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Lagrange polynomials of lower sets

Jesús Carnicer a · Carmen Godés b

Abstract

A lower set of nodes is a subset of a grid that can be indexed by a lower set of indices. In order to apply
the Lagrange interpolation formula, it is convenient to express the Lagrange fundamental polynomials as
sums of few terms. We present such a formula for the Lagrange interpolation formula in two variables. In
the general multidimensional case, we express the Lagrange fundamental polynomials in d variables in
terms of Lagrange fundamental polynomials in d −1 variables. Applications to the problem of computing
Lebesgue constants of lower sets are included.

Keywords: grid interpolation, lower sets, Lagrange formula.

1 Introduction
Interpolation problems in several variables on subspaces of polynomials are much harder to solve than univariate ones. In contrast
to the univariate case, the question of the existence and uniqueness is not automatic. It is therefore important to pay attention to
the distribution of nodes if we want to interpolate with a given subspace of polynomials or to select an appropriate interpolation
space for a given set of nodes.

The Lagrange formula is very useful because it expresses the interpolant in terms of the data. It might lead to remarkable
representations of polynomials. According to a comment at the end of Chapter 1 of [1], the univariate Lagrange formula based
on the Chebyshev sites is one of the best conditioned polynomial representations available. Explicit formulae for the Lagrange
polynomials also provide information on the Lebesgue constant, which can be used to describe the stability properties of the
interpolation problem.

Some problems have a remarkable structure that can be exploited in order to reduce the interpolation problem to interpolation
problems in lower dimensions. The tensor product construction selects a polynomial in the space Pn1

⊗ · · · ⊗ Pnd
interpolating

a function at a grid of points X1 × · · · × Xd by reducing the multivariate problem to univariate interpolation problems. Direct
generalizations of the univariate Lagrange and Newton formulae and the Aitken-Neville recurrences can be described for these
problems. In these kinds of constructions, the Lagrange fundamental polynomials are products of linear factors.

Other examples of sets of nodes with simple Lagrange formulae in Pd
n , the space of polynomials in d variables of total degree

less than or equal to n, are GC sets. A GC set X ⊂ Rd is a set with
�n+d

d

�

nodes such that, for each x ∈ X , there exist n hyperplanes
H x

1 , . . . , H x
n such that (H x

1 ∪ · · · ∪ H x
n ) ∩ X = X \ {x}. For these sets of points the Lagrange fundamental polynomials can be

expressed as a product of linear factors [3]. Principal lattices and their generalizations [2] are particular instances of GC sets and
hence their Lagrange fundamental polynomials are also products of linear factors.

Multivariate Lagrange formulae have some drawbacks for general sets of nodes. Since dim Pd
n =

�n+d
d

�

, the expansion of each
fundamental polynomial with respect to a suitable basis will have

�n+d
d

�

terms and the Lagrange interpolation formula combining

the values at the nodes with the fundamental polynomials, will have
�n+d

d

�2
terms. The roundoff error of the evaluation of a

formula with so many terms can be large. The computation time will grow fast with the degree and the dimension. This huge
number of terms hinders the practical use of Lagrange formulae in problems where the degree is not very low and dimension
d ≥ 2. Furthermore, the fundamental polynomials are usually obtained as the solution of an ill-conditioned problem and
its construction might lack reliability. For this reason it is important to identify particular sets of nodes where the Lagrange
fundamental polynomials are particularly simple and can be explicitly expressed as a sum of few terms.

Some subsets of a grid of points have also remarkable interpolation formulae that resemble univariate ones [4, 8, 10]. In
paragraphs 231 and 232 of Chapter 19 of [8], extensions of the Newton formulae to certain subgrids are examined. The lower
sets of nodes are subsets of a grid that can be indexed by a lower set of indices. In these sets, the grid structure can be used
to identify subgrids where a tensor product construction can be applied on certain subsets in order to reduce the problem to
univariate interpolation subproblems. In fact, the Newton formula on the points of a complete grid can be extended to lower sets.
Bivariate interpolation problems with nodes concentrated in layers around the boundary arise in the finite element method. A
suitable indexing shows that the nodes are indeed in many cases lower sets. Boolean sums of univariate interpolation operators
can be used to express the interpolant on lower sets [4]. A recent paper [5] provides some formulae for reducing the interpolation
problem on lower sets to interpolation problems on subgrids which can be related with boolean sums. Some practical ideas for
computational implementation using representations in terms of Chebyshev polynomials in 2 and 3 variables can be found in [7].
Since the fundamental polynomials on the subgrids can be expressed as a product of linear factors, it seems reasonable that the
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Lagrange fundamental polynomials on lower sets can be expressed as a sum of few terms. In this paper we show that a low
number of terms is needed to express the Lagrange fundamental polynomials on lower sets. The number of terms can be related
with the number of maximal indices in the lower set.

