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Estimates for polynomial norms on Banach spaces

Marianna Chatzakou a · Yannis Sarantopoulos b

Abstract

Our work is related to problems 73 and 74 of Mazur and Orlicz in “The Scottish Book" (ed. R. D. Mauldin).
Let k1, . . . , kn be nonnegative integers such that

∑n
i=1 ki = m, and let K(k1, . . . , kn; X ), where K= R or

C, be the smallest number satisfying the property: if L is any symmetric m-linear form on a Banach space
X , then

sup
∥xi ∥≤1,

i=1,2,...,n

|L(xk1
1 , . . . , xkn

n )| ≤K(k1, . . . , kn; X ) sup
∥x∥≤1
|L(x , . . . , x)| ,

where the exponents k1, . . . , kn, are as described above, and each ki denotes the number of coordinates
in which the corresponding base variable appears. In the case of complex Banach spaces, the problem
of optimising the constant C(k1, . . . , kn; X ) is well-studied. In the more challenging case of real Banach
spaces much less is known about the estimates for R(k1, . . . , kn; X ). In this work, both real and complex
settings are examined using results from the local theory of Banach spaces, as well as from interpolation
theory of linear operators. In the particular case of complex Lp(µ) spaces, and for certain values of p, our
results are optimal. As an application, we prove Markov-type inequalities for homogeneous polynomials
on Banach spaces.

2010 Mathematics Subject Classification: Primary 41A17; Secondary 46G25, 47H60.

1 Introduction and notation
As in [11] we recall the basic definitions needed to discuss polynomials from X into Y , where X and Y are real or complex Banach
spaces. We denote by BX and SX the closed unit ball and the unit sphere of X , respectively. A map P : X → Y is a (continuous)
m-homogeneous polynomial if there is a (continuous) symmetric m-linear mapping L : X m→ Y for which P(x) = L(x , . . . , x) for
all x ∈ X . In this case it is convenient to write P = bL. We let P(mX ; Y ), L(mX ; Y ) and Ls(mX ; Y ) denote, respectively, the spaces
of continuous m-homogeneous polynomials from X into Y , the continuous m-linear mappings from X into Y and the continuous
symmetric m-linear mappings from X into Y . If K is the real or complex field we use the notations P(mX ), L(mX ) and Ls(mX ) in
place of P(mX ;K), L(mX ;K) and Ls(mX ;K), respectively. More generally, a map P : X → Y is a continuous polynomial of degree
≤ m if

P = P0 + P1 + · · ·+ Pm ,

where Pk ∈ P(kX ; Y ), 1 ≤ k ≤ m, and P0 : X → Y is a constant function. The space of continuous polynomials from X to Y of
degree at most m is denoted by Pm(X ; Y ). If Y =K, then we use the notation Pm(X ) instead of Pm(X ;K). We define the norm of
a continuous (homogeneous) polynomial P : X → Y by

∥P∥BX
= sup{∥P(x)∥Y : x ∈ BX } .

Similarly, if L : X m→ Y is a continuous m-linear mapping we define its norm by

∥L∥Bm
X
= sup{∥L(x1, . . . , xm)∥Y : x1, . . . , xm ∈ BX } .

When convenient we shall denote ∥L∥Bm
X

by ∥L∥ and ∥P∥BX
by ∥P∥. Note that P(mX ; Y ) and L(mX ; Y ) are Banach spaces. Finally,

observe that by the Hahn-Banach theorem we may restrict attention to the case where Y = R or C, since estimates can then be
transferred to arbitrary Banach spaces as required.

If P ∈ Pm(X ; Y ) and x ∈ X , then Dk P(x), 2≤ k ≤ m, denotes the kth Fréchet derivative of P at x . Recall that Dk P(x) would
be, in fact, a symmetric k-linear mapping on X k, whose associated k-homogeneous polynomial will be represented by bDk P(x). So,
bDk P(x) :=ÛDk P(x). We just write DP(x) for the first Fréchet derivative of P at x . If bL ∈ P(mX ; Y ), for any vectors x , y1, . . . , yk in
X and any k ≤ m the following identity (see for instance [10, 7. 7 theorem]) holds

1
k!

Dk
bL(x)(y1, . . . , yk) =

�

m
k

�

L(xm−k, y1, . . . , yk) . (1)

In particular, for x , y ∈ X
1
k!
bDk
bL(x)y =

�

m
k

�

L(xm−k yk) (2)
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and for k = 1
DbL(x)y = bDbL(x)y = mL(xm−1 y) . (3)

Here, L(xm−k yk) denotes L(x , . . . , x
︸ ︷︷ ︸

(m−k)

, y, . . . , y
︸ ︷︷ ︸

k

). For general background on polynomials, we refer to [10] and [18].

Let rn(t) := sign(sin2nπt) be the nth Rademacher function on [0, 1]. The Rademacher functions (rn) form an orthonormal
set in L2[0, 1], d t) where d t denotes Lebesgue measure on [0, 1]. If L ∈ Ls(mX ), then the next formula expresses a well known
polarization formula in a very convenient form (see [34, Lemma 2]):

L(x1, . . . , xm) =
1

m!

∫ 1

0

r1(t) · · · rm(t)bL
� m
∑

n=1

rn(t)xn

�

d t . (4)

Therefore, each bL ∈ P(mX ) is associated with a unique L ∈ Ls(mX ) with the property that bL(x) = L(x , . . . , x). In many
circumstances [13, 14, 32, 42] it is of interest to compare the norm of L ∈ Ls(mX ) with the norm of bL ∈ P(mX ). For every
L ∈ Ls(mX ) it follows from (4) (see [18]) that

∥bL∥ ≤ ∥L∥ ≤
mm

m!
∥bL∥ . (5)

However, the right hand inequality can be tightened for many Banach spaces, see for instance [18, 19, 34]. The space of
1-summable sequences ℓ1 and its finite-dimensional versions are particularly simple, yet fundamental, examples of Banach spaces
where the constant mm

m! is sharp. We refer to [19, corollary 1], [34, example 1], [35], [18, example 1.39] and [25]. We introduce
the following definition.

Definition 1.1. Let X be a Banach space over K, where K= R, or C. If k1, . . . , kn are nonnegative integers whose sum is m, let

K(k1, . . . , kn; X )

= inf

�

M > 0 : sup
x1 ,...,xn∈BX

|L(x k1
1 . . . x kn

n )| ≤ M∥bL∥, ∀L ∈ Ls(mX ;K)
�

.

