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Subdivision by WAVES – Weighted AVEraging Schemes

Qi Chen a · Hartmut Prautzsch a

Abstract

The Catmull-Clark subdivision algorithm consists of an operator that can be decomposed into a re-
finement and a smoothing operator, where the refinement operator splits each face with m vertices
into m quadrilateral subfaces and the smoothing operator replaces each internal vertex with an affine
combination of its neighboring vertices and itself.

In this paper, we generalize the Catmull-Clark scheme. We consider an arbitrarily fixed number r of
weighted averaging steps and allow that these r smoothing operators are different. These w(eighted)
ave(raging) s(chemes) form an infinite class of stationary subdivision schemes, which we call wave
shemes. This class includes the Catmull-Clark scheme and the midpoint schemes. For regular meshes,
wave schemes generalize the tensor product Lane-Riesenfeld subdivision algorithm.

We analyze the smoothness of stationary wave surfaces at extraordinary points using established methods
for analyzing midpoint subdivision. For regular meshes, we analyze the smoothness of non-stationary
wave schemes which need not be asymptotically equivalent to stationary schemes. Wave surfaces are
smooth at their regular and, in most cases, extraordinary points.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling — Curve, surface, solid, and object representations

Keywords: subdivision surfaces; Catmull-Clark subdivision algorithm; midpoint subdivision; difference schemes; extraordinary points; characte-
ristic map; non-stationary subdivision.

1 Introduction
The limiting surfaces of the Lane-Riesenfeld subdivision algorithm [LR80] are tensor product spline surfaces. Midpoint subdivision
generalizes Lane-Riesenfeld subdivision in so far as it can be applied to arbitrary rather than only regular quadrilateral meshes.
A midpoint subdivision scheme consists of an operator Mn = An−1R of degree n ∈ N, which is used successively to subdivide
an input mesh M. The refinement operator R maps M to the quadrilateral mesh RM, where the edges of RM connect the
center with all edge midpoints for each face of M and any vertex of M with all adjacent edge midpoints as shown at the top of
Figure 1.1. The averaging operator A maps M to the dual mesh AM that connects the centers of adjacent faces as shown at the
bottom of Figure 1.1.
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Figure 1.1: Two basic operators for subdividing quadrilateral meshes, where m is the valence of a vertex or face: refinement operator R (top)
and averaging operator A (bottom).
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The midpoint schemes of degree 2 and 3 were described first by Doo, Sabin, Catmull and Clark [DS78, CC78]. The limiting
surfaces generated by these schemes are smooth everywhere as shown , e. g., in [PR98] by analyzing the spectral properties of
the subdivision matrix numerically. Numerically computing or estimating the spectral properties of the subdivision matrix is a
bottleneck in the analysis of infinite classes of subdivision schemes. Therefore, the C1 result for midpoint subdivision could be
extended in [ZS01] merely up to degree 9 and only recently, further geometric arguments were developed that helped to prove
that midpoint subdivision for any degree n≥ 2 generates C1 subdivision surfaces everywhere [PC11].

The Catmull-Clark subdivision operator can be decomposed into a refinement operator R (see Figure 1.1, top) and a smoothing
operator Bα,β whose mask is shown in Figure 1.2. In [CC78] the weights depend on the valence and are given by α(m) = 1−3/m,
β(m) = 2/m and γ(m) = 1/m.
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α, β ∈ [0, 1)

γ ∈ (0, 1)

Bα,β
α := α(m)

β := β(m)

γ := 1 − α− β

Figure 1.2: Smoothing operator Bα,β for a vertex of valence m.

In this paper, we generalize the Catmull-Clark scheme to what we call weighted averaging schemes or just “waves”. “Waves”
form an infinite class of stationary subdivision schemes, which includes the Catmull-Clark and the midpoint schemes.

We further develop the techniques used in [PC11] to analyze the smoothness of the resulting wave subdivision surfaces.

