Figure 2: Parameter-tuning for Gaussian weight function w_{v}. Reconstruction of phantom bull's eye by the Gaussian kernel $\varphi^{\prime \prime}(r)=$ $\exp \left(-(" r)^{2}\right)$ for " $=30$. The graph of the RMSE as a function of the weight parameter v is shown.

Next we consider the variation of the shape parameter v for the Gaussian weight function w_{v} in (20). Figure 2 shows the RMSE as a function of v, for constant kernel shape parameter " $=30$ and for a fixed number $\mathrm{n}=1230$ of Radon lines (on a parallel beam geometry). We have observed that the minimal RMSE is attained at $\nu^{*}=0.4522$ (cf. Figure 2). Note that the graph in Figure 2 illustrates the dependence between the RMSE and the weight parameter v quite well.

We have further performed a series of rather extensive numerical experiments concerning the phantoms bull's eye, the crescent-shaped phantom, and the Shepp-Logan phantom, where our reconstructions were computed on a parallel beam geometry with $\mathrm{N}=30$ angles and $2 \mathrm{M}+1=41$ lines per angle, so that the number of Radon samples is $\mathrm{n}=1230$. Table 2 shows "optimal" combinations of values "* for the Gaussian kernel and v^{*} for the Gaussian weight, whose resulting $\operatorname{RMSE} \equiv \operatorname{RMSE}(", \nu)$ is minimal.

Phantom	kernel φ "	weight w_{v}
crescent-shaped phantom	${ }^{\prime *}$ * 19.66	$v^{*}=0.51$
bull's eye	${ }^{*}=15.52$	$v^{*}=0.45$
Shepp-Logan phantom	"*=18.28	$v^{*}=2.06$

Table 2: "Optimal" shape parameters for Gaussian kernel and Gaussian weight. Fine-tuning of shape parameter "* and weight parameter v^{*} for three different phantoms by Gaussian reconstruction on parallel beam geometry (for $N=30$ angles and $2 \mathrm{M}+1=41$ lines per angle).

6.3 Comparison of Kernel-based Reconstructions on Parallel Beam Geometry

In Figure 3 we show a comparison between reconstructions from the three different kernels, where for each kernel, we have performed a finetuning of the method parameters " and v. For the Gaussian kernel, the "optimal" parameters " *and v^{*} are in Table 2.

On our numerical results of Figure 3 we can conclude that the reconstruction quality obtained from the Gaussian kernel is clearly superior to those obtained from the compactly supported and the inverse multiquadric kernel, provided that the Gaussian method parameters " and v are well-chosen. Note that the performance of the compactly supported kernel and the inverse multiquadric kernel is comparable. This complies with our numerical results, as documented in [14].

6.4 Kernel-based vs Fourier-based Reconstruction

We compare the proposed kernel-based Gaussian reconstruction method with Fourier-based reconstructions, relying on the filtered back projection formula (3), where we considered using the standard Shepp-Logan low pass filter, given as

$$
A(\omega)=|\omega| \cdot \frac{\sin (\pi \omega /(2 L))}{\pi \omega /(2 L)} \cdot \chi_{[-L, L]}(\omega)=\begin{array}{cl}
\frac{2 L}{\pi} \cdot|\sin (\pi \omega /(2 L))| & \text { iff }|\omega| \leq L ; \\
0 & \text { iff }|\omega|>L .
\end{array}
$$

so that the filter $|S|$ in (3) is being replaced by $A(S)$. Note that $A(S) \approx|S|$ for small frequencies S.
We use three popular phantoms: the crescent-shaped phantom, the bull's eye, and the Shepp-Logan phantom, shown in Figure 4.

We remark that the standard implementation of the Fourier-based filtered back projection formula (3) relies on a regular distribution of Radon lines. To this end, we work with a paralle beam geometry. In this case, by the discretization $\theta_{k}=k \pi / N$, for $k=0, \ldots, N-1$, of the angular variable $\theta \in\left[0, \pi\right.$) and $t_{j}=j d$ (for some fixed sampling spacing $d>0$),

Figure 3: Kernel-based reconstructions on parallel beam geometry. The reconstructions are obtained from $\mathrm{n}=1230$ Radon samples, on a parallel beam geometry with $N=30$ angles and $2 M+1=41$ lines per angle. The original phantoms (1st col), their reconstruction by inverse multiquadric (2 nd col), by the compactly supported kernel (3rd col), and by the Gaussian kernel (4th col) are shown. The "optimal" values for the Gaussian parameters " and v are in Table 2.

Crescent-shaped phantom

Bull's eye
Shepp-Logan phantom
Figure 4: Three popular phantoms. Crescent-shaped phantom, bull's eye, and Shepp-Logan (each of size 256×256).
where $j=-M, \ldots, M$, for the radial variable $t \in R$, the data acquisition relies on $(2 M+1) \times N$ regularly distributed Radon lines ${ }^{{ }_{\mathrm{t}}^{\mathrm{j}}} \mathbf{, \theta _ { \mathrm { k } }}$. Note that for any fixed angle θ_{k}, the Radon lines ${ }^{`} \mathrm{t}_{\mathrm{j}, \theta_{\mathrm{k}}},-\mathrm{M} \leq \mathrm{j} \leq \mathrm{M}$, are parallel (at uniform distance d and symmetric about the origin), which explains the naming paralled beam geomery. For illustration, Figure 5 (a) shows a set of $(2 \mathrm{M}+1) \times \mathrm{N}=110$ Radon lines ${ }^{`} \mathrm{t}_{\mathrm{j}, \theta_{k}}$ on parallel beam geometry, where we let $\mathrm{N}=10, \mathrm{M}=5$, and $\mathrm{d}=0.2$.

Now let us turn to our numerical comparisons between Fourier-based and kernel-based reconstructions. In each test case, we let $N=45$ and $M=40$, so that $(2 M+1) \times N=3645$ Radon samples are taken. In the kernel-based Gaussian reconstruction, we have used the "optimal" parameters shown in Table 2. The resulting reconstructions obtained from the two methods are displayed in Figure 6. Given our numerical results, we can conclude that our kernel-based reconstruction method is competitive to the Fourier-based reconstruction method, by the visual quality of their reconstructions and by the RMSE.

