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Kernel-based Image Reconstruction from Scattered Radon Data

Stefano De Marchi a · Armin Iske b · Amos Sironi c

Abstract

Computerized tomography requires suitable numerical methods for the approximation of a bivariate
function f from a finite set of discrete Radon data, each of whose data samples represents one line
integral of f . In standard reconstruction methods, specific assumptions concerning the geometry
of the Radon lines are usually made. In relevant applications of image reconstruction, however,
such assumptions are often too restrictive. In this case, one would rather prefer to work with
reconstruction methods allowing for arbitrary distributions of scattered Radon lines.
This paper proposes a novel image reconstruction method for scattered Radon data, which combines
kernel-based scattered data approximation with a well-adapted regularization of the Radon transform.
This results in a very flexible numerical algorithm for image reconstruction, which works for arbitrary
distributions of Radon lines. This is in contrast to the classical filtered back projection, which
essentially relies on a regular distribution of the Radon lines, e.g. parallel beam geometry. The good
performance of the kernel-based image reconstruction method is illustrated by numerical examples
and comparisons.

1 Introduction
Computed Axial Tomography (CAT or CT) is a powerful technique to generate images from measurements of X-ray scans.
One X-ray scan typically consists of several million of data samples, each of which corresponds to an X-ray beam passing
through the computational domain, travelling from an emitter to a detector. The sensors of the operational CT scanner
(positioned at the emitter and at the detector) then measure, for each X-ray beam, the loss of energy, resulting from the
X-ray beam passing through the medium. The loss of energy reflects the ability of the medium to absorb energy, and so it
depends on its specific structure and material properties. The amount of absorption can be described as a function of the
computational domain Ω, termed attenuation coefficient function, f : Ω→ [0,∞).

Medical imaging is one relevant application for CT, where the primary goal is to reconstruct the unknown attenuation
coefficient function f from given X-ray scans in order to generate clinically useful medical images. This requires robust
numerical algorithms to reconstruct characteristic features of medical images at sufficiently high accuracy, on the one hand,
and at sufficiently small computational costs, on the other hand. For details concerning the acquisition of X-ray scans, their
underlying mathematical models, and standard computational methods for medical image reconstruction, we refer to the
textbook [5] of Feeman.

To describe the mathematical problem of medical image reconstruction from X-ray scans, let us first regard the Radon
transform R f of f , given by

R f (t,θ ) =

∫

R
f (t cosθ − s sinθ , t sinθ + s cosθ ) ds, (1)

for t ∈ R and θ ∈ [0,π), where we assume f : Ω → R to be a bivariate function on a compact domain Ω ⊂ R2, or, in
other words, we assume that f is compactly supported on R2, where we extend f to R2 by letting f ≡ 0 outside Ω. In
many relevant application scenarios, we may assume that the image domain Ω is the unit square, i.e., Ω= [0, 1]2, but this
restriction is rather immaterial for our following discussion. We will merely assume f ∈ L1, so that for any pair of t ∈ R and
θ ∈ [0,π) the Radon integral in (1) is well-defined.

We remark that the Radon transform R f (t,θ) gives, for any fixed pair (t,θ) ∈ R× [0,π), a line integral for f over a
specific straight line `≡ `t,θ . In order to see this, let `t,θ ⊂ R2 denote the unique straight line, which is perpendicular to the
unit vector nθ = (cosθ , sinθ ) and which passes through the point p = (t cosθ , t sinθ ) = tnθ . In this case, the line `t,θ can
be parameterized as

(x1(s), x2(s)) = (t cosθ − s sinθ , t sinθ + s cosθ ). (2)

By this specific choice for a parameterization of `t,θ in (2), we immediately see that, for t ∈ R and θ ∈ [0,π),
∫

`t,θ

f (x) dx=R f (t,θ ),
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where we let x= (x1, x2), and so the line integral of f over `t,θ coincides with the Radon transform (1) of f at (t,θ ).
On the other hand, any straight line ` in the plane can be described by a unique pair (t,θ ) of a radial parameter t ∈ R

and an angular parameter θ ∈ [0,π) satisfying `≡ `t,θ . In this way, the Radon transform R f of f can be viewed as a linear
integral transformation, which maps any bivariate function f ∈ L1 (in Cartesian coordinates) onto a bivariate function R f
(in polar coordinates), where the image R f contains all line integrals of f over the set of straight lines in the plane.