2 Wave subdivision
A wave scheme W of degree n≥ 2 is given by

W :=
�

Br · · ·B1R , if n= 2r + 1
ABr · · ·B1R , if n= 2r + 2 ,

where R and A are the refinement and averaging operators respectively, shown in Figure 1.1, and where Bi := Bαi ,βi
is a smoothing

operator, shown in Figure 1.2, with non-negative functions αi and βi satisfying 0< αi + βi < 1. The weight functions αi and βi
can be different and every wave scheme defines and denotes a stationary subdivision scheme.

If αi ≡ 1/4 and βi ≡ 1/2, then Bi = A2 and the wave scheme of degree n is the midpoint scheme of degree n for arbitrary
meshes .

3 Smoothness for regular meshes
In this section, we analyze “waves” for regular meshes. Hence, m = 4 and the weight functions αi and βi can be viewed as
constants.

A regular quadrilateral mesh C can be represented by the biinfinite matrix C = [ci]i∈Z2 of its vertices ci, which are connected
by the edges cjcj+ek

, j ∈ Z2, k = 1, 2, as shown in Figure 3.1, where

[e1 e2] =
�

1 0
0 1

�

.

cj

cj+e1

cj+e2

cj−e1

cj−e2

∇1cj

∇2cj

Figure 3.1: A subnet of a regular quadrilateral mesh.
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To analyze smoothness, we need the (backward) differences

∇kci = ci − ci−ek
, k = 1, 2,

∇ci = [∇1ci ∇2ci] ,

∇∇ci = ∇(∇ci) = [∇1∇1ci ∇1∇2ci ∇2∇1ci ∇2∇2ci] ,

and the mesh C∇∇ = [∇∇ci]i∈Z2 of the second order differences ∇∇ci.
More generally than in the rest of this paper, in this section we consider weighted averaging operators Aγ defined by

non-negative biinfinite sequences γ := (γi)i∈Z2 ≥ 0 such that
∑

i∈Z2 γi = 1 and where
�

bi

�

i∈Z2 := Aγ C

is defined by
bi :=

∑

j∈Z2

γi−jcj .

Note that the set of all averaging operators Aγ contains all operators Br · · ·B1 and ABr · · ·B1.
Furthermore, in this and only in this section, we consider non-stationary “waves” given by a sequence (Wk)k∈N of operators

Wk := Aγk
R , γk := (γk

i )i∈Z2 ,

i. e., we study the limits of meshes
Ck :=

�

ck
i

�

i∈Z2 :=Wk · · ·W1C

as k→∞ for any initial control mesh C.
For our analysis, we define the radius of a mask γk by

rk :=min







m ∈ N |
∑

i∈Im

γk
i = 1, where Im := {−m, . . . , m}2







and observe that ck
j is influenced by ck−1

i only if
‖2i− j‖ ≤ 1+ rk .

Hence, at most (2+ rk)2 many ck−1
i influence ck

j .

Theorem 3.1. (C1 condition for regular meshes)
Let W = (Wk)k∈N be a wave scheme with limk→∞ rk/2

k = 0. Then any sequence of the tensor product splines

sn
k(x) :=

∑

i∈Z2

ck
i N n(2k x − i)N n(2k y − j)

converges uniformly to a continuous function s(x) over any compact domain D, where N n(x) denotes the cardinal B-spline with knots
0,1, . . . , n and n≥ 2, and where s(x) does not depend on n.

Further if there is some ε ∈ (0, 1/2] such that for all k
∑

j∈Z

∑

i∈2Z
γk

i j ∈ [ε, 1− ε] 3
∑

i∈Z

∑

j∈2Z
γk

i j , (3.1)

and
lim
k→∞
(1− ε)k rk = 0 ,

then s(x) is in C1.

Proof. Let
‖C‖∞ := sup

i∈Z2
‖ci‖ and ‖U‖ := sup

‖C‖∞=1
‖UC‖∞

for any operator U and any regular mesh C.
Since

‖∇RC‖∞ =
1

2
‖∇C‖∞ , ∇AγC = Aγ∇C , and ‖AγC‖∞ ≤ ‖C‖∞ ,

we conclude that
‖∇Ck‖∞ ≤ 2−k‖∇C‖∞ .