In Section 2, lower sets are defined and the Newton formula for these sets is recalled. In Section 3, we show that the
projections of lower sets and their coordinate level sets can be regarded as lower sets in smaller dimensions. This fact allows
us to express the fundamental Lagrange polynomials of a d-variate problem in terms of fundamental Lagrange polynomials in
d − 1 variables. An example is provided to illustrate the recursion. In Section 4, a bivariate Lagrange formula for lower sets is
presented and applications to the problem of computing Lebesgue constants are included.

2 Interpolation formulae for lower sets.
Let Nd

0 be the set of all nonnegative multiindices in d variables. Given α,β ∈ Nd
0 , we write α≤ β to indicate that αl ≤ βl , for all

l = 1, . . . , d. The least multiindex (0,0, . . . , 0) will be denoted simply by 0. For any α ∈ Nd
0 , let us denote by

Bα := {β ∈ Nd
0 | β ≤ α}.

We observe that this set is the cartesian product of univariate sets, Bα =
∏d

l=1 Bαl
, where Bi := {0,1, . . . , i}, i ∈ N0.

We can pose a Lagrange interpolation problem on a grid of points

Xα =
d
∏

l=1

Xαl ,l ⊂ R
d , Xαl ,l := {x0,l , x1,l , . . . , xαl ,l}.

Each element of the grid Xα can be indexed by an element of the set Bα in the following way

xβ := (xβ1 ,1, . . . , xβd ,d), β ∈ Bα.

Let us remark that we only assume that the coordinates x0,l , x1,l , . . . , xαl ,l are distinct but not necessarily ordered. Thus nodes
with consecutive indices may not be contiguous in a geometric sense in the grid Xα. Let us denote by x = (x1, . . . , xd) the vector
of variables and xβ = xβ1

1 · · · x
βd
d the d-variate monomial whose exponents are the components of the multiindex β . Let us define

the space of polynomials
Pα := 〈xβ : β ≤ α〉= Pα1

⊗ · · · ⊗ Pαl
.

It is well-known that the Lagrange interpolation problem on Pα for the set of nodes Xα has a unique solution and the interpolant
p of a function f can be expressed by means of a Lagrange formula

p(x) =
∑

β∈Bα

f (xβ )lxβ (x; Xα).

The algebraic structure of the tensor product space Pα can be used to show that the Lagrange fundamental polynomials are
products of fundamental polynomials in each variable

lxβ (x1, . . . , xd ; Xα) =
d
∏

l=1

lxβl ,l
(x l ; Xαl ,l), β ∈ Bα.

If αl > 0, we have

lxβl ,l
(x l ; Xαl ,l) =

∏

j 6=βl ,0≤ j≤αl

x l − x j,l

xβl ,l − x j,l
, l = 1, . . . , d,

and if αl = 0, lx0,l
(x l , X0,l) = 1. From now on, we use the convention that the product

∏

j 6=βl ,0≤ j≤αl
(x l − x j,l)/(xβl ,l − x j,l) equals

1 when αl = 0.
We can also write a Newton formula for the interpolant. For this purpose we use the well-known tensor product divided

differences [6, 9] (see also [5])
[Xα:β] f = [xα1 ,1, . . . , xβ1 ,1; . . . ; xαd ,d , . . . , xβd ,d] f

obtained by successive application of the univariate divided differences. We introduce the tensor product Newton basis of the
grid Xα

ωβ (x1, . . . , xd) :=
d
∏

l=1

ωβl ,l(x l), β ∈ Bα,

where
ωβl ,l(x l) :=

∏

0≤ j<βl

(x l − x j,l), l = 1, . . . , d.

If βl = 0, the product extended over an empty set of indices meansω0,l(x l) := 1. From the definition, it follows thatωβ ∈ Pβ ⊆ Pα.
Then Newton’s formula for the interpolant can be expressed in the following way

p(x) =
∑

β∈Bα

[X0:β] f ωβ (x).
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The Lebesgue function
λ(x; Xα) :=

∑

β∈Bα

|lxβ (x; Xα)|,

is a measure of the stability of the interpolating polynomial at x . Its maximum value on a given domain D is called the Lebesgue
constant Λ(Xα). In the case of grids a natural domain for the polynomial interpolant is D = [Xα], the convex hull of the elements
of the grid. From the fact that the Lagrange fundamental polynomials are products of fundamental polynomials in each variable,
it follows that

λ(x1, . . . , xd ; Xα) =
d
∏

l=1

λ(x l ; Xαl ,l),

and

Λ(Xα) =
d
∏

l=1

Λ(Xαl ,l),

provided that the Lebesgue constants are computed on the convex hull of the corresponding nodes.
We want to extend the usual tensor product interpolation formulae to sets of nodes indexed by subsets of Bα. Associated with

any subset of multiindices L, there exists a space of multivariate polynomials

PL := 〈xβ : β ∈ L〉

and a corresponding subset of nodes of the grid Xα

X L := {xβ : β ∈ L}.

Definition 2.1. A set L ⊆ Nd
0 is called a lower set if it contains all multiindices lower than or equal to any β ∈ L, that is, Bβ ⊆ L

for any β ∈ L.