Due the seminal work [12] of Johann Radon (in 1917), any (sufficiently regular) function f can be reconstructed from
its Radon transform R f . The inversion of the Radon transform is given by the filtered back projection (FBP) formula (see [5,
Chapter 6]),

f (x) =
1

2
B
�

F−1
�

|S|F(R f )(S,θ )
�	

(x), (3)

where F is, for any fixed angle θ , the univariate Fourier transform w.r.t. the radial variable t, and so F−1 is the univariate
inverse Fourier transform w.r.t. the frequency variable S. Moreover, the back projection B is, for any function h≡ h(t,θ ) (in
polar coordinates), given by the average

Bh(x) =
1

π

∫ π

0

h(x1 cosθ + x2 sinθ ,θ ) dθ

of h(t,θ ) over the angular variable θ , where we let

t = x1 cosθ + x2 sinθ = x · nθ (4)

according to the one-to-one relation between the Cartesian coordinates x = (x1, x2) and the polar coordinates (t,θ), as
described above along with the parameterization of the lines `t,θ in (2). For basic details concerning the derivation of the
filtered back projection formula, we refer to [5], and for a more comprehensive mathematical treatment of the Radon
transform and its inversion, we refer to the textbooks [7, 10].

In practical application scenarios, however, only a finite set of Radon data,

RL( f ) = {R f (tk,θk)}mk=1, (5)

given as integrals of f over a finite set of m pairwise distinct lines,

L= {`tk ,θk
: (tk,θk) ∈ R× [0,∞) for k = 1, . . . , m},

is available. In this case, an approximate reconstruction of f from Radon data RL f is sought. In standard techniques of
medical imaging, the reconstruction of f is accomplished by using a suitable discretization of the FBP in (3). For this class
of Fourier-based reconstruction methods, the discrete lines in L, over which the line integrals of f are known, are usually
required to be regularly spaced in the plane, e.g. by assuming parallel beam geometry or fan beam geometry (see [5] for the
geometric assumptions on L).

In many clinical scenarios of data acquisition, however, we may face a limited range of angles or a limited dosage of
X-ray expositions, so that the Radon data are partly corrupt or incomplete. In such relevant cases, the Radon data in (5) are
scattered, i.e., the distribution of lines in L is essentially not regular but scattered, in which case standard Fourier methods,
such as the Fourier-based FBP discretization in (3), do no longer apply. This requires more flexible approximation methods
which work for arbitrary geometries of (scattered) Radon lines L.

To approximate f from scattered Radon data RL f , algebraic reconstruction techniques (ART) [6] can be applied. The
concept of ART is essentially different from that of Fourier-based reconstructions: in the setting of ART one fixes a set
G = {g j}nj=1 of basis functions beforehand to solve the reconstruction problem

RL(g) =RL( f ) (6)

by using a linear combination

g =
n
∑

j=1

c j g j

of the basis functions in G. This ansatz amounts to solving the linear system

Ac = b (7)

for the unknown coefficients c = (c1, . . . , cn)T ∈ Rn of g, where the m× n matrix A has the form

A=
�

Rg j(tk,θk)
�

k=1,...,m; j=1,...,n
∈ Rm×n

and the right hand side b is given by the m Radon observations bk =R f (tk,θk), for k = 1, . . . , m.
Unless the number m of Radon samples coincides with the number n of coefficients, the linear system in (7) is either

overdetermined, for m > n, or underdetermined, for n > m. In case of an overdetermined system, the classical method
of linear least squares approximation [2] is applied to minimize the residual (Euclidean) norm ‖Ac − b‖, whereas for an
underdetermined system the iterative method of Kaczmarz [5, Section 9.3] is a standard tool to compute an approximate
solution c satisfying Ac ≈ b. We remark that in either case the linear system in (7) is not guaranteed to have a unique
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solution, not even in the rare case, where m = n. In fact, the latter is due to the Mairhuber theorem [4, Chapter 1] from
multivariate approximation theory.