In the special case k1 = · · ·= kn = 1, we have n= m and we let

K(m, X ) = inf
�

M > 0 : ∥L∥ ≤ M∥bL∥, ∀L ∈ Ls(mX ;K)
	

.

We call K(k1, . . . , kn; X ) and K(m, X ) the m-th polarization constant of the space X .

Notice that L(x k1
1 . . . x kn

n ) denotes L(x1, . . . , x
︸ ︷︷ ︸

k1

, . . . , xn, . . . , xn
︸ ︷︷ ︸

kn

). We shall write R(k1, . . . , kn; X ), C(k1, . . . , kn; X ) instead of

K(k1, . . . , kn; X ), if the space X is real or complex, respectively.
The polarization constant of the space X , see [18, definition 1. 40], is defined by

K(X ) := lim sup
m→∞

K(m, X )1/m

and describes how the m-th polarization constant of X behaves asymptotically. From (5) and Stirling’s formula, 1≤K(X )≤ e for
any Banach space X .

In the sequel, H will denote a Hilbert space. A famous result, investigated by Banach [3] and many other authors, for example
[9, 12, 19, 23, 24, 31], asserts that K(m, H) = 1. In other words, ∥L∥= ∥bL∥ for every L ∈ Ls(mH). In fact it was shown in [6]
that this is a characteristic property of real Hilbert spaces. We also have K(k1, . . . , kn; H) = 1, where k1, . . . , kn are nonnegative
integers whose sum is m. Obviously |L(x k1

1 . . . x kn
n )| ≤ ∥bL∥ for every L ∈ Ls(mH), where x1, . . . , xn ∈ BH .

Since from (3) DbL(x)(y) = mL(xm−1 y), x , y ∈ H, to prove ∥L∥ = ∥bL∥ by an inductive argument, it suffices to show that
|L(xm−1 y)| ≤ ∥bL∥ for any unit vectors x and y in H. In other words, ∥L∥= ∥bL∥ for any bL ∈ P (mH) if and only if

∥DbL∥ ≤ m∥bL∥ , ∀bL ∈ P (mH) . (6)

Banach proved this result for continuous symmetric m-linear forms and continuous m-homogeneous polynomials on finite
dimensional real Hilbert spaces. The proof works equally well for real and complex Hilbert spaces, and the condition of finite
dimensionality is only needed to ensure that the m-linear form attains its norm. The result that ∥L∥= ∥bL∥ is true for all Hilbert
spaces, and, as pointed out by Banach, can be obtained through a simple limit argument based on the finite dimensional case.

Clearly, if bL attains its norm at x0 ∈ BH then L also attains its norm at (x0, . . . , x0) ∈ Bm
H . When H is finite dimensional, L will

always attain its norm, since the closed unit ball of H is compact. However, when H is infinite dimensional, L need not attain its
norm: if H = ℓ2, the space of square summable sequences, and L(x , y) =

∑∞
n=1

n
n+1 xn yn, it is easy to see that ∥L∥= 1, but that

|L(x , y)|< 1 for all unit vectors x = (xn) and y = (yn) in H.
It is true, but not obvious, that if L attains its norm at (x1, . . . , xm) ∈ Bm

H , then bL also attains its norm at some x0 ∈ BH . When
L does attain its norm, an explicit construction has been given in [31, section 2] to provide a unit vector x0 with ∥bL∥= |bL(x0)|.
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2 Preliminary results
It is simple to verify that for isometric Banach spaces X , Y we have

K(k1, . . . , kn; X ) =K(k1, . . . , kn; Y ).

If M is a closed subspace of the Banach space X , then it is routine to prove that K(k1, . . . , kn; X/M) ≤ K(k1, . . . , kn; X ) and in
particular K(m; X/M) ≤ K(m; X ). However, the relationship between K(k1, . . . , kn; X ) and K(k1, . . . , kn; Y ) is less satisfactory.
We state one result, but omit the proof which is quite similar to an analogous argument used in the proof of lemma 1.46 in [18].

Lemma 2.1. If M is a closed subspace of the Banach space X and there exists a continuous projection π of X onto M, then

K(k1, . . . , kn; M)≤ ∥π∥mK(k1, . . . , kn; X ) .

In particular if M is a 1-complemented subspace of X , then K(k1, . . . , kn; M)≤K(k1, . . . , kn; X ).

If k1, . . . , kn are nonnegative integers whose sum is m, for Lp(µ) spaces we also set

K(k1, . . . , kn; p) = sup{K(k1, . . . , kn; Lp(µ)) : µ is a measure} .

Using Lemma 2.1 we can easily see that if 1≤ p <∞

K(k1, . . . , kn; p) =K(k1, . . . , kn; Lp(µ)) (7)

for any µ with Lp(µ) infinite-dimensional (we refer to [34]).
It is known, see [27, theorem I I .3.14]) or [2, proposition 11.1.9]), that we can embed Lp[0, 1] isometrically into L r[0, 1] for

1≤ r ≤ p ≤ 2. If r ′ and p′ are the conjugate exponents of r and p, respectively, it follows from (7) and Lemma 2.1 that

K(k1, . . . , kn; p′)≤K(k1, . . . , kn; r ′) , 2≤ p′ ≤ r ′ ≤∞ .

Thus K(k1, . . . , kn; p) is an increasing function of p over the range 2≤ p ≤∞.
Let X and Y be two isomorphic Banach spaces. The Banach-Mazur distance between X and Y denoted as d(X , Y ) is defined as

d(X , Y ) = inf{∥T∥∥T−1∥ : T : X
onto
−−→ Y } .

If X is finite dimensional and d(X , Y ) = 1, then X is isometric to Y .
Using the Banach-Mazur distance between X and Y , we relate K(k1, . . . , kn; X ) and K(k1, . . . , kn; Y ).

Lemma 2.2. If X , Y are isomorphic Banach spaces, then

K(k1, . . . , kn; Y )≤ (d(X , Y ))mK(k1, . . . , kn; X ) .

In particular,
K(m, Y )≤ (d(X , Y ))mK(m, X ) .

The proof of Lemma 2.2 is quite similar to the proof of lemma 12 in [7], we spare the reader the details.
In the case of Lp(µ) spaces, Lemma 2.2 allows us to give an estimate for K(k1, . . . , kn; Lp(µ)).