A block of a lower set is any subset Bβ , β ∈ L. From the definition, it follows that a lower set is a union of blocks. A maximal
element of a lower set L is any α ∈ L such that if β ∈ L satisfies α ≤ β , then β = α. If L is a finite lower set, each block is
contained in a maximal block, associated to a maximal multiindex in L. Thus any finite lower set is the union of the blocks Bα,
where α is a maximal element of L. The lower set L corresponds to a complete grid, L = Bα, if and only if there exists only one
maximal element α in L. If L is a lower set of indices, then the set X L := {xβ : β ∈ L} is called a lower set of nodes.

In Theorem 2.1 of [5], it was shown that the Lagrange interpolation problem on a lower set of nodes X L has a unique solution
in PL . If L is a finite lower set, then ωβ ∈ PL for any β ∈ L. Thus the Newton formula can be extended to lower sets of nodes.
We restate this result below.

Theorem 2.1. Let L be a finite lower set and X L be a corresponding lower set of nodes. Let f be a function defined on X L . There
exists a unique polinomial p ∈ PL such that p(xβ ) = f (xβ ) for all β ∈ L, given by

p(x) =
∑

β∈L

[X0:β] f ωβ (x).

Our purpose is to provide a formula for the fundamental polynomials (also called the Lagrange polynomials) lxβ (x; X L) of the
Lagrange interpolation problem on X L in PL associated with the node xβ , uniquely defined by the property

lxβ (xα; X L) = δα,β , ∀α,β ∈ L.

Here δα,β stands for the usual Kronecker symbol, whose value is 0 if α 6= β and 1 if α= β . This formula should contain as few
terms as possible in order to provide a simple Lagrange formula for the interpolant

p(x) =
∑

β∈L

f (xβ )lxβ (x; X L)

and to derive properties of the Lebesgue function

λ(x; X L) =
∑

β∈L

|lxβ (x; X L)|.

3 A recurrence relation for fundamental polynomials of lower sets.
In the following lemma, we obtain lower sets from a given one by considering all multiindices greater than or equal to a given
one.

Lemma 3.1. Let L ⊆ Nd
0 be a lower set. For any β ∈ L, let Lβ := {α ∈ L | α≥ β}. Then Lβ − β := {α− β | α ∈ Lβ} is a lower set.

Proof. Let γ ∈ Lβ − β and η ∈ N0
d with η ≤ γ. Then β + γ ∈ Lβ ⊆ L. Since L is a lower set and β + η ≤ β + γ, we have that

β +η ∈ L. Furthermore β +η≥ β , which implies that β +η ∈ Lβ or equivalently, η ∈ Lβ − β .
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Let L be a finite lower set. By Theorem 2.1, the Lagrange interpolation problem on the subset of X L

X Lβ := {xα : α ∈ Lβ}

in the subspace PLβ−β of PL has a unique solution because it can be associated with the lower set of indices Lβ −β . Let Hk,l denote
the hyperplane with equation x l = xk,l . Then the set X Lβ is the subset of X L obtained by removing the nodes in the hyperplanes
Hk,l , 0≤ k < βl , l = 1, . . . , d,

X Lβ = X L \
d
⋃

l=1

⋃

0≤k<βl

Hk,l .

This observation allows us to relate the interpolation problem in X L with the interpolation problem in X Lβ and describe the
fundamental polynomial associated to the node xβ in the set X L in terms of the fundamental polynomials associated to xβ in the
sets X Lβ and Xβ , respectively.

Proposition 3.2. Let L be a lower set, then lxβ (x; X L) = lxβ (x; X Lβ )lxβ (x; Xβ ).

Proof. Let p(x) := lxβ (x; X Lβ )lxβ (x; Xβ ). Let us observe that p is the product of a polynomial in PLβ−β and a polynomial in Pβ .
By the additive property of the partial degrees, we deduce that p ∈ PLβ ⊆ PL . Let us show that p(xα) = δα,β for any α ∈ L. If
α= β , then

p(xβ ) = lxβ (xβ ; X Lβ )lxβ (xβ ; Xβ ) = 1.

If α ∈ Lβ and α 6= β , then 0 6= α− β ∈ Lβ − β and lxβ (xα; X Lβ ) = 0. Thus we have

p(xα) = lxβ (xα; X Lβ )lxβ (xα; Xβ ) = 0.

Finally, if α ∈ L \ Lβ , then there exists l ∈ {1, . . . , d} such that αl < βl . Thus lxβ (xα; Xβ ) = 0, which implies that p(xα) = 0.
Therefore p is the fundamental polynomial associated with xβ in X L .

Recall that the Lagrange fundamental polynomials lxβ (x; Xβ ) on the grid Xβ can be expressed as a product of univariate
Lagrange polynomials and thus they are explicitly given by

lxβ (x; Xβ ) =
d
∏

l=1

∏

0≤k<βl

x l − xk,l

xβl ,l − xk,l
.

So, the problem of finding fundamental polynomials of a lower set for any index can be reduced to the problem of finding the
fundamental polynomial in any lower set associated with the node corresponding to the lowest index 0.