Further, every value sn
k(x) lies in the convex hull of (n+ 1)2 points ck

i , which together lie in the convex hull K of (n+ 3+ rk)2

many points ck−1
j . Since K also contains sm

k−1(x) for all m≤ n and since

diameter(K)≤
2(n+ 2+ rk)

2k−1
‖∇C‖∞ ,
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we get

sup
x∈D
‖sn

k(x)− sn
k−1(x)‖ ≤

2(n+ 2+ rk)
2k−1

‖∇C‖∞ .

Hence (sn
k)k∈N form Cauchy sequences over D, which converge to the same limit for all n. This proves the first statement of the

theorem.
Next we consider the partial derivatives

∂

∂ x
sn

k(x) = 2k∇1ck
i N n−1(2k x − i)N n(2k y − j)

and show that the differences ∇∇1ck
i of their control points converge uniformly to zero.

For
�

bi j

�

(i, j)∈Z2 :=∇2
1R C, we observe that

‖
�

bi j

�

(i, j)∈Z2 ‖∞ =
1

2
‖∇2

1 C‖∞

while bi j = 0 for every second i. This implies

‖∇2
1Wk C‖∞ = ‖Aγk

∇2
1R C‖∞ ≤

1− ε
2
‖∇2

1 C‖∞ .

Since

‖∇2∇1Aγk
R C‖∞ = ‖Aγk

‖‖∇2∇1R C‖∞ =
1

4
‖∇2∇1 C‖∞

≤
1− ε

2
‖∇2∇1 C‖∞ ,

we obtain altogether
‖∇ (2k∇1 Ck)‖∞ ≤ (1− ε)k‖∇∇1 C‖∞ .

Hence, we can continue as above and obtain that s(x) is in C1 and that (2∇iWk)k∈N, i = 1, 2, are derivative schemes of (Wk)k∈N .

From the proof we also get

Corollary 3.2. (Estimates for second order difference schemes)

‖∇i∇ jWk‖<
1

2
for i, j ∈ {1, 2} .

Example 3.3. (Two non-stationary wave schemes)

(1) The condition ε ≤
∑

j∈Z
∑

i∈2Z γi j ≤ 1− ε in (3.1) means that

ε ≤ ‖AγM‖∞ ≤ 1− ε

for a mesh M whose columns are alternating zero or [. . . 1 1 . . .]t. These inequalities still hold if we average AγM with any
other scheme Aγ. Consequently, since rk = O(k), any sequence of “waves”

Wk := Bk · · ·B1R

defines a non-stationary C1 wave scheme (Wk)k∈N for regular meshes.

(2) The tensor product Rvachev scheme [Rva90]

W = (Wk)k∈N with Wk = AkR

is a non-stationary wave scheme with rk = O(k) and ε = 1/2 for which Theorem (3.1) applies.

4 Basic observations
In this section, we consider “waves” for arbitrary quadrilateral meshes with extraordinary vertices or faces. Interior vertices or
faces of a quadrilateral mesh are called extraordinary if their valence does not equal 4.

Subdividing by R, Bα,β , and A does not increase the number of extraordinary elements and isolates these elements. Therefore,
it suffices to consider only (sub)meshes with one extraordinary vertex, as illustrated in Figure 4.1. These meshes are called
ringnets.

Definition 4.1. (Ring and ringnet)
Let N0 be the subnet of N consisting of the extraordinary vertex or face of N . The k-th ring around N0 is denoted by Nk and the mesh
consisting of N0, . . . ,Nk by N0...k. The latter is called a (regular) k-ringnet or (regular) k-net for short. Furthermore, the submesh
Ni... j consists of Ni , . . . , N j .
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N1
N1

Figure 4.1: Examples of rings and ringnets: a 1-ringnet with an extraordinary face of valence 5 (left) and a 2-ringnet with an extraordinary
vertex of valence 5 (right). The first rings N1 in both meshes are marked by bold lines and the convex corners of N1 are marked by • .