Proposition 2.3. Let k1, . . . , kn be nonnegative integers whose sum is m. Then, for the Lp(µ) space, 1≤ p ≤∞, we have

K(k1, . . . , kn; Lp(µ))≤ nm| 12−
1
p | . (8)

If X is any Banach space
K(k1, . . . , kn; X )≤ n

m
2 . (9)

In particular, if k1 = · · ·= kn = 1, then n= m and we have

K(m, Lp(µ))≤ mm| 12−
1
p | (10)

and
K(m; X )≤ m

m
2 . (11)

Proof. Let ϵ > 0. Choose L ∈ Ls(m Lp(µ);K) and fi ∈ Lp(µ), ∥ fi∥p ≤ 1, i = 1, . . . , n, such that

|L( f k1
1 . . . f kn

n )| ≥ (K(k1, . . . , kn; Lp(µ))− ϵ)∥bL∥ . (∗)

If N := span{ f1, . . . , fn}, then N is an n-dimensional subspace of Lp(µ) and from [26], see also corollary III. B. 9 in Wojtaszczyk’s

book [44], d(N ,ℓ2
n)≤ n|

1
2−

1
p |, where ℓ2

n is the n-dimensional Hilbert space. If F = L |N m , then bF is the restriction of bL to N . Since
∥bF∥ ≤ ∥bL∥, it follows from (∗) that

K(k1, . . . , kn; N)∥bF∥ ≥ |F( f k1
1 . . . f kn

n )| ≥K(k1, . . . , kn; Lp(µ))− ϵ)∥bF∥

and therefore
K(k1, . . . , kn; Lp(µ))− ϵ ≤K(k1, . . . , kn; N) . (∗∗)
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But K(k1, . . . , kn;ℓ2
n) = 1 and from Lemma 2.2

K(k1, . . . , kn; N)≤ d(N ,ℓ2
n)

mK(k1, . . . , kn;ℓ2
n))≤ nm| 12−

1
p | .

Hence, inequality (∗∗) implies
K(k1, . . . , kn; Lp(µ))− ϵ ≤ nm| 12−

1
p |

and this proves (8).
Since for any n-dimensional subspace N of a Banach space X we have d(N ,ℓ2

n) ≤
p

n (see corollary III. B. 9 in [44]), the
proof of (9) is quite similar.

The estimates for the polarization constants in Proposition 2.3 are not in principle the optimal ones. Indeed, the upper
bounds that we get as in (10), for p close to 1 and∞ and (11) are not as sharp as the estimate mm

m! ; see inequality (5) in the
Introduction. However, since K(m; H) = 1 for any Hilbert space H, we have K(m; L2(µ)) = 1 and for p close to 2 the constant in
(10) is close to optimal. Therefore, for p close to 2 we improve the estimate given in proposition 3.7 in [11].

Proposition 2.4. ([11, proposition 3.7]) For the m’th polarization constant K(m, p), m≥ 2, we have the estimates

K(m; p)≤











mm/p

m! 1≤ p ≤ m′ ,

min{mm/m′

m! , mm|p−2|/2p} m′ ≤ p ≤ m ,
mm/p′

m! m≤ p ≤∞ .

(12)

In the case 1≤ p ≤ m′ the estimate is best possible.

Here, as usual, m′ = m/(m− 1) and p′ = p/(p− 1) are the conjugate exponents of m and p, respectively. Harris [19] showed
that for a complex Lp(µ) space with 1≤ p ≤∞

C(m; p)≤
�

mm

m!

�

|p−2|
p

(13)

provided that m is a power of 2. Harris conjectured that (13) holds for all positive integers m. For 1≤ p ≤ m′ and m≤ p ≤∞
and for any real or complex Lp(µ) space, the constants in (12) improve the constant conjectured by Harris for all positive integers
m.

3 Estimates for polynomial norms on complex Banach spaces
We shall need the Bochner integral, see [16]. The basis for this is a measure space (Ω,Σ,µ) and a Banach space X. A function
s : Ω→ X is called simple if there exist x1, . . . , xn ∈ X and E1, . . . , En ∈ Σ such that s =

∑n
i=1 x iχEi

, where χEi
(ω) = 1 if ω ∈ Ei

and χEi
(ω) = 0 if ω /∈ Ei . A function f : Ω→ X is called µ-measurable if there exist a sequence of simple functions (sn) with

limn→∞ ∥sn − f ∥= 0. A µ-measurable function f : Ω→ X is µ-Bochner integrable if
∫

Ω
∥ f ∥ dµ <∞.

If 1≤ p <∞, the symbol Lp
µ
(Ω,Σ,µ, X )(= Lp

µ
(X )) will stand for all(equivalence classes of) µ-Bochner integrable functions

f : Ω→ X such that

∥ f ∥p =
�∫

Ω

∥ f ∥p dµ

�1/p

<∞ .

Normed by the functional ∥ · ∥p defined above Lp
µ
(X ) becomes a Banach space. The symbol L∞

µ
(Ω,Σ,µ, X )(= L∞

µ
(X )) will stand

for all(equivalence classes of) essentially bounded µ-Bochner integrable functions f : Ω→ X . Normed by the functional ∥ · ∥∞
defined for f ∈ L∞

µ
(X ) by

∥ f ∥∞ = ess sup{∥ f (ω)∥ : ω ∈ Ω}<∞ ,

L∞
µ
(X ) becomes a Banach space. The completion in L∞

µ
(X ) of the simple functions s =

∑n
i=1 x iχEi

with µ(Ei) <∞ for every
i = 1, . . . , n, is denoted by L∞,0

µ
(X ).

When X = K, K = R or C, we use the symbol Lp(µ) for Lp
µ
(X ), 1 ≤ p ≤∞. If (Ω,Σ,µ) is the usual Lebesgue measure on

[0, 1] we denote Lp(µ) by Lp[0, 1].
Now we consider one special case: Given any set Γ , we define ℓp(Γ ) = Lp(Γ , 2Γ ,µ), where µ is counting measure on Γ . What

this means is that we identify functions f : Γ →K with “sequences" x = (xγ) in the usual way: xγ = f (γ), and we define

∥x∥p =
�

∑

γ∈Γ

|xγ|p
�1/p

=

�∫

Γ

| f (γ)|p dµ(γ)

�1/p

= ∥ f ∥p .