Now we want to relate interpolation problems on lower sets with interpolation problems on lower sets in less dimensions. Let
us introduce the projection mapping

πs : (α1, . . . ,αd) ∈ Nd
0 7→ (α1, . . . ,αs) ∈ Ns

0

and the complementary projection
π′d−s : (α1, . . . ,αd) ∈ Nd

0 7→ (αs+1, . . . ,αd) ∈ Nd−s
0 .

Observe that both projections are nondecreasing mappings, that is, if β ≤ α in L, then πs(β)≤ πs(α) and π′d−s(β)≤ π
′
d−s(α). If

L is a set of indices, and η ∈ πs(L), then π′d−s is a bijective mapping between each level set π−1
s (η)∩ L and the set of indices

L′(η) := π′d−s(π
−1
s (η)∩ L) = {(αs+1, . . . ,αd) ∈ Nd−s

0 | (η1, · · · ,ηs,αs+1, . . . ,αd) ∈ L}.

Let us show some relevant properties of the projection of lower sets.

Lemma 3.3. Let L be a lower set.
(a) The set of indices πs(L) ⊆ Ns

0 is a lower set.
(b) For any η ∈ πs(L), the set L′(η) is a lower set.
(c) If γ≤ η, then L′(η) ⊆ L′(γ).

Proof. (a) If η ≤ πs(α), then we have that (η1, . . . ,ηs,αs+1, . . . ,αd) ≤ α and since L is a lower set with α ∈ L, we have
(η1, . . . ,ηs,αs+1, . . . ,αd) ∈ L. Therefore η ∈ πs(L) and πs(L) is a lower set.

(b) Let α ∈ L′(η) and assume that β ≤ α. Then we have that (η,α) ∈ L and (η,β) ≤ (η,α). Therefore (η,β) ∈ L, that is,
β ∈ L′(η).

(c) Assume that γ≤ η and let α ∈ L′(η). Then (α,η) ∈ L. Since L is a lower set, (α,γ) ∈ L and then α ∈ L′(γ).

We can associate with πs(L) the set of nodes

Xπs(L) := {(xη1 ,1, . . . , xηs ,s) | η ∈ πs(L)} ⊂ Rs.

By Theorem 2.1, the interpolation problem on the set Xπs(L) in Pπs(L) has a unique solution. Analogously, we associate with each
level set π−1

s (η)∩ L, η ∈ πs(L), the set of nodes

X L′(η) := {(xαs+1 ,s+1, . . . , xαd ,d) | (αs+1, . . . ,αd) ∈ L′(η)} ⊂ Rn−s
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and obtain a unisolvent problem in PL′(η).
Let us describe the fundamental polynomials lxβ (x; X L) of the interpolation problem in d variables in terms of the fundamental

polynomials associated with the interpolation problems in 1 and d −1 variables. According Proposition 3.2, we can remove nodes
in hyperplanes corresponding to sufficient low indices and assume without loss of generality that β = 0. We start by projecting
the first component to obtain an interpolation problem on the subset π1(L) of the real line. The fundamental polynomial of
x0,1 ∈ Xπ1(L) is of the form

lx0,1
(x1; Xπ1(L)) =

n
∏

k=1

x1 − xk,1

x0,1 − xk,1
,

where n is the maximal element in π1(L) = {0, 1, . . . , n} ⊂ N0. We shall also use Lagrange polynomials associated with projections
of maximal blocks, which are polynomials of the form

lx0,1
(x1; X i,1) =

i
∏

k=1

x1 − xk,1

x0,1 − xk,1
,

where X i,1 := {x0,1, . . . , x i,1}. For each i ∈ π1(L) we shall also consider the sets L′(i) ⊂ Nd−1
0 and the Lagrange polynomials

associated with the corresponding (d − 1)-dimensional sets of nodes X L′(i). In the next result we express lx0
(x; X L) in terms of

fundamental polynomials in 1 and d − 1 variables.

Theorem 3.4. Let L be a finite lower set, V ∈ L the set of maximal elements of L and π1(V ) := {α1 | α ∈ V} the set of first indices of
the elements in V . Let #π1(V ) = m+ 1 and i0 < · · · < im be the ordered sequence of indices in π1(V ). For any j in {0, . . . , m}, let
X L′(i j ) is the set of nodes in Rd−1 associated with the set of multiindices

L′(i j) = {(α2, . . . ,αd) | (i j ,α2, . . . ,αd) ∈ L}.

Then

lx0
(x1, . . . , xd ; X L) =

m−1
∑

j=0

lx0,1
(x1; X i j ,1)

�

l(x0,2 ,...,x0,d )(x2, . . . , xd ; X L′(i j ))− l(x0,2 ,...,x0,d )(x2, . . . , xd ; X L′(i j+1))
�

+ lx0,1
(x1; X im ,1)l(x0,2 ,...,x0,d )(x2, . . . , xd ; X L′(im)).