Given a ringnet N and a wave operator W of degree n, we generate the sequence N (l) =W lN and denote (N (l))i... j and

(N (l))i by N (l)
i... j and N (l)

i , respectively.
We say that a (sub)mesh N influences another subdivided (sub)mesh M if, during the subdivision, every vertex in N has an

effect on some vertex in M and if additionally all vertices in M depend on N .
Refining any ringnet N by a wave scheme W , it follows by induction that the vertices of W N influenced by a vertex in N

form an l ring neighborhood, where l does not depend on α and β even if these are zero. Hence we obtain

Lemma 4.2. (Equivalent masks for wave schemes and midpoint schemes)
The size and topological form of the masks of a wave scheme W of degree n only depend on its degree. Consequently, any vertex in any
mesh N influences equivalent submeshes in W N and Mn N , where Mn is the midpoint scheme of degree n.

Remark 4.3. (Core mesh)
For

r =
�

n− 1

2

�

,

the r-net N0...r of N consists of all vertices influencing N (l)
0 for some l ≥ 1. It is called the core (mesh) of N with respect to the wave

scheme W of degree n.

Depending on the context, we treat any mesh as a matrix whose rows represent the vertices or as the set of all vertices.
It is straightforward to prove

Lemma 4.4. (Dependence after a subdivision step)
N0...r+k determines N (1)

0...r+2k for k ≥ 0, i. e.,
N (1)

0...r+2k = (W N0...r+k)0...r+2k .

If we subdivide just the regular parts of any N (k), we obtain for every k a limiting surface sk. Since sk+1 contains sk, we can
consider the difference surface rk = sk+1\sk whose control points are contained in a sufficiently large subnet N (k)

0...ρ with ρ ≥ n
not depending on k. Due to Lemma 4.4, the operator W restricted to ρ-nets can be represented by a stochastic matrix S = Sρ
called the subdivision matrix, i. e.,

N (k+1)
0...ρ = SN (k)

0...ρ . (4.1)

Lemma 4.5. (Dependence property of a core mesh)
For any ρ > 0 there is some constant q such that for all k ≥ q every core vertex (vertex in N0...r) influences all vertices in N (k)

0...ρ , which
is denoted by

N0...r ÖN (k)
0...ρ .

Proof. For sufficiently large l and any s ≥ 0, every vertex in N0...r influences all vertices in N (l+s)
0 , all vertices in N (l+s+1)

0...1 , and so
on. Hence, we obtain the lemma with q = l +ρ.

Theorem 4.6. (C0-property of W)
The subdivision surfaces generated by W are C0 continuous.

Proof. Since the subdivision matrix S is stochastic, i. e., S is a non-negative and real matrix and each row of S sums to 1, the
dominant eigenvalue of S is 1. Due to Lemma 4.5, there is an integer l ≥ 1 such that

N0...r ÖN (l)
0...ρ = S lN0...ρ .
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This implies that S l has a positive column (for every core vertex) and, according to [MP89, Theorem 2.1], any sequence (S i c)
converges to a multiple of the vector [1 . . . 1]t as i→∞ for all real vectors c. Therefore, the only dominant eigenvalue of S is 1
and it has algebraic multiplicity 1.

Hence, the difference surfaces si\si−1 converge to a point and the surfaces generated by W are continuous.

To analyze the spectrum of the subdivision matrix S, we order any ρ-net N such that

N =



















N0...r
Nb
Na
Nr+2
...
Nρ



















,

where Na consists of the convex corners and Nb of all other points in Nr+1 (see Figure 4.1 for an illustration of the convex
corners). With this arrangement, the subdivision matrix S has the lower triangular form

S =



















C
∗ B
∗ ∗ A
∗ ∗ ∗ 0
...

. . .
. . .

∗ . . . . . . . . . ∗ 0



















,

where
N (1)

0...r = C N0...r , (4.2)

N (1)
b =

�

∗ B
�

�

N0...r
Nb

�

, and (4.3)

N (1)
a =

�

∗ ∗ A
�







N0...r
Nb
Na






. (4.4)

To verify this, we recall from Remark 4.3 that any point influencing the core mesh influences some N (l)
0 and thus belongs to

the core mesh. This implies Equation (4.2) and shows that Nr+1 influences only points in (W N )r+1...∞ and hence, that Nr+2

influences only points in (W N )r+2...∞, etc. Since Na does not influence any point in N (1)
b , Equations (4.3) and (4.4) follow.