Please note that if x ∈ ℓp(Γ ), then xγ = 0 for all but countably many γ. For p =∞, we set

∥x∥∞ = sup
γ∈Γ
|xγ|= sup

γ∈Γ
| f (γ)|= ∥ f ∥∞ .

If Γ = N, we denote ℓp(Γ ) by ℓp. We write ℓp
n to denote Kn under the ℓp norm.

We now mention a formula that will be useful to us.
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Binomial formula: Let X be a Banach space and let x1, . . . , xn ∈ X . Then for any L ∈ Ls(mX ;K)

bL(x1 + · · ·+ xn) =
∑

j1+···+ jn=m

m!
j1! · · · jn!

L(x j1
1 . . . x jn

n ) . (14)

Recall the classical Clarkson inequalities: If f1 . . . fn ∈ Lp(µ), then
�

∫ 1

0





n
∑

j=1

f j r j(t)




p′

p d t
�1/p′

≤
� n
∑

j=1

∥ f j∥pp

�1/p

for 1≤ p ≤ 2 ,

and
�

∫ 1

0





n
∑

j=1

f j r j(t)




p

p d t
�1/p

≤
� n
∑

j=1

∥ f j∥p
′

p

�1/p′

for 2≤ p <∞ .

(15)

We refer to [43] for this and other similar Lp-inequalities.
Now we prove a generalized Clarkson inequality which is a standard type of interpolation lemma.

Lemma 3.1. Let f1 . . . fn ∈ Lp(µ) and let λ be Haar measure on Tn, the n-fold product of the circle group T = {z ∈ C : |z| = 1}.
Thus dλ(θ ) = (1/2π)ndθ1 · · · dθn. Then

�

∫

Tn





n
∑

j=1

f j e
iθ j




p′

p dλ(θ )
�1/p′

≤
� n
∑

j=1

∥ f j∥pp

�1/p

for 1≤ p ≤ 2 ,

and
�

∫

Tn





n
∑

j=1

f j e
iθ j




p

p dλ(θ )
�1/p

≤
� n
∑

j=1

∥ f j∥p
′

p

�1/p′

for 2≤ p <∞ .

(16)

Proof. Consider the linear operator
T : ℓ2

n(L
2(µ)) −→ L2

λ
(L2(µ))

defined by
T : f = ( f1, . . . fn) 7−→ f1eiθ1 + · · ·+ fneiθn (∗)

where f j ∈ L2(µ), j = 1, . . . , n. We have

∥T f ∥=
�

∫

Tn





n
∑

j=1

f j e
iθ j




2

2 dλ(θ )
�1/2

=
� n
∑

j=1

∥ f j∥22

�1/2

.

Now if the linear operator
T : ℓ1

n(L
1(µ)) −→ L∞,0

λ
(L1(µ))

is defined as in (∗), where f j ∈ L1(µ), j = 1, . . . , n, we have

∥T f ∥= sup
θ1 ,...,θn









n
∑

j=1

f j e
iθ j









1

≤
n
∑

j=1

∥ f j∥1 .

Hence by an extended version of the Riesz-Thorin interpolation theorem [8, theorems 4.1.2, 5.1.1, 5.1.2] the first inequality in
(16) holds for 1≤ p ≤ 2.

The proof of the second inequality in (16) is similar. Simply, instead of the linear operator T : ℓ1
n(L

1(µ)) −→ L∞,0
λ
(L1(µ))

consider the linear operator
T : ℓ1

n(L
∞(µ)) −→ L∞,0

λ
(L∞(µ)) ,

where f j ∈ L∞(µ), j = 1, . . . , n, with

∥T f ∥= sup
θ1 ,...,θn









n
∑

j=1

f j e
iθ j









∞
≤

n
∑

j=1

∥ f j∥∞ .

The first inequality in (16) is lemma I.2.4 in [33] or lemma 1 in [34]. We use inequality (16) in the proof of the following
theorem.

Theorem 3.2. Let k1, . . . , kn be nonnegative integers whose sum is m. Then for any complex Lp(µ) space

C(k1, . . . , kn; Lp(µ))≤











�

mm

k
k1
1 ···k

kn
n

�1/p
k1!···kn!

m! 1≤ p ≤ m′ ,
�

mm

k
k1
1 ···k

kn
n

�1/p′
k1!···kn!

m! m≤ p ≤∞ .
(17)

In the case 1≤ p ≤ m′ the estimate is best possible.
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Proof. Let L ∈ Ls(m Lp(µ);C). If x1, . . . , xn are unit vectors in Lp(µ), put r j = (k j/m)1/p for j = 1, . . . , n and define

f (z1, . . . , zn) := bL(r1 x1z1 + · · ·+ rn xnzn)

for z1, . . . , zn ∈ C. From the multinomial formula we have

f (z1, . . . , zn) =
∑

j1+···+ jn=m

m!
j1! · · · jn!

r j1
1 · · · r

jn
n L(x j1

1 . . . x jn
n )z

j1
1 · · · z

jn
n .

Subsequently partial differentiation yields

∂ k1+···+kn

∂ zk1
1 . . .∂ zkn

n

f (0, . . . , 0) = m!rk1
1 · · · r

kn
n L(x k1

1 . . . x kn
n ) .

Since f is a homogeneous polynomial on Cn, by Cauchy’s differentiation formula

∂ k1+···+kn

∂ zk1
1 . . .∂ zkn

n

f (0, . . . , 0) =
k1! · · · kn!
(2πi)n

∫

· · ·
∫

Tn

f (z1, . . . , zn)

zk1+1
1 . . . zkn+1

n

dz1 · · · dzn

where Tn is the n-fold product of the circle group. So

|L(x k1
1 . . . x kn

n )| ≤
1

rk1
1 · · · r

kn
n

k1! · · · kn!
m!

∥bL∥
∫

Tn





n
∑

j=1

r j x j e
iθ j




m

p dλ(θ )

where dλ(θ ) = (1/2π)ndθ1 · · · dθn. Now, using Hölder’s inequality and the first inequality in (16), we obtain the first inequality
in (17).

For the proof of the second inequality in (17), put r j = (k j/m)1/p
′

for j = 1, . . . , n and define as before f (z1, . . . , zn) :=
bL(r1 x1z1 + · · ·+ rn xnzn), for z1, . . . , zn ∈ C. Now repeat the previous proof using the second inequality in (16).

Finally, Example 3.1 shows that the constant in the first inequality in (17) is best possible.