Proof. For the sake of brevity we denote by x ′ = (x2, . . . , xd), so that x = (x1, x ′). For any α ∈ L, we use the notation
α′ = (α2, . . . ,αd), x ′

α
:= (xα2 ,2, . . . , xαd ,d), so that α= (α1,α′) and xα = (xα1 ,1, x ′

α
).

Since the interpolation problem has unique solution in X L , it is sufficient to show that the polynomial

p(x) :=
m−1
∑

j=0

lx0,1
(x1; X i j ,1)(lx ′0

(x ′; X L′(i j ))− lx ′0
(x ′; X L′(i j+1))) + lx0,1

(x1; X im ,1)lx ′0
(x ′; X L′(im))

belongs to PL and satisfies p(xα) = δα,0 for all α ∈ L. The last term is lx0,1
(x1; X im ,1)lx ′0

(x ′; X L′(im)) ∈ Pim ⊗ PL′(im). So, it can be
expressed as a sum of monomial terms of degree (i,β ′) with i ≤ im and β ′ ∈ L′(im). From the definition of L′(im), it follows that
(im,β ′) ∈ L and since L is a lower set (i,β ′) ∈ L. So we have seen that

lx0,1
(x1; X im ,1)lx ′0

(x ′; X L′(im)) ∈ PL .

The other terms are differences of two polynomials. The first one, lx0,1
(x1; X i j ,1)lx ′0

(x ′; X L′(i j )), is a linear combination of monomials
of degree (i,β ′), with i < i j and β ′ ∈ L′(i j). Since L is a lower set and (i,β ′)≤ (i j ,β

′) ∈ L, we have that (i,β ′) ∈ L. The second
one, lx0,1

(x1; X i j ,1)lx ′0
(x ′; X L′(i j+1)), is a linear combination of monomials of degree (i,β ′), with i < i j and β ′ ∈ L′(i j+1). By Lemma

3.3 (c), L′(i j+1) ⊆ L′(i j) and then (i,β ′) ∈ L. Therefore

lx0,1
(x1; X i j ,1)(lx ′0

(x ′; X L′(i j ))− lx ′0
(x ′; X L′(i j+1))) ∈ PL .

So we have shown that p ∈ PL .
If α1 = 0, we have that lxα1,1

(x0,1; X i j ,1) = lx0,1
(x0,1; X i j ,1) = 1 for all j ∈ {0, . . . , m} and then

p(xα) =
m−1
∑

j=1

(lx ′0
(x ′
α
; X L′(i j ))− lx ′0

(x ′
α
; X L′(i j+1))) + lx ′0

(x ′
α
; X L′(im)) = lx ′0

(x ′
α
; X L′(i1)).

Since lx ′0
(x ′; X L′(i1)) is the Lagrange polynomial associated with the node x ′0 in the set X L′(i1), we have

lx ′0
(x ′
α
; X L′(i1)) = δα,0.

Now assume that α1 6= 0 and let

Sα := { j ∈ {0, . . . , m} | there exists β = (i j ,β
′) ∈ V with α≤ β}.
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Since there exists β ∈ V such that α≤ β , the set Sα is nonempty and s :=min Sα is a well-defined number. From the definition it
follows that α1 ≤ is. So l j(xα1 ,1) = 0 for all j ≥ s. Then we have that

p(xα) =
s−1
∑

j=0

lx0,1
(xα1 ,1; X i j ,1)(lx ′0

(x ′
α
; X L′(i j ))− lx ′0

(x ′
α
; X L′(i j+1))).

From the definition of s, there exists β ′ ∈ L′(is) such that α′ ≤ β ′. By Lemma 3.3 (b) and Lemma 3.3 (c), L′(is) is a lower set
contained in the lower set L′(i j) for all j ≤ s. We deduce that α′ ∈ L′(i j) for all j ≤ s. Then we have that lx ′0

(x ′
α
; X L′(i j )) = δα′ ,0 for

all j ≤ s and
lx ′0
(x ′
α
; X L′(i j ))− lx ′0

(x ′
α
; X L′(i j+1)) = δα′ ,0 −δα′ ,0 = 0, 0≤ j ≤ s− 1.

Therefore we have p(xα) = 0.

Example 3.1. Let us illustrate Theorem 3.4 with an example in R3. Let us consider the set of indices L = L0 ∪ L1 with

L0 = {(0,0, 0), (0, 0,1), (0,0, 2), (0,1, 0), (0, 1,1), (0,1, 2), (0, 2,0), (0,2, 1)}

and
L1 = {(1, 0,0), (1,0, 1), (1, 1,0), (1,1, 1), (1,2, 0)}.

We have the set of maximal elements

V = {(0,1, 2), (0, 2,1), (1,1, 1), (1, 2,0)}

and the set of ordered first indices of the elements of V , π1(V ) = {0, 1}. For the sake of simplicity, let us take the interpolation
nodes X L = L depicted in Figure 3.1.

Figure 3.1. A three-dimensional lower set

In this case X L′(0) and X L′(1) are the sets of nodes in R2 associated respectively with the sets of multiindices

L′(0) = {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1)}

and
L′(1) = {(0,0), (0,1), (1,0), (1,1), (2,0)}.

