.

for(j in 1:length(Y))
{
res = rbind(res,Q(Y[j],q_0,q_1,q_2,q_3)[i,]) # Adds the row corresponding to the j-th
} # component of Y to the Vandermonde matrix.
return(abs(det(res))) # Returns the absolute value of the vandermonde determinant.

}

##

VDMcol = function(X,P,p_0,p_1,p_2,p_3,i) # This funcion computes the Vandermonde determinant

Dolomites Research Notes on Approximation ISSN 2035-6803

Camargo · De Marchi 9

{ res = NULL # taken from the i-th columm of P and the vector X.
for(j in 1:length(X))
{

res = cbind(res,P(X[j],p_0,p_1,p_2,p_3)[,i])
}
return(abs(det(res)))

}

##

PQlin = function(x,y,P,Q, p_0,p_1,p_2,p_3, q_0,q_1,q_2,q_3) # This funcion computes the
{ res = P(x,p_0,p_1,p_2,p_3)*Q(y,q_0,q_1,q_2,q_3) # element-wise product of P and

dim(res) = NULL # Q evaluated at x, y and return
return(res) # it as a vector.

}

##

VDMmultVar = function(X,Y,P,Q,p_0,p_1,p_2,p_3, q_0,q_1,q_2,q_3)
{ res = NULL # This function computes the absolue value of the

for(i in 1:length(X)) # multivariate vandermonde determinant (the lhs of equation (3))
{ # corresponding to vectors X and Y.

for(j in 1:length(Y))
{

res = rbind(res,PQlin(X[i],Y[j],P,Q, p_0,p_1,p_2,p_3, q_0,q_1,q_2,q_3)) # Adds the
} # row corresponding to the pointwise product

} # of P and Q evaluated at X[i], Y[j].
return(abs(det(res)))

}

##

VDMfac = function(X,Y,P,Q,p_0,p_1,p_2,p_3, q_0,q_1,q_2,q_3) # This function evaluates the
{ res = 1 # right-hand side of equation (3), i. e. the

for(j in 1:length(Y)) # products of the vandermondians taken from
{ # the rows of Q and columns of Q and returns

res = res*VDMcol(X,P,p_0,p_1,p_2,p_3,j) # its absolute value.
}

for(j in 1:length(X))
{

res = res*VDMlin(Y,Q,q_0,q_1,q_2,q_3,j)

}
return(abs(res))

}

Our thesis is that VDMfac must be identical to VDMmultVar in exact arithmetic.

##
Especific settings
##

First experiment (m = 3, n = 7)

Defines p_0, p_1, p_2,p_3 and q_0, q_1, q_2,q_3.

q_0 = function(y){return(sin(y))}
q_1 = function(y){return(pi*y-4)}
q_2 = function(y){return(-5*y^4+y^2-3)}

p_0 = function(x){return(cos(x^2))}
p_1 = function(x){return(x^2-7*x-3)}
p_2 = function(x){return(x- sqrt(2)*log(x+2))}

Defines the matrix Q as a function of q_0,q_1, q_2, q_3.

Q = function(y,q_0,q_1,q_2,q_3) # Evaluates the matrix function Q at the point y. The
{ # functions q_0, q_1,q_2 and q_3 are passed as parameters.

res = array(0,c(3,7))

Dolomites Research Notes on Approximation ISSN 2035-6803

Camargo · De Marchi 10

res[1,] = c(q_0(y), y^3-pi, cos(y^2+7), y^5-2*y+19,-3*y^5+4*y^4-1, log(y), y) # Defines the first row of Q.
res[2,] = c(q_0(y), q_1(y), y^2-2, tan(y),-y^7+y^3-5, cos(sqrt(2)*y), y-1.2) # Defines the second row of Q.
res[3,] = c(q_0(y), q_1(y), q_2(y), -sqrt(2)*y+1,4*y^5, sin(2*y), cos(-3*y)) # Defines the third row of Q.
return(res)

}

P = function(x,p_0,p_1,p_2,p_3) # Evaluates the matrix function P at the point x. The functions
{ res = array(0,c(3,7)) # p_0, p_1,p_2 and p_3 are passed as parameters.

res[1,] = c(x^4-7, p_0(x),p_0(x),p_0(x),p_0(x),p_0(x), p_0(x)) # Defines the first row of P.
res[2,] = c(x*log(x+2), x+1,p_1(x),p_1(x),p_1(x), p_1(x), p_1(x)) # Defines the second row of P.
res[3,] = c(x^5-1, x^2+2, x^3-1.21,p_2(x),p_2(x), p_2(x), p_2(x)) # Defines the third row of P.
return(res)

}

M = 10000 # Number of samples.

relErrors = array(0,c(M))
for(i in 1:M) # Run test.
{

X = runif(3,min = 1, max = 5) # Samples X randomly.
dim(X) = c(1,length(X))
Y = runif(7,min = 1, max = 5) # Samples Y randomly.
dim(Y) = c(1,length(Y))