Observe that in the complex case, the first and the third estimate in (12) is just inequality (17) for k1 = · · · = kn = 1. For
some other interesting results related to C(k1, . . . , kn; Lp(µ)) we refer to section 4 in [17].
Remark 1. The first inequality in (17) is proposition I.2.6 in [33] or theorem 1 in [34]. In fact, the first inequality in (17) is an
improvement of a special case of a result of Harris, see theorem 1 in [19]. He showed that if 1≤ p ≤∞ and if X is a complex
normed space, then the first inequality in (17) holds provided that









n
∑

j=1

z j x j









≤
� n
∑

j=1

|z j |p
�1/p

for all (z1, . . . , zn) ∈ Cn .

A classical result of Banach and Mazur [4] states that every separable Banach space is isometric to a quotient of ℓ1. Similarly
one can prove that given a Banach space X , there is a set Γ such that X is isometric to a quotient of ℓ1(Γ ). Hence, from Theorem
3.2 in the special case p = 1 and from Lemma 2.1 we have

Corollary 3.3. Let k1, . . . , kn be natural numbers whose sum is m. Then for any complex Banach space X

C(k1, . . . , kn; X )≤
mm

kk1
1 · · · k

kn
n

k1! · · · kn!
m!

(18)

and the constant is best possible.

This last result also follows from theorem 1 in [19]. By the use of the “generalized Rademacher functions", another proof
of the same result can be found in [1]. We also refer to corollary 4 in [20] which is an application of corollary 3 in [20] or
proposition 3.4 in [11]. In Example 4.1 we show that (18) does not hold when real Banach spaces are considered.

The following Example 3.1 (see also example 1 in [34]) shows that for 1 ≤ p ≤ m′ the constant in (17) is best possible.
Hence, the constant in (18) is best possible.

Example 3.1. Consider the symmetric m-linear form L on the real or complex sequence space ℓp defined by

L(x1, . . . , xm) =
1

m!

∑

σ∈Sm

x1σ(1) · · · xmσ(m) ,

where x i = (x in)∞n=1, i = 1, . . . , m, and Sm is the set of permutations of the first m natural numbers. Then, bL(u) = u1 · · ·um,
u= (ui), is the m-homogeneous polynomial associated to L end

L(x k1
1 . . . x kn

n ) =
1

m!

∑

σ∈Sm

x1σ(1) · · · x1σ(k1) · · · xnσ(k1+···+kn−1+1) · · · xnσ(k1+···+kn) ,

Dolomites Research Notes on Approximation ISSN 2035-6803



Chatzakou · Sarantopoulos 46

where k1 + · · ·+ kn = m. If (ei) is the standard unit vector basis of ℓp, define

y1 = k−1/p
1 (e1 + · · ·+ ek1

)

y2 = k−1/p
2 (ek1+1 + · · ·+ ek1+k2

)

...

yn = k−1/p
n (ek1+···+kn−1+1 + · · ·+ ek1+···+kn

) .

It is easy to see that y1, . . . , yn are unit vectors in ℓp and

L(yk1
1 . . . ykn

n ) =
1

kk1/p
1 · · · kkn/p

n

k1! · · · kn!
m!

.

On the other hand

|bL(u)|= {|u1|p · · · |um|p}1/p ≤
§ |u1|p + · · ·+ |um|p

m

ªm/p

by the arithmetic-geometric mean inequality and so ∥bL∥ ≤ 1/mm/p. Thus

|L(yk1
1 . . . ykn

n )| ≥

�

mm

kk1
1 · · · k

kn
n

�1/p
k1! · · · kn!

m!
∥bL∥ .

Hence, for 1≤ p ≤ m′

|L(yk1
1 . . . ykn

n )|=

�

mm

kk1
1 · · · k

kn
n

�1/p
k1! · · · kn!

m!
∥bL∥ .

Observe that in Example 3.1 the symmetric m-linear form L can be defined on the real or complex N -dimensional space ℓp
N ,

m≤ N . In particular, the latter means that for X being a complex Banach space, the estimate

C(k1, . . . , kn; X )≤ C(k1, . . . , kn;ℓ1) =
mm

kk1
1 · · · k

kn
n

k1! · · · kn!
m!

holds true.
Next, for any complex Banach space X and for n fixed we find the asymptotic growth of C(k1, . . . , kn; X ). For this we need

Stirling’s formula m!∼
p

2πm(m/e)m, where the sign ∼ means that the two quantities are asymptotic, that is their ratio tends to
1 as m tends to infinity. In particular, we shall make use of the following approximation for k j!

p
2πk

k j+1/2
j e−k j ≤ k j!≤ ek

k j+1/2
j e−k j , j = 1, . . . , n . (19)

Proposition 3.4. Let k1, . . . , kn be natural numbers whose sum is m. For any complex Banach space X and for n fixed

limsup
m→∞

C(k1, . . . , kn; X )1/m = 1 .

Proof. Since
p

2πmm+1/2e−m ≤ m! ≤ emm+1/2e−m, using the right-hand inequalities in (19), combined with the arithmetic-
geometric mean inequality, we have

mm

kk1
1 · · · k

kn
n

k1! · · · kn!
m!

≤
en

p
2πm1/2

(k1 · · · kn)
1/2

≤
en

p
2πm1/2

�

k1 + · · ·+ kn

n

�n/2

=
en

p
2πnn/2

m(n−1)/2 .

Taking into consideration (18), we conclude that

limsup
m→∞

C(k1, . . . , kn; X )1/m = 1 .

Remark 2. Dimant, Galicer and Rodríguez have shown in [17, theorem 1.1] that for any finite dimensional complex Banach space
X , the polarization constant C(X ) = 1. The key in the proof of their main theorem 1.1, is proposition 2.1 in [17] which relies on
[36, proposition 4]. In proposition 2.1 they show that the polarization constant C(ℓ1

d) = lim supm→∞K(m,ℓ1
d)

1/m = 1.
Contrary to the complex case, an example in [17] shows that a finite dimensional real Banach space can have polarization

constant bigger that 1.