So, we have
l0(x1; 0) = 1, l0(x1; 0, 1) = 1− x1

and
l(0,0,0)(x1, x2, x3; X L) = l(0,0)(x2, x3; X L′(0))− l(0,0)(x2, x3; X L′(1)) + (1− x1)l(0,0)(x2, x3; X L′(1)).

We can use again Theorem 3.4 to express the bivariate Lagrange functions in terms of univariate Lagrange functions (see the
formulae derived in Example 4.2 at the end of Section 4)

l(0,0)(x2, x3; X L′(0)) = (1− x2)(1− x3)
�2− x2

2
+

2− x3

2
− 1

�

=
(1− x2)(1− x3)(2− x2 − x3)

2

and

l(0,0)(x2, x3; X L′(1)) = (1− x2)
�2− x2

2
+ (1− x3)− 1

�

=
(1− x2)(2− x2 − 2x3)

2
.

Then

l(0,0,0)(x1, x2, x3; X L) = l(0,0)(x2, x3; X L′(0))− x1 l(0,0)(x2, x3; X L′(1)) =
(1− x2)

2
[(1− x3)(2− x2 − x3)− x1(2− x2 − 2x3)] .
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4 Fundamental polynomials of bivariate lower sets.
In this section we apply the reduction formula derived in Theorem 3.4 to bivariate lower sets in order to express the bivariate
Lagrange polynomials in terms of univariate Lagrange polynomials. We show that the fundamental polynomials are sums involving
few terms.

Let n be the number of maximal elements of a bivariate lower set L. Then the set of maximal multiindices can be ordered by
increasing order of the first index, that is, V := {α( j) ∈ L | j = 0, . . . , m}, where α( j) = (α( j)1 ,α( j)2 ) and α( j)1 ≤ α

( j+1)
1 , j = 0, . . . , m−1.

Observe that if α( j)1 = α
( j+1)
1 then either α( j) ≤ α( j+1) or α( j+1) ≤ α( j). This is a contradiction since both indices are distinct and

maximal. Then we have that
α
(0)
1 < α

(1)
1 < · · ·< α(m)1 .

Using Lemma 3.3 (c), we deduce that α( j)2 ≥ α
( j+1)
2 . Using the same argument as above, we deduce that

α
(0)
2 > α

(1)
2 > · · ·> α(m)2 .

Now we are ready to apply Theorem 3.4 and derive a formula for the fundamental polynomial corresponding to the index
(0, 0).

Proposition 4.1. Let L be a lower set, and α(0), . . . ,α(m) be the sequence of maximal multiindices lexicographically ordered. Then we
have

lx0
(x1, x2; X L) =

m−1
∑

j=0

lx0,1

�

x1; X
α
( j)
1 ,1

��

lx0,2

�

x2; X
α
( j)
2 ,2

�

− lx0,2

�

x2; X
α
( j+1)
2 ,2

��

+ lx0,1

�

x1; X
α
(m)
1 ,1

�

lx0,2

�

x2; X
α
(m)
2 ,2

�

.

In the above formula the polynomials lx0,1

�

x1; X
α
( j)
1 ,1

�

and lx0,2

�

x2; X
α
( j)
2 ,2

�

are given by

lx0,1

�

x1; X
α
( j)
1 ,1

�

=
α
( j)
1
∏

k=1

x1 − xk,1

x0,1 − xk,1
, lx0,2

�

x2; X
α
( j)
2 ,2

�

=
α
( j)
2
∏

k=1

x2 − xk,2

x0,2 − xk,2
, j = 0, . . . , m,

and the difference lx0,2

�

x2; X
α
( j)
2 ,2

�

− lx0,2

�

x2; X
α
( j+1)
2 ,2

�

, j < m, can be factorized in the following way

lx0,2

�

x2; X
α
( j)
2 ,2

�

− lx0,2

�

x2; X
α
( j+1)
2 ,2

�

=
α
( j+1)
2
∏

k=1

x2 − xk,2

x0,2 − xk,2

�
α
( j)
2
∏

k=α( j+1)
2 +1

x2 − xk,2

x0,2 − xk,2
− 1

�

.

For any β ≤ α, let Bβ:α := {γ | β ≤ γ≤ α}. Then if L =
⋃m

j=0 Bα( j) is a lower set and β ∈ L, we can write Lβ =
⋃m

j=0 Bβ:α( j) . Let

Xβ:α := {xγ | β ≤ γ≤ α}= Xβ1:α1 ,1 × Xβ2:α2 ,2

then

lxβ (x1, x2; Xβ:α) = lxβ1,1
(x1; Xβ1:α1 ,1)lxβ2,2

(x2; Xβ2:α2 ,2), lxβl ,l
(x l ; Xβl :αl ,l) =

αl
∏

k=βl+1

x l − xk,l

xβl ,l − xk,l
, l = 1, 2. (1)

Now we can obtain the following formula for the Lagrange polynomials associated to a given node of a bivariate lower set.