Moreover, due to Lemma 4.4, (W N )r+2 is determined by N0...r+1 and (W N )r+3 is determined by N0...r+2, etc.
Hence, the eigenvalues of S are zero or are the eigenvalues of the blocks C , B, and A.

Lemma 4.7. (Spectral radii of B and A)
The spectral radii ρB and ρA of B and A satisfy

ρB ≤
�

1

2

�b n
2 c+1

and ρA ≤
�

1

4

�b n
2 c+1

.

In particular, ρB ,ρA ≤ 1/4 for n≥ 2.

Proof. Since A is non-negative, we get [HJ85, Corollary 6.1.5]

ρA ≤ ‖A‖∞ = ‖A1‖∞, where 1 := [1 . . . 1]t .

The vector A1 represents the convex corners of N (1)
r+1 if N0...r = 0, Nb = 0, Na = 1, and Nr+2...ρ = 0. One can easily verify that the

(scalar-valued) vertices of these convex corners are

1

4
·

1−α1(4)− β1(4)
4

· · · · ·
1−αr(4)− βr(4)

4
for n= 2r + 1 and

1

4
·

1−α1(4)− β1(4)
4

· · · · ·
1−αr(4)− βr(4)

4
·

1

4
for n= 2r + 2.

Since 1−αi(4)−βi(4) ∈ (0, 1), this concludes the proof of the second statement. The first statement can be proved similarly.
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5 The characteristic map
For the C1 analysis of wave subdivision, we need to investigate the eigenvectors and eigenvalues of the subdivision matrix S. We
do this by subdividing special grid meshes as in [PC11] and recall the basic definitions in this section.

Definition 5.1. (Grid mesh)
A primal grid mesh of valence m and frequency f is a planar primal ringnet with the vertices

gl
i j =

�

Re(g l
i j)

Im(g l
i j)

�

∈ R2 ,

where g l
i j = ie ı̂2πl f /m + je ı̂2π(l+1) f /m ∈ C and i, j ≥ 0, l ∈ Zm, ı̂ =

p
−1.

A dual grid mesh of valence m and frequency f consists of the vertices

hl
i j =

1

4
(gl

i−1, j−1 + gl
i, j−1 + gl

i−1, j + gl
i, j), i, j ≥ 1, l ∈ Zm

(see Figure 5.1). For fixed l, the vertices gl
i j or hl

i j with (i, j) 6= (0,0) of a grid mesh N build the l-th segment of N . The segment
angle of N is ϕ = 2π f /m. The half-line from the center gl

00 through gl
10 is called the l-th spoke, denoted by Sl(N ) or Sl for short.

0 S0

S1

Sm−1

g0
02

g0
21

g0
10g0

00

g1
21

S0

S1

Sm−1

h0
11 h0

21

h0
22

h1
21

g0
11

0

Figure 5.1: A primal grid mesh (left) and a dual grid mesh (right) with valence 5 and frequency 1.

Topologically, any ringnet M is equivalent to a grid mesh N . Therefore, we use the same indices for equivalent vertices and
denote the vertices of M by pl

i j . For a primal ringnet, p0
00, . . . ,pm−1

00 all denote the same vertex.

Definition 5.2. (Symmetric ringnet)
A planar ringnet of valence m with the vertices pl

i j in R2 is called rotationally symmetric with frequency f , if

pl+1
i j =

�

cosϕ − sinϕ
sinϕ cosϕ

�

pl
i j with ϕ = 2π f /m .

A planar ringnet N ∈ R2 is called reflection symmetric if its permutation eN consisting of the points fpl
i j := p(m−1)−l

ji equals the

conjugate ringnet N consisting of the points

pl
i j =

�

pl
i j,x

pl
i j,y

�

=

�

pl
i j,x

−pl
i j,y

�

,

i. e.,
eN =N .

A rotationally and reflection symmetric ringnet is called symmetric.