Dolomites Research Notes on Approximation ISSN 2035-6803



Chatzakou · Sarantopoulos 47

An application of Theorem 3.2: Recall the following Markov-type inequality from [11].
Proposition 3.5. ([11, proposition 3.4]) Let bL : Lp(µ)→ C be a continuous m-homogeneous polynomial, m≥ 2, on the complex
Lp(µ) space. If m′ and p′ are the conjugate exponents of m and p, respectively, for k ≤ m we have the following Markov-type inequality

∥bDk
bL∥ ≤ Ck,m∥bL∥ ,

where

Ck,m =















�

mm

(m−k)(m−k)kk

�1/p
k! 1≤ p ≤ m′ ,

�

mm

(m−k)(m−k)kk

�1/m′

k! m′ ≤ p ≤ m ,
�

mm

(m−k)(m−k)kk

�1/p′

k! m≤ p ≤∞ .

(20)

In the case 1≤ p ≤ m′ the estimate is best possible.

If x1, x2 are unit vectors in Lp(µ), from identity (2) we have

bDk
bL(x1)x2 =

m!
(m− k)!

L(xm−k
1 x k

2) .

So, the first and the third estimate in (20) follow directly from Theorem 3.2.
In general, if X is a complex Banach space and if bL : X → C is a continuous m-homogeneous polynomial, for k ≤ m we have

the following Markov-type inequalities:

∥bDk
bL∥ ≤

mm

(m− k)(m−k)kk
k!∥bL∥ , ∥Dk

bL∥ ≤
mm

(m− k)(m−k)
∥bL∥ (21)

and the constants are best possible. This is an application of Corollary 3.3 and Example 3.1 (we also refer to corollary 1 in [19]).
Recall from inequality (5) that ∥Dk

bL∥ ≤ (kk/k!)∥bDk
bL∥.

4 Estimates for polynomial norms on real Banach spaces

4.1 Using complexification of real Banach spaces

Let k1, . . . , kn be natural numbers whose sum is m and let X be a real Banach space. If we complexify the real space X , using the
estimate in (18) we get an estimate for R(k1, . . . , kn; X ).

A complex vector space eX is a complexification of a real vector space X if the following two conditions hold:

(i) there is a one-to-one real-linear map j : X → eX and

(ii) complex-span
�

j(X )
�

= eX .

If X is a real vector space, we can make X × X into a complex vector space by defining

(x , y) + (u, v) := (x + u, y + v) ∀x , y, u, v ∈ X ,

(α+ iβ)(x , y) := (αx − β y,β x +αy) ∀x , y ∈ X , ∀α,β ∈ R.

The map j : X → X × X ; x 7→ (x , 0) clearly satisfies conditions (i) and (ii) above, and so this complex vector space is a
complexification of X . It is convenient to denote it by

eX = X ⊕ iX .

The norm on eX can be specified by
∥(x , y)∥= ∥(|x |2 + |y|2)1/2∥ , ∀x , y ∈ X .

For more details, consult [15, p. 326].
If X is a real-valued Lp(µ) space or C(K) space, this complexification procedure yields the corresponding complex-valued

space.
Bochnak and Siciak (see [9, Theorem 3]) observed that when X is a real Banach space, each L ∈ L(mX ;R) has a unique

complex extension eL ∈ L(m eX ;C), defined by the formula

eL(x0
1 + i x1

1 , . . . , x0
m + i x1

m) =
∑

i
∑m

j=1 ε j L(xε1
1 , . . . , xεm

m ),

where x0
k , x1

k are vectors in X , and the summation is extended over the 2m independent choices of εk = 0,1 (1 ≤ k ≤ m). The
norm of eL depends on the norm used on eX , but continuity is always assured.

In the context of polynomials (see also [40, p. 313]), any P ∈ P(mX ;R) has a unique complex extension eP ∈ P(m eX ;C), given
by the formula

eP(x + i y) =
[ m

2 ]
∑

k=0

(−1)k
�

m
2k

�

L(xm−2k y2k) + i
[ m−1

2 ]
∑

k=0

(−1)k
�

m
2k+ 1

�

L(xm−(2k+1) y2k+1)

for x , y in X , where P := bL for some L ∈ Ls(mX ;R). Here also eP = beL.
If eX is the complexification of a real Banach space X , each L ∈ Ls(mX ;R) has a unique complex extension eL ∈ Ls(m eX ;C) with

∥L∥ ≤ ∥eL∥ and ∥P∥ ≤ ∥eP∥, where P = bL. We also have [29, proposition 18]

∥eP∥ ≤ 2m−1∥P∥ and ∥eL∥ ≤ 2m−1∥L∥ . (22)
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Proposition 4.1. Let k1, . . . , kn be natural numbers whose sum is m. Then for any real Banach space X

R(k1, . . . , kn; X )≤ 2m−1C(k1, . . . , kn; eX )≤ 2m−1 mm

kk1
1 · · · k

kn
n

k1! · · · kn!
m!

, (23)

where eX is the complexification of the real Banach space X .

Proof. Let ϵ > 0. Choose L ∈ Ls(mX ;R) and x i ∈ X , ∥x i∥ ≤ 1, i = 1, . . . , n, such that

|L(x k1
1 . . . x kn

n )| ≥ (R(k1, . . . , kn; X )− ϵ)∥bL∥ .

But L has a unique complex extension eL ∈ Ls(m eX ;C) with ∥L∥ ≤ ∥eL∥ and ∥P∥ ≤ ∥eP∥, where P = bL. If we use the first inequality
in (22), it follows that

|eL(x k1
1 . . . x kn

n )| ≥
R(k1, . . . , kn; X )− ϵ

2m−1
∥eP∥ .

Hence,
R(k1, . . . , kn; X )− ϵ ≤ 2m−1C(k1, . . . , kn; eX )

and from Corollary 3.3 the proof of (23) follows.

As an application of Proposition 4.1 in the case where k1 = · · ·= kn = 1, we have n= m and from (23) we get

R(m; X )≤ 2m−1 mm

m!
. (24)

However, the last estimate is not the optimal one, since by (5) we know that R(m; X )≤ mm/m! and the constant mm/m! is best
possible. A sharper estimate for R(m; X ) is provided later on; see Propositions 4.4 and 4.5. Moreover, Proposition 4.1, together
with Proposition 3.4 shall be used to proving the following result regarding the asymptotic growth of the polarization constant
R(k1, . . . , kn; X ).

Corollary 4.2. Let k1, . . . , kn be natural numbers whose sum is m. For any real Banach space X and for n fixed

limsup
m→∞

R(k1, . . . , kn; X )1/m ≤ 2 .

We also refer to proposition 2.7 in [17] for an analogous result.
Next, we improve the estimate in (23) by using two different techniques.