Theorem 4.2. Let L ⊂ N2
0 be a lower set, and α(0), . . . ,α(m) be the sequence of maximal multiindices lexicographically ordered. For

any β ∈ L, the set
Jβ := { j ∈ {0, . . . , m} | α( j) ≥ β}

is a set of consecutive indices. Then the Lagrange fundamental polynomials can be expressed by means of the following formula

lxβ (x1, x2; X L) = lxβ (x1, x2; Xβ )
∑

j∈Jβ

lxβ1,1

�

x1; X
β1:α( j)1 ,1

��

lxβ2,2

�

x2; X
β2:α( j)2 ,2

�

− lxβ2,2

�

x2; X
β2:α( j+1)

2 ,2

��

, (2)

where lxβl ,l
(x l ; X

βl :α
( j)
l ,l
), l = 1,2, are given by (1) if j ∈ Jβ and lxβ2,2

(x l ; Xβ2:α( j+1)2,2) denotes the zero polynomial if j =max Jβ .

Proof. The set of maximal multiindices in Lβ is α( j), with j ∈ Jβ . The indices must be consecutive because α( j)1 is a strictly

increasing sequence of integers and α( j)2 is a strictly decreasing sequence of integers. The result follows, combining Proposition
4.1 and Proposition 3.2.

Let us recall that lxβ (x1, x2; Xβ ) in (2) can be expressed as a product of linear factors in the following way

lxβ (x1, x2; Xβ ) =
∏

0≤k<β1

x1 − xk,1

xβ1 ,1 − xk,1

∏

0≤k<β2

x2 − xk,2

xβ2 ,2 − xk,2
.

Combining this formula with (1), we can rearrange factors and express formula (2) of Theorem 4.2 in the form

lxβ (x; X L) =
max Jβ
∑

j=min Jβ

lxβ (x; Xα( j))−
max Jβ−1
∑

j=min Jβ

lxβ (x; Xα( j, j+1)), (3)
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where α( j, j+1) := (α( j)1 ,α( j+1)
2 ). Note that Xα( j, j+1) = Xα( j) ∩ Xα( j+1) . This formula can be related with the formulae described in Satz

2.3 of Section 2 of [4] and in Section 5 of [5].
Let us illustrate Theorem 4.2 with a relevant example.

Example 4.1. Assume that the set of indices L is

L := {(α1,α2) | α1 +α2 ≤ n}.

Figure 4.1. A lower set of nodes corresponding to α1 +α2 ≤ 4

Then PL is just P2
n , the set of bivariate polynomials of total degree less than or equal to n. We observe that the set of maximal

indices ordered by the first component is ( j, n− j), j = 0, . . . , n. Then the set Jβ = { j : β1 ≤ j ≤ n− β2} and formula (3) for the
fundamental polynomials gives

lxβ (x1, x2; X L) =
n−β2−1
∑

j=β1

x2 − xβ2 ,2

xβ2 ,2 − xn− j,2

∏

k 6=β1 ,0≤k≤ j

x1 − xk,1

xβ1 ,1 − xk,1

∏

k 6=β2 ,0≤k≤n− j−1

x2 − xk,2

xβ2 ,2 − xk,2

+
∏

k 6=β1 ,0≤k≤n−β2

x1 − xk,1

xβ1 ,1 − xk,1

∏

k 6=β2 ,0≤k≤β2

x2 − xk,2

xβ2 ,2 − xk,2
.

The above results allow us to express the fundamental Lagrange polynomials as a sum of few terms and can be applied to the
problem of computing Lebesgue constants of bivariate lower sets. Let us show how to bound the Lebesgue function of a bivariate
lower set in terms of Lebesgue functions of univariate sets of nodes.

Proposition 4.3. Let L ⊂ N2
0 be a lower set, and α(0), . . . ,α(m) be the sequence of maximal multiindices lexicographically ordered.

Then the Lebesgue function of X L satisfies

λ(x1, x2; X L)≤
m
∑

j=0

λ(x1; X
α
( j)
1 ,1
)λ(x2; X

α
( j)
2 ,2
) +

m−1
∑

j=0

λ(x1; X
α
( j)
1 ,1
)λ(x2; X

α
( j+1)
2 ,2

).

Proof. From formula (3), we have

|lxβ (x; X L)| ≤
max Jβ
∑

j=min Jβ

|lxβ (x; Xα( j))|+
max Jβ−1
∑

j=min Jβ

|lxβ (x; Xα( j, j+1))|.

So we deduce that

λ(x; X L) ≤
∑

β∈L

max Jβ
∑

j=min Jβ

|lxβ (x; Xα( j))|+
∑

β∈L

max Jβ−1
∑

j=min Jβ

|lxβ (x; Xα( j, j+1))|

=
m
∑

j=0

∑

β≤α( j)
|lxβ (x; Xα( j))|+

m−1
∑

j=0

∑

β≤α( j, j+1)

|lxβ (x; Xα( j, j+1))|=
m
∑

j=0

λ(x; Xα( j)) +
m−1
∑

j=0

λ(x; Xα( j, j+1)).