In this paper, we propose a kernel-based algebraic reconstruction method, whose solution is always unique. Our proposed
reconstruction scheme relies on the concept of kernel-based multivariate approximation from generalized Hermite-Birkhoff
data [8], which we adapt to the special case of reconstruction from scattered Radon data. For the well-posedness of the
reconstruction scheme we apply weighted Radon transforms for the purpose of regularization, as explained later in this
paper. This way we obtain a very flexible reconstruction scheme, which works for arbitrary scattered Radon data.

The outline of this paper is as follows. In the following Section 2, we briefly review generalized Hermite-Birkhoff
interpolation. Then, in Section 3 we show how to adapt this particular reconstruction method to scattered Radon data. This
yields a general concept for the design of the reconstruction method’s basis functions. We apply this concept to construct
Gaussian basis functions in Section 4. This is followed by a discussion in Section 5 concerning the regularization of the Radon
transform by Gaussian weights. In Section 6, numerical results are provided for illustration. Our numerical experiments of
Section 6 include comparisons between Fourier-based reconstructions relying on the FBP formula (3) and the kernel-based
ART proposed in this paper, where we apply the two reconstructions methods to three popular phantoms. Final conclusions
are given in Section 7.

2 Generalized Hermite-Birkhoff Interpolation
To solve the reconstruction problem (6), we apply Hermite-Birkhoff interpolation [8]. To explain the general framework of
this particular interpolation method, let Λ= {λ1, . . . ,λn} denote a set of linearly independent linear functionals. Moreover,
suppose we are given a vector fΛ = (λ1( f ), . . . ,λn( f ))T ∈ Rn of samples taken from an unknown function f . Now the
solution of the general Hermite-Birkhoff reconstruction problem requires finding a function g satisfying the interpolation
conditions gΛ = fΛ, i.e.,

λk(g) = λk( f ) for all k = 1, . . . , n. (8)

This general framework covers our reconstruction problem (6), when the linear functionals λk are defined as

λk( f ) :=R f (tk,θk) for k = 1, . . . , n. (9)

By the interpolation conditions in (8), we obtain n linear equations of the form

n
∑

j=1

c jλk(g j) = λk( f ) for k = 1, . . . , n,

corresponding to the linear system in (7), and by the choice of our particular ansatz, the number of data matches the number
of basis functions, i.e., n= m. To obtain a well-posed reconstruction scheme, we assume that the basis functions g j are of
the form

g j(x) = λ
y
j K(x,y) for j = 1, . . . , n, (10)

where λy
j K(x,y) denotes action of the functional λ j to K w.r.t. variable y ∈ R2. Moreover, the kernel function K ≡ K(x,y) is

required to be symmetric, i.e.,
K(x,y) = K(y,x) for all x,y ∈ R2,

and positive definite.
Rather than dwelling much on explaining positive definite functions, we remark that for the purposes of this paper it is

sufficient to say that a symmetric kernel function K ≡ K(x,y) is positive definite, iff the matrix

AΛ,K =
�

λx
jλ

y
kK(x,y)

�

1≤ j,k≤n
∈ Rn×n (11)

is symmetric positive definite for any set Λ= {λ j}nj=1 of linearly independent functionals λ j . For a comprehensive account
to the construction and characterization of positive definite kernels, we refer the reader to [9, 13].

To make relevant examples for positive definite kernels, we resort to radially symmetric kernels, in which case K is
assumed to have the form

K(x,y) = φ(‖x− y‖) for x,y ∈ R2,

where φ(‖ · ‖) is radial w.r.t. the Euclidean norm ‖ · ‖. Classical examples for radial positive definite kernels are the Gaussian

φε(‖x‖) = e−(ε‖x‖)
2

for x ∈ R2 and ε > 0, (12)

the inverse multiquadrics

φε(‖x‖) =
�

1+ (ε‖x‖)2
�−1/2

for x ∈ R2 and ε > 0,

and Askey’s compactly supported radial characteristic functions [1]

φε(‖x‖) = (1− ε‖x‖)
β
+ =

§

(1− ε‖x‖)β for ‖x‖< 1/ε
0 for ‖x‖ ≥ 1/ε.
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In the following discussion, we show that Gaussian kernels are suitable choices for φε, especially for reconstructions
from Radon data, where we need to assembly the reconstruction matrix A≡ AΛ,K in (11) by applying the Radon transform R
on the chosen kernel K .