4.2 Using the polarization formula.

First we need a lemma which is an application of the polarization formula (4).

Lemma 4.3. Let X be a Banach space and let L ∈ Ls(mX ). Then for any x1, . . . , xn ∈ X

L(x k1
1 . . . x kn

n ) =
1

m!

∫ 1

0

r1(t) · · · rm(t)bL

 

k1
∑

i=1

ri(t)x1 + · · ·+
m
∑

i=m−kn+1

ri(t)xn

!

d t ,

where k1, . . . , kn are nonnegative integers whose sum is m.

Proposition 4.4. Let k1, . . . , kn be natural numbers whose sum is m, m≥ 2. Then for any real Banach space X

R(k1, . . . , kn; X )≤
nm−1

m!

�

km−1
1 + · · ·+ km−1

n

�

. (25)

Proof. Let L ∈ Ls(mX ;R) and let x1, . . . , xn be unit vectors in X . From Lemma 4.3 and Hölder’s inequality we have

|L(x k1
1 . . . x kn

n )| ≤
1

m!
∥bL∥

∫ 1

0

(

�

�

�

�

k1
∑

i=1

ri(t)

�

�

�

�

+ · · ·+
�

�

�

�

m
∑

i=m−kn+1

ri(t)

�

�

�

�

)m

d t

≤
nm−1

m!
∥bL∥

(

∫ 1

0

�

�

�

�

k1
∑

i=1

ri(t)

�

�

�

�

m

d t + · · ·+
∫ 1

0

�

�

�

�

m
∑

i=m−kn+1

ri(t)

�

�

�

�

m

d t

)

.

The below inequality is an application of the Riesz-Thorin interpolation theorem, see [8] (we also refer to inequality (27) in [43,
theorem 5]). For j < k, and for m′ being the conjugate exponent of m, m≥ 2, we have:

∫ 1

0

�

�

�

�

k
∑

i= j+1

ri(t)

�

�

�

�

m

d t ≤ (k− j)m/m
′
= (k− j)m−1 .

Hence,

|L(x k1
1 . . . x kn

n )| ≤
nm−1

m!

�

km−1
1 + · · ·+ km−1

n

�

∥bL∥

and the proof of (25) follows.
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Inequality (25) recovers the optimal estimate mm/m!; indeed, in the special case k1 = · · ·= kn = 1, inequality (25) gives

R(m; X )≤
mm

m!
. (26)

Consider now the case where L ∈ Ls(m Lp(µ);R), 1≤ p ≤∞. Let k1, . . . , kn be natural numbers whose sum is m, m≥ 2. If
x1, . . . , xn are norm-one vectors in Lp(µ) with disjoint supports, using Lemma 4.3 and Clarkson inequalities the following estimates
were derived in theorem 3.6 in [30]

|L(x k1
1 . . . x kn

n )| ≤ R(k1, . . . , kn; Lp(µ))∥bL∥ ,

where

R(k1, . . . , kn; Lp(µ)) =











1
m!

�

kp−1
1 + · · ·+ kp−1

n

�m/p
if p ≥ m

n(m−p)/p

m!

�

km−1
1 + · · ·+ km−1

n

�

if 1≤ p ≤ m .

It is easy to check that these two last estimates are smaller than the estimate given in (25) (in the first estimate just use Hölder’s
inequality).

For some more estimates on Lp(µ) spaces see theorems 3.2 and 3.12 in [30].

4.3 Using the Hilbert space case.

Let F ∈ Ls(mH), where H is a Hilbert space. Recall from the introduction that K(k1, . . . , kn; H) = 1, where k1, . . . , kn are
nonnegative integers whose sum is m. So, if y1, . . . , yn are unit vectors in H, then |F(yk1

1 . . . ykn
n )| ≤ ∥bF∥.

Proposition 4.5. Let k1, . . . , kn be nonnegative integers whose sum is m. Then for any real Banach space X

R(k1, . . . , kn; X )≤

√

√

√

mm

kk1
1 · · · k

kn
n

. (27)

Proof. Let L ∈ Ls(mX ;R). If x1, . . . , xn are unit vectors in X , put r j = (k j/m)1/2 for j = 1, . . . , n. For any t = (t1, . . . , tn) in the
n-dimensional Euclidean space ℓ2

n, define
bF(t) := bL(r1 x1 t1 + · · ·+ rn xn tn) .

Then bF is an m-homogeneous polynomial on ℓ2
n with ∥bF∥ ≤ ∥bL∥. To see this, observe that for any unit vector t = (t1, . . . , tn) in ℓ2

n

|bF(t)| ≤ ∥bL∥∥r1 x1 t1 + · · ·+ rn xn tn∥m ≤ ∥bL∥(r2
1 + · · ·+ r2

n)
m/2(t2

1 + · · ·+ t2
n)

m/2 = ∥bL∥ .

On the other hand, for any t = t1e1 + · · ·+ tnen, where (ei)ni=1 is the standard unit vector basis on the Euclidean space Rn, from
the multinomial formula

bF(t) =
∑

j1+···+ jn=m

m!
j1! · · · jn!

F(e j1
1 . . . e jn

n )t
j1
1 · · · t

jn
n

=
∑

j1+···+ jn=m

m!
j1! · · · jn!

r j1
1 · · · r

jn
n L(x j1

1 . . . x jn
n )t

j1
1 · · · t

jn
n .

Then by taking partial derivatives

∂ k2+···+kn

∂ tk2
2 . . .∂ tkn

n

bF(e1) =
m!
k1!

F(ek1
1 . . . ekn

n ) =
m!
k1!

rk1
1 · · · r

kn
n L(x k1

1 . . . x kn
n ) .

So,

|L(x k1
1 . . . x kn

n )| =
1

rk1
1 · · · r

kn
n

|F(ek1
1 . . . ekn

n )|

≤

√

√

√

mm

kk1
1 · · · k

kn
n

∥bF∥ ≤

√

√

√

mm

kk1
1 · · · k

kn
n

∥bL∥

and the proof of (27) follows.

By the use of a different technique, Proposition 4.5 was also proved by Harris in [20, corollary 7]. The case n = 2 of the above
proposition is in fact part (a) of the corollary in [37]. However, still the estimate (27) is far from being optimal; indeed, consider
the case where k1 = · · ·= kn = 1, then the right-hand side of (27) becomes mm/2, and clearly we have mm/m!< mm/2 for m≥ 3.