The result follows, taking into account that the Lebesgue function of a grid is a product of univariate Lebesgue functions.

The following example illustrates how to find the fundamental polynomials and bound the Lebesgue function in a simple case

Example 4.2. Let us consider now

L := B(n,0) ∪ B(0,m) = {(0,0), (1,0) . . . , (n, 0), (0,1), . . . , (0, m)},

then PL =



1, x1, . . . , xn
1 , x2, . . . , xm

2

�

= P(n,0) + P(0,m). We observe that the set of maximal indices is {(0, m), (n, 0)}.

Dolomites Research Notes on Approximation ISSN 2035-6803



Carnicer · Godés 9

(0,0) (n,0)

(0,m)

(1,0)

(0,1)

(2,0)x x x x

x

x

Figure 4.2. A lower set of nodes corresponding to B(n,0) ∪ B(0,m)

First let us take β = 0, then we have Jβ = {0, 1}. In this simple case, formula (3) gives

lx0
(x1, x2; X L) =

n
∏

k=1

x1 − xk,1

x0,1 − xk,1
+

m
∏

k=1

x2 − xk,2

x0,2 − xk,2
− 1.

If β 6= 0 and β1 = 0, only (0, m)> β and consequently Jβ = {0}. So, the formula for the fundamental polynomials is

lxβ (x1, x2; X L) =
∏

k 6=β2;0≤k≤m

x2 − xk,2

xβ2 ,2 − xk,2
.

The case β 6= 0 and β2 = 0 is analogous

lxβ (x1, x2; X L) =
∏

k 6=β10≤k≤n

x1 − xk,1

xβ1 ,1 − xk,1
.

Finally, as in Proposition 4.3, we can bound the Lebesgue function in terms of the univariate Lebesgue functions in each
variable

λ(x1, x2; X L)≤ λ(x1, Xn,1) +λ(x2, Xm,2) + 1,

and hence the Lebesgue constant on the convex hull of the grid X(n,m) can be bounded by

Λ(X L)≤ Λ(Xn,1) +Λ(Xm,2) + 1,

where Λ(Xn,1) and Λ(Xm,2) are the corresponding univariate Lebesgue constants on the convex hull of the corresponding sets of
nodes.

We end showing the growth of the Lebesgue constant for two particular configurations of nodes. We start with the lower set

X L := {(xα1
, xα2
)|(α1,α2) ∈ L}, L := {(α1,α2)|α1 +α2 ≤ n},

subset of Xn × Xn, with Xn = {x0, . . . , xn}. As mentioned in Example 4.1, the corresponding interpolation space is PL = P2
n , the set

of bivariate polynomials of total degree less than or equal to n. As the set Xn we have taken two different possibilities. The first
choice is Chebyshev-Lobatto nodes on [−1,1]

x j = − cos( jπ/n), j = 0, . . . , n.

Since the sequence of nodes is increasing, we have

xα1
+ xα2

≤ xn−α2
+ xα2

= cos(α2π/n)− cos(α2π/n) = 0,

and the convex hull of the nodes [X L] is the triangle with vertices (−1,−1), (−1,1) and (1,−1). The second choice of Xn are
equidistant nodes

x j = −1+
2 j
n

, j = 0, . . . , n.

Again the convex hull of the nodes is the triangle with vertices (−1,−1), (−1, 1) and (1,−1).
We have computed the Lagrange polynomials on X L using the formula in Example 4.1 based on Theorem 4.2. The computation

of the Lebesgue function is accurate for low degrees. In order to find and approximation of the Lebesgue constant on the triangle
we use a sample of points in the convex hull of the form

(−1+ 2h1/N ,−1+ 2h2/N), h1 + h2 ≤ N .

It is hard to find good approximations of the Lebesgue constant because the Lebesgue function is highly oscillating for big values
of n. For this reason, we have compared two dense samples with N = 2048 and N = 4000 and checked that the maximum values
agree in the first four digits. In spite of the big values taken for N , we warn about the fact that we cannot ensure that all digits
provided in the table are correct, specially for the highest degrees. The following table provides the Lebesgue constants in both
cases.
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degree Chebyshev-Lobatto Equidistant
2 1.6667 1.6667
3 2.9889 2.2698
4 5.7517 3.4748
5 11.490 5.4522
6 25.654 8.7477
7 61.975 14.345
8 158.17 24.008
9 421.27 40.923

10 1152.2 70.892
11 3217.7 124.53

The better behaviour of the lower set with equidistant nodes can be explained by reasons of symmetry and by the fact that
the distribution of the subgrid for Chebyshev-Lobatto nodes seems to be not dense enough in the neighbourhood of (0,0). In
fact, the maximum value of the Lebesgue function is attained at a point close to the origin (see Figure 4.3 left). In the case of
equidistant nodes the maximum value is attained near the vertices (see Figure 4.3 right).
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Figure 4.3. Lebesgue functions for degree n= 8 on subgrids based
on Chebyshev-Lobatto (left) or equidistant nodes (right)
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