Our preference for the Gaussian kernel is also supported by our extensive numerical experiments in [14], where we
have observed that the approximation quality of Gaussian reconstruction is superior to that of other commonly used positive
definite kernels. This complies with available error estimates for (plain) Lagrange interpolation by Gaussian kernels [15,
Section 11.3].

3 Construction of the Basis Functions
We remark that the basis functions g j in (10) are rather straightforward to compute. In the case of the inverse multiquadrics,
however, the basis functions g j are not well-defined. In fact, note that the Radon transform

RyK(x,y)(t,θ ) =

∫

R
K(x, (t cos(θ )− s sin(θ ), t sin(θ ) + s cos(θ ))) ds, (13)

giving g j in (10), may be undefined for specific choices of (t,θ ) ∈ R× [0,π) and x ∈ R2. Indeed, in this case, we have

K(x, (t cos(θ )− s sin(θ ), t sin(θ ) + s cos(θ ))) = O(s−1)

for s→±∞, so that the integral in (13) is singular for any (t,θ ) ∈ R× [0,π) and x ∈ R2.
To solve this problem, we apply a Gabor transform, with window function

Gσ(r) =
1

p
2πσ

exp

�

−
r2

2σ2

�

for σ > 0,

to the kernel K(x,y) = φε(‖x− y‖), i.e., we replace the inverse multiquadrics φε by the windowed inverse multiquadrics
kernel

φε,σ(r) := φε(r)Gσ(r) for r ∈ [0,∞),

where the width 2σ > 0 of the Gabor window Gσ is chosen to match the diameter of the computational domain, i.e., we let
σ := diam(Ω)/2. Note that φε,σ is positive definite, since each factor, φε and Gσ, is positive definite, i.e., φε,σ : [0,∞)→ R
is for any ε,σ > 0 a positive definite radial kernel function. In this way, we obtain a well-defined integral (13), since the
integrand

K(x,y) = φε,σ(‖x− y‖) =
1

p
2πσ

exp
�

− ‖x−y‖2

2σ2

�

p

1+ (ε‖x− y‖)2

is for any x ∈ R2 in L1(R2) w.r.t. variable

y≡ y(s) = (t cos(θ )− s sin(θ ), t sin(θ ) + s cos(θ )).

Note that for the other two examples of kernel functions, i.e., for the Gaussians and for the compactly supported radial
kernels, this problem does not occur. Indeed, in either of these two cases, we have φε(r) ∈ L1([0,∞)), so that the function
K(x, ·) = φε(‖x − ·‖) is, for any ε > 0 and x ∈ R2, integrable over R2. In particular, the integral in (13) is in this case
well-defined for any combination of (t,θ ) ∈ R× [0,π) and x ∈ R2, and so the basis functions g j in (10) are well-defined.

For all of the three abovementioned examples – Gaussians, inverse multiquadrics (with using Gabor transform) and
compactly supported radial kernels – we have computed the basis functions g j in (10). This is done in all details in [14]. For
the compactly supported radial kernels, the basis functions are found in of [14, § 5.4.1], and for the inverse multiquadrics
they are computed in [14, § 5.2]. For instance, the basis functions for the compactly supported kernel φε(r) = (1− εr)2+ are
given as

g j(x) = (R
yK(x,y))(t j ,θ j) =

§

h(t j − x · n j) for |t j − x · n j | ≤ 1/ε,
0 for |t j − x · n j |> 1/ε,

where n j = (cos(θ j), sin(θ j)), and where

h(t) =







2
ε

�p
1−(εt)2

3
(2(εt)2 + 1)− (εt)2acosh(ε−1|t|−1)

�

for t 6= 0,
2
3ε

for t = 0.