Computes the left-hand side of equation (3).
a = VDMmultVar(X,Y,P,Q,p_0,p_1,p_2,p_3, q_0,q_1,q_2,q_3)

Computes the right-hand side of equation (3).
b = VDMfac(X,Y,P,Q,p_0,p_1,p_2,p_3, q_0,q_1,q_2,q_3)

relErrors[i] = abs(b/a - 1) # Stores the computed relative error.
}

data = log(relErrors)/log(10)# plots the histogram of absolute value of the relative errors
data[which(relErrors == 0)] = -16
png("test_1.png", width = 800, height = 400)
par(mar = c(3,6,3,3))
hist(data,breaks = seq(-16,max(data)+2,0.1), main = paste("Absolute frequencies of the computed
relative errors"), cex.main = 2, xlab = NULL, cex.lab = 2,cex.axis = 2,)
text(-5,250, paste("mean= ",round(mean(data),6)), cex= 2)
dev.off()

##

Second experiment (m = 6, n = 4)

M = 10000 # Number of samples

fix X and Y
X = c(-1,-0.3, 0, exp(-1), sqrt(2), pi)
Y = c(-1,cos(2),1,log(10))

relErrors = array(0,c(M)) # Run test

for(i in 1:M)
{

alpha = runif(6,min = -1, max = 1) # Samples alpha and beta randomly.
beta = runif(5,min = -1, max = 1)

q_0 = function(y){ return(abs(y) + beta[1])}
q_1 = function(y){return(y^2-beta[2])}
q_2 = function(y){return(-5*y^4+beta[3]*y^2-beta[4])}
q_3 = function(y){return(beta[5]*y^6-beta[2]*y+beta[3])}

p_0 = function(x) # Define a discontinuos function
{

if(x < alpha[1]){return(x)}
return(log(x+4))
}
p_1 = function(x){return(alpha[2]*x^2+alpha[3]*x-alpha[4])}
p_2 = function(x){return(alpha[5]*sin(x+alpha[6]))}

Dolomites Research Notes on Approximation ISSN 2035-6803

Camargo · De Marchi 11

p_3 = function(x){return(0)} # p_3 is required as argument of Q, but is
actually not used in this experiment.

Q = function(y,q_0,q_1,q_2,q_3)
{

res = array(0,c(6,4))
res[1,] = c(q_0(y), y^3-2*y+2, cos(y*tan(y)), y^3-sqrt(7)*y^2)
res[2,] = c(q_0(y), q_1(y), sin(y+2), 3*y^3-7)
res[3,] = c(q_0(y), q_1(y), q_2(y), abs(y-3*cos(y)))
res[4,] = c(q_0(y), q_1(y), q_2(y), q_3(y))
res[5,] = c(q_0(y), q_1(y), q_2(y), q_3(y))

res[6,] = c(q_0(y), q_1(y), q_2(y), q_3(y))

return(res)
}

##

defines the matrix P as a function of p_0,p_1, p_2, p_3

P = function(x,p_0,p_1,p_2,p_3)
{

res = array(0,c(6,4))
res[1,] = c(x+cos(x), p_0(x),p_0(x),p_0(x))
res[2,] = c(alpha[1]*x^3-alpha[2], alpha[3]*x+1,p_1(x),p_1(x))
res[3,] = c(x^5-1, x^2+2, x^3-1.21,p_2(x))
res[4,] = c(beta[1]*x^3-2*x^2+2, x^6-2*x^3+beta[2], sin(x),-cos(x))

res[5,] = c(beta[4]*abs(x-1), beta[1]*x, beta[2]*x^2, beta[3]*log(x+3))
res[6,] = c(cos(x), beta[5]*sin(x), pi*x,-tan(x))
return(res)

}

Computes the left-hand side of equation (3).
a = VDMmultVar(X,Y,P,Q,p_0,p_1,p_2,p_3, q_0,q_1,q_2,q_3)
Computes the right-hand side of equation (3).
b = VDMfac(X,Y,P,Q,p_0,p_1,p_2,p_3, q_0,q_1,q_2,q_3)

relErrors[i] = abs(b/a - 1) # Stores the computed relative error.
}

data = log(relErrors)/log(10) # plots the histogram of absolute value of the relative errors
data[which(relErrors == 0)] = -16
png("test_2.png", width = 800, height = 400)
par(mar = c(3,6,3,3))
hist(data,breaks = seq(-16,max(data)+2,0.1), main = paste("Absolute frequencies of the computed relative
errors"), cex.main = 2, xlab = NULL, cex.lab = 2,cex.axis = 2,)
text(-6,350, paste("mean= ",round(mean(data),6)), cex= 2)
dev.off()

Dolomites Research Notes on Approximation ISSN 2035-6803

	Introduction
	Notation

	On certain multivariate Vandermonde determinants whose variables separate
	Proof of Theorem 2.1
	Numerical experiments
	First experiment

	Second experiment

	On the Vandermonde determinant associated to Padua-like points
	R code