Using the technique established in [PC11], we construct and analyze a characteristic map of a wave scheme

W = Br · · ·B1R or W = ABr · · ·B1R

with Bi = Bαi ,βi
. We follow [PC11] and use results stated there for midpoint subdivision that are also valid for “waves” since their

proofs are only based on

• symmetry preservation,
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• convex combinations computed during subdivision, and

• influence relations as considered in Lemma 4.2.

Theorem 5.3. (M∞ and λϕ)
Let M be the core mesh of a grid mesh with frequency f and segment angle ϕ := 2 f π/m ∈ (0,π) . Let

Mk :=
(U kM)0...r

‖(U kM)0...r‖
,

where ‖ · ‖ denotes any matrix norm. Then the following statements hold.

(a) The sequence (Mk)k∈N converges to a symmetric eigennet M∞ with segment angle ϕ and a positive eigenvalue λϕ, which
depends only on ϕ but not on f and m. (M∞)0...1 has at most one zero control point. Additionally, we define λπ := |γπ|,
where γπ is the maximum eigenvalue associated with a rotationally symmetric eigenvector with segment angle π.

(b) Restricting W to core meshes, the eigenvalue λϕ is the dominant eigenvalue of the eigenspaces of frequencies f and m− f and
it has geometric and algebraic multiplicity 2.

(c) λα > λθ > λπ for 0< α < θ < π.

This can be proved as (5.4), (5.7), (6.3), and (6.4) in [PC11]. For midpoint subdivision schemes for quadrilateral meshes,
λπ is equal to 1/4 and equal to the subdominant eigenvalue µ0 of frequency 0. This implies that λ2π/m is subdominant. However,
for “waves”, λπ can be smaller than µ0. Therefore, we use the following lemma to show that λ2π/m is subdominant for m> 4.

Lemma 5.4. (λπ/2 = 1/2)

(a) For m= 4, the operator W has the subdominant eigenvalue 1/2.

(b) λπ/2 = 1/2 holds for any m and f such that 2 f π
m
= π

2
.

Proof. We consider a scalar-valued eigenmesh λM=W M with eigenvalue λ and segment angle π/2. Since there is a basis of
rotationally symmetric eigenmeshes, we may assume that M is such an eigenmesh. For m= 4 and due to Lemma 3.2, we have
that

λM∇∇ =W∇∇M∇∇

and ‖W∇∇‖ < 1/2. It follows that |λ| < 1/2 or that M∇∇ = 0, meaning that M is an affine image of a regular grid G, i. e., a
linear combination of the constant mesh [1 . . . 1]t with eigenvalue 1 and the two coordinates of G. Since W G = 1

2
G, (a) follows.

Due to symmetry, the subdivided mesh W M does not depend on f , whence (b) follows.

Next we consider two ringnets of frequency 0 with different valencies m1 and m2, but equal (first) segments. If we apply R, A
or Bα,β to these nets, all segments remain equal provided α(m1) = α(m2) and β(m1) = β(m2). Hence, we get

Lemma 5.5. (λ2π/m and µ0)
For constant functions α1,β1, . . . ,αr ,βr , i. e., αi(m)≡ αi(4) and βi(m)≡ βi(4), the subdominant eigenvalue µ0 of frequency 0 does
not depend on the valence m and hence

|µ0| ≤ 1/2= λπ/2 < λ2π/m

for m≥ 5 due to Lemma 5.4 and Theorem 5.3 (c).

Lemma 5.4 together with Theorem 5.3 and Lemma 4.7 can be used as in the proof of Theorem (7.3) in [PC11] to derive the
following theorem.

Theorem 5.6. (Subdominant eigenvalue)
Let ρ be as in Equation (4.1) and let W be a wave operator of degree n mapping the space of ρ-ringnets of valence m into itself with
n≥ 2 and 1−αi − βi ∈ (0,1). Let M be a ρ-grid mesh of valence m and frequency 1. For m≥ 3, the meshes

Mk :=
W kM
‖W kM‖

converge to a subdominant eigenmesh C of W called the characteristic mesh of W and its eigenvalue λ2π/m has geometric and
algebraic multiplicity 2, if

λ2π/m >

�

|µ0(m)| , m≥ 4
max{|µ0(m)|,ρB ,ρA} , m= 3 , (5.1)

where µ0 is the subdominant eigenvalue of frequency 0 and ρB and ρA are the spectral radii defined in Lemma 4.7.