We decided to omit the tedious details of the required computations for the two cases of the inverse multiquadrics
and compactly supported radial kernel, but rather refer to [14]. For the purposes of this paper, it is sufficient and quite
instructive to show how the computations for the Gaussian kernels are done. This is discussed in the next section.
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4 Construction of the Gaussian Basis Functions
Let K(x,y) = φε(‖x− y‖) denote the Gaussian kernel in (12). To discuss the assembly of the reconstruction matrix A in (11),
let us first compute the Gaussian basis functions g j(x) =RyK(x,y)(t j ,θ j) in (10).

To this end, note that φε(r) ∈ L1([0,∞)), and so the Radon transform

RyK(x,y)(t,θ ) =

∫

R
K(x,y(s, t,θ )) ds, (14)

where y(s, t,θ ) = (t cos(θ )−s sin(θ ), t sin(θ )+s cos(θ )), is for any combination of (t,θ ) ∈ R×[0,π) and x ∈ R2 well-defined,
i.e., the Gaussian basis functions g j are well-defined. Recall from the previous section that this is in contrast to the case of
inverse multiquadrics, where the integral in (14) is singular for any (t,θ ) ∈ R× [0,π) and x ∈ R2.

For the following of our analysis it will be convenient to use the shift property of the Radon transform.

Lemma 4.1. Let K(x,y) = φ(‖x−y‖)withφ ∈ L1(R). Then, for any x ∈ R2 the Radon transform RyK(x,y) at (t,θ ) ∈ R×[0,π)
can be expressed as

(RyK(x,y))(t,θ ) = (RyK(0,y))(t − x · nθ ,θ ), (15)

where nθ = (cosθ , sinθ ).

Although this is a rather standard fact about Radon transforms [7], we provide a short proof of this property.

Proof. First note that identity (15) can be rewritten as
∫

`t,θ

φ(‖y− x‖) dy=

∫

`t−x·nθ ,θ

φ(‖z‖) dz.

To see this is true, further note that y= (y1, y2) ∈ `t,θ implies

t = y · nθ = y1 cosθ + y2 sinθ

from (4). But this in turn yields y− x ∈ `t−x·nθ ,θ , since

t − x · nθ = y · nθ − x · nθ = (y− x) · nθ .

In other words, for y ∈ `t,θ , we see that `t−x·nθ ,θ is, for fixed θ , the unique straight line passing through y− x.

Now we are in a position where we can compute the Gaussian basis functions g j = (RyK(·,y))(t j ,θ j) in (10).

Theorem 4.2. For any (t,θ ) ∈ R× [0,π), the Gaussian basis function g ≡ g(t,θ ) is given as

g(x) = (RyK(x,y))(t,θ ) =
p
π

ε
e−ε

2(t−x·nθ )2 , (16)

where nθ = (cosθ , sinθ ).

Proof. For the Radon transform RK0 of K0(y) = K(0,y) at (t,θ ) ∈ R× [0,π) we get

RK0(t,θ ) =

∫

`t,θ

K0(y) dy=

∫

R
K0(t cosθ − s sinθ , t sinθ + s cosθ ) ds

=

∫

R
e−ε

2(t cosθ−s sinθ )2−ε2(t sinθ+s cosθ )2 ds =

∫

R
e−ε

2(t2+s2) ds = e−(εt)2
∫

R
e−(εs)

2
ds

=
p
π

ε
e−ε

2 t2
,

which in turn yields the Gaussian basis function

(RyK(x,y))(t,θ ) = (RyK0)(t − x · nθ ,θ ) =
p
π

ε
e−ε

2(t−x·nθ )2

from the Radon transform’s shift property, Lemma 4.1.

Now let us turn to the entries of the reconstruction matrix A= (ak j)1≤ j,k≤n in (11). Note that the matrix entry ak j is
given by the application of the Radon transform R≡R(tk,θk) to the basis function g j =RyK(·,y)(t j ,θ j), so that

ak j =Rx[(RyK(x,y))(t j ,θ j)](tk,θk). (17)

We can compute the entries of matrix A as follows.