The following is an immediate consequence of Proposition 4.4 and Proposition 4.5.

Corollary 4.6. Let k1, . . . , kn be natural numbers whose sum is m. Then for any real Banach space X

R(k1, . . . , kn; X )≤min

(

nm−1

m!

�

km−1
1 + · · ·+ km−1

n

�

,

√

√

√

mm

kk1
1 · · · k

kn
n

)

. (28)
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In particular, from (28) we have R(2, 2; X )≤ 4. But, R(2, 2; X )≤ 3 and 3 is best possible. To see this, consider L ∈ Ls(4X ;R).
For x , y ∈ X

bL(x) + bL(y) + 6L(x2 y2) =

∫ 1

0

bL(r1(t)x + r2(t)y) d t

where r1, r2 are the first two Rademacher functions. Thus

|L(x2 y2)| ≤ 3∥bL∥

for all unit vectors x and y . The following example, see example I. 2. 16 in [33] or example 1 in [37], shows that 3 is the best
constant and therefore

R(2, 2; X ) = 3>
8
3
≥ C(2, 2; X ) .

Example 4.1. Consider the real space ℓ∞4 . For x = (x1, x2, x3, x4) ∈ ℓ∞4 , choose the 4-homogeneous polynomial

bL(x) = (x2
1 − x2

2)
2 − (x2

3 − x2
4)

2 .

It is easy to verify that ∥bL∥= 1. For x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4) in ℓ∞4 we can easily check that

L(x2 y2) = x2
1 y2

1 + x2
2 y2

2 − x2
3 y2

3 − x2
4 y2

4 −
1
3

�

x2
1 y2

2 + 4x1 x2 y1 y2 + x2
2 y2

1

�

+
1
3

�

x2
3 y2

4 + 4x3 x4 y3 y4 + x2
4 y2

3

�

.

Taking x = (1, 1,0, 1) and y = (1,−1, 1,0) we get
|L(x2 y2)|= 3∥bL∥ .

The problem of determining the best constant in (28) is open. Harris in his commentary to problems 73 and 74 of Mazur and
Orlicz in the Scottish Book [41] discusses in detail this problem.

Suppose Mm,k and Km,k, k ≤ m, are the smallest numbers with the property

∥bDk
bL∥ ≤ Mm,k∥bL∥ and ∥Dk

bL∥ ≤ Km,k∥bL∥ ,

respectively, for every continuous m-homogeneous polynomial bL on any real Banach space X . Then, from Example 3.1 and the
estimate in (27) it follows that

mmk!
(m− k)(m−k)kk

≤ Mm,k ≤
�

m
k

�

k!mm/2

(m− k)(m−k)/2kk/2
(29)

and
mm

(m− k)(m−k)
≤ Km,k ≤

�

m
k

�

mm/2kk/2

(m− k)(m−k)/2
. (30)

The last two inequalities were also proved in [37]. The upper bounds for Mm,k and Km,k are not best possible. From inequality
(29) the upper bound for M4,2 is 48. But, from Example 4.1 we have M4,2 = 36 and this is the best constant.

4.4 Markov-type inequalities for polynomials on real Banach spaces.

This subsection is reproduced from [11]. V. A. Markov (brother of A. A. Markov) considered the problem of determining exact
bounds for the kth derivative of an algebraic polynomial. For 1≤ k ≤ m, if p ∈ Pm(R) and ∥p∥[−1,1] ≤ 1, V. A. Markov [28] has
shown that

∥p(k)∥[−1,1] ≤ T (k)m (1) =
m2(m2 − 12) · · · (m2 − (k− 1)2)

1 · 3 · · · (2k− 1)
.

Recall that the m’th Chebyshev polynomial Tm(t) is the polynomial agreeing with cos(m arccos t) in the range −1< t < 1.
Let K ⊂ Rn be a convex body, i.e. a convex compact set with non-empty interior. If u is a unit vector in Rn then there

are precisely two support hyperplanes to K having u for a normal vector. The distance w(u) between these parallel support
hyperplanes is the width of K in the direction of u. The minimal width of K is w(K) :=min∥u∥2=1 w(u).

Consider now the case where K ⊂ Rn is a centrally symmetric convex body with center at the origin, in other words K is
invariant under x 7→ −x . We call K a ball. A ball K is the unit ball of a unique Banach norm ∥ · ∥K defined by

∥x∥K = inf{t > 0 : x/t ∈ K}, x ∈ Rn .

If P ∈ Pm(Rn), x ∈ Ko and y ∈ SRn , the next sharp Bernstein and Markov-type inequalities follow from the work of Sarantopoulos
[37]:

|DP(x)y| ≤
2m

w(K)
Æ

1− ∥x∥2K
∥P∥K , (31)

∥∇P∥K ≤
2m2

w(K)
∥P∥K . (32)
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In fact, if X is a real Banach space and P ∈ Pm(X ), ∥P∥ ≤ 1, for the first Fréchet derivative of P it was proved in [37] that

∥DP(x)∥ ≤min

�

m

p

1− P(x)2
p

1− ∥x∥2
, m2

�

, for every ∥x∥< 1 . (33)

Using methods of several complex variables, inequalities (31) and (32) were proved independently by Baran [5].
Finally, the proof of Markov’s inequality for any derivative of a polynomial on a real Banach space X was given my Skalyga in

[38], see also [39]. In 2010 Harris [22] gave another proof which depends on a Lagrange interpolation formula for the Chebyshev
nodes and a Christoffel-Darboux identity for the corresponding bivariate Lagrange polynomials [21].

Theorem 4.7. (V. A. Markov’s theorem) [38, 39, 22] Let X be a real Banach space and let P ∈ Pm(X ) with ∥P∥ ≤ 1. Then for any
1≤ k ≤ m,

∥bDk P∥ ≤ T (k)m (1) =
m2(m2 − 12) · · · (m2 − (k− 1)2)

1 · 3 · · · (2k− 1)
. (34)

So, for any continuous polynomial P of degree m on a real Banach space X , T (k)m (1) is the best possible constant for ∥bDk P(x)∥,
∥x∥ ≤ 1. As mentioned earlier the upper bound for ∥bDk P(x)∥, ∥x∥ ≤ 1, as follows by (29) is not the best possible. However, it
improves the one given in (34) for the case where P is an m-homogeneous polynomial on X .
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