Due to Lemma 5.5, Inequality (5.1) is satisfied if the weight functions α1,β1, . . . ,αr ,βr are constant and m≥ 5. Thus, we get

Corollary 5.7. (Subdominant eigenvalue for m≥ 5 with constant functions αi and βi)
The meshes Mk as in Theorem 5.6 converge to the characteristic mesh of W and its eigenvalue λ2π/m has geometric and algebraic
multiplicity 2, if m≥ 5 and if the weight functions α1,β1, . . . ,αr ,βr are constant functions of the valence m.
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6 Smoothness for irregular meshes
Let C be the characteristic mesh of valence m of the wave scheme

W = Br · · ·B1R or W = ABr · · ·B1R

with Bi = Bαi ,βi
, αi ,βi ∈ [0,1), and 1−αi − βi ∈ (0,1). It defines the control mesh of a characteristic map, which is a surface

ring consisting of m segments.

Theorem 6.1. (C1-property of W)
The wave scheme W of degree n≥ 2 is a C1 subdivision algorithm if Inequality (5.1) is satisfied. Particularly, W generates C1 surfaces
for valencies m≥ 5 if the weight functions αi and βi are constant functions of the valence m.

Proof. To simplify the notation, we identify the real plane R2 with the complex plane C by the bijection R2 3 [x y]t 7→ x+ ı̂ y ∈ C.
Let c(x , y) : Ω→ C be 3 segments of the characteristic map of W , where Ω= Ω−1 ∪Ω0 ∪Ω1 as shown at the left of Figure 6.1,
and c|Ωi

is the i-th segment for i =−1,0, 1.

0 x

y

Ω0Ω1

Ω−1

S0

S1S2

x0

ı̂u0

S−1Ω = Ω−1 ∪ Ω0 ∪ Ω1

Figure 6.1: The domain Ω of c (left) and the −1, 0, 1-th segments of a grid mesh (right), where the y-edges in the three segments are marked
by arrows and the y-edges in the 0-th segment are especially marked by double arrows.

First, we observe a grid mesh M as shown at the right of Figure 6.1 such that the subdivided and normalized meshes
Mk = (W k M)0...ρ/‖(W k M)0...ρ‖ converge to the characteristic mesh C due to Theorem 5.6 and Corollary 5.7. If n is odd, we
require M to be primal and otherwise to be dual. Let Ek =∇2(Mk) and E =∇2(C), where the edge set of a ringnet K = [pk

i j] is
defined by

∇2(K) := {∇2p0
i, j = p0

i, j − p0
i, j−1 | i ≥ 0, j > 0} ,

as illustrated at the right of Figure 6.1. These and other edges control the directions of the partial derivatives cy(Ω0). Furthermore,
we add both u1 and ı̂u0 to Ek and E , where u1 is the edge direction of the spoke S1 and ı̂u0 is the edge direction of the spoke
S0 rotated by +π/2. Refining, averaging, and smoothing a mesh also means its edges are averaged by the masks shown in
Figure 6.2. In particular, the edges in Ek are either, due to symmetry, parallel to u1 and ı̂u0 or obtained by iteratively averaging
the edges in Ek−1 and multiplying these by positive numbers because of the normalization. Thus, we know that Ek lies in the cone
spanned by Ek−1, i. e., in the cone

D0 :=
�

[0,∞) e ı̂[π/2, 2π/3] , if m= 3
[0,∞) e ı̂[2π/m, π/2] , if m≥ 5

.

Therefore, by induction, all Ek and E lie in D0.
Moreover, since C0...1 is symmetric and has at most one zero control point, at least one of its edges is non-zero. Subdividing C,

we can see that every element of E is a linear combination of E with non-negative weights and a positive weight for the non-zero
element in the 1-ringnet. Hence, E has no zero elements.

Second, we observe that for a symmetric ringnet N , each element of ∇2(2RN ), ∇2(AN ), and ∇2(Bα,βN ) is a convex
combination of elements in ∇2(N ), in ∇2(N ) reflected at S1, and in −∇2(N ) reflected at S0, where a reflected element has a
weight which is less than or equal to that of the unreflected counterpart. Thus, by induction, we see that ∇2(2k W k C)⊂D0, for
k ≥ 0. Since every partial derivative cy over Ω0 is the limit of a sequence of vectors vk ∈ ∇2(2k W k C), it follows that cy(Ω0)⊂D0.
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1/4

1/4

1/2

1/4

1/4

1/4

1/4 b =
β(4)

4
, c =

1 − α(4) − β(4)

4

α(4) b

c

b

b

b c

c

c

Figure 6.2: Masks for R∇ (top left), A∇ (bottom left), and (Bα,β )∇ (right) on regular meshes.

Next, we show 0 /∈ cy(Ω0). Any cy(x), x ∈ Ω0, is a convex combination of F−1 or F0, where Fi is the set of all y-edges in the
segments i and i+ 1 of 2k U kC for sufficiently large k. We observe

F−1 = eπ/2−2π/mF0 ⊆
�

(0, ∞) e ı̂[π/3, 2π/3] , if m= 3
(0, ∞) e ı̂[2π/m, π−2π/m] , if m≥ 5

,

which implies 0 /∈ cy(Ω0). Hence, cy(Ω0)⊂D :=D0\{0} and similarly cx(Ω0)⊂D−π/2.

0 u0

u1

u−1

m = 3
D

D − π/2

0
u0

u1D

D − π/2

m ≥ 5ı̂u0

−ı̂u1

−ı̂u1

ı̂u0

Figure 6.3: The direction cones D and D−π/2.

Since each pair in (D, D−π/2) is linearly independent (see Figure 6.3), c is regular over Ω0 and hence, the characteristic
map of W is regular. Because cy(Ω0)⊂D, c does not map any line segment between two points in Ω0 to a closed curve, meaning
that c is injective over Ω0. Moreover, since M is a symmetric grid mesh whose zeroth segment lies in [0, ∞) e ı̂[0, 2π/m] =: A and
W preserves symmetry, it implies c(Ω0)⊂A and c maps the interior of Ω0 into the interior of A. Hence, the total characteristic
map of W is injective. Finally, Reif’s C1-criterion [Rei95, Theorem 3.6] is satisfied, which concludes the proof.

Example 6.2. (Wave scheme of degree 3)
Using the discrete Fourier transform for the subdivision matrix of W = Bα,βR with α,β ∈ [0, 1), 1−α− β ∈ (0, 1), we get

µ0(m) =
3α(m) + β(m) +

p

(3α(m) + β(m))2 − 4t α(m)

8

and

λ 2π
m
(m) =

4+ t + (2− t)c+
p

(2− t)2c2 + 2(4+ t)(2− t)c+ (4− t)2

16
,

where t = 2α(4) + β(4) and c = cos(2π/m). According to Theorem 6.1, if α(m) = α(4), β(m) = β(4), and m ≥ 5, then W
generates C1 surfaces around extraordinary points of valence m. Otherwise, W generates C1 surfaces around extraordinary points of
valence m if λ 2π

m
(m)> µ0(m) holds, since it can be easily verified that

λ 2π
m
(m)≥

5

16
>

1

4
≥max{ρA, ρB} .
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7 Conclusion
In this paper, we have analyzed the smoothness of wave subdivision surfaces. The established C1 analysis tools for quadrilateral
meshes in [PC11] have been generalized to the weighted averaging operator Bα,β . For regular meshes non-stationary wave
schemes have been analyzed. Furthermore, a deeper understanding of the spectral properties of the subdivision matrices at
extraordinary points is provided.

Tools to analyze wider and infinite classes of subdivision schemes are developed in this paper and hopefully help to advance
the state of the art towards general C1 analysis tools for other subdivision schemes that can be factorized into simple convex
combination operators.
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