Dolomites Research Notes on Approximation ISSN 2035-6803



De Marchi · Iske · Sironi 24

Theorem 4.3. For the Gaussian kernel φε, the entries (17) of the reconstruction matrix A are given as

ak j =
π

ε2 sin (θk − θ j)
. (18)

Proof. We let (t,θ ) := (t j ,θ j) and (r,ϕ) := (tk,θk) for the sake of notational simplicity. Recalling the form of the Gaussian
basis function in (16), we can compute the entry ak j by

Rx
�

e−(t−x·nθ )2
�

(r,ϕ) =

∫

R
e−[t−(r cosϕ−s sinϕ) cosθ−(r sinϕ+s cosϕ) sinθ]2 ds

=

∫

R
e−[t−r(cosϕ cosθ+sinϕ sinθ )+s(sinϕ cosθ−cosϕ sinθ )]2 ds

=

∫

R
e−[t−r cos(ϕ−θ )+s sin(ϕ−θ )]2 ds

=

∫

R
e−[as+b]2 ds,

where we let a := sin(ϕ − θ ) and b := t − r cos(ϕ − θ ). Hence, for a 6= 0, we get

ak j =Rx

�p
π

ε
e−ε

2(t−x·nnθ )
2

�

(r,ϕ) =
p
π

ε

∫

R
e−ε

2[as+b]2 ds =
π

ε2a
=

π

ε2 sin(ϕ − θ )

as stated.

Note that the above entries ak j do not depend on the radial parameters, t j and tk, but only on the angular parameters,
θ j and θk. This is due to the radial symmetry of the Gaussian kernel K .

For different angles θ j ,θk ∈ [0,π), θ j 6= θk, the entry ak j of A in (18) is well-defined. For coincident angles θ j = θk,
however, the entry ak j is undefined, i.e., the value of the Radon transform ak j = (R(g j))(tk,θk) is singular, iff the angular
parameters of the Radon lines `t j ,θ j

and `tk ,θk
coincide, i.e., iff θ j = θk. So, in particular, are the diagonal entries of A in (11)

undefined.

5 Regularization by Gaussian Weights
To obtain non-singular entries in the reconstruction matrix A in (11), we require suitable regularizations for the Radon
transform R. To this end, we work with weighted Radon transforms of the form

Rw f (t,θ ) :=R( f w)(t,θ ) =

∫

`t,θ

f (x)w(x) dx, (19)

where w ≡ w(x) is a fixed weight function. This yields a standard regularization for the Radon transform R, which also
arises in relevant applications of single photon emission computed tomography (SPECT), where Rw is called attenuated Radon
transform [11].

As for the choice of the weight w, we prefer to use the radially symmetric Gaussian function

wν(x) = exp(−(ν‖x‖)2) for ν > 0. (20)

This particular choice is well-motivated, since the product φε · wν of the two positive definite Gaussians, φε and wν, is
positive definite, due to the classical Bochner theorem [3]. Indeed, according to Bochner’s theorem, any function f ∈ L1 with
positive Fourier transform f̂ is positive definite. Hence, for any pair of functions f , g ∈ L1 with positive Fourier transforms
f̂ , ĝ, their product f · g is positive definite, since their convolution f̂ ∗ ĝ (giving their Fourier transform) is positive.

In this way, the resulting reconstruction problem

Rw g(tk,θk) =R f (tk,θk) for all k = 1, . . . , n,

assuming (10) for the form of the Gaussian basis functions, leads to a well-posed reconstruction scheme with reconstruction
matrix

A≡ Aw =
�

Rw g j(tk,θk)
�

1≤ j,k≤n
∈ Rn×n. (21)

We compute the entries of A analytically as follows.

Theorem 5.1. For the Gaussian kernel φε, ε > 0, and the Gaussian weight wν, ν > 0, the entries (21) of the reconstruction
matrix Aw = (ak j)1≤ j,k≤n are given as

ak j =
π

ε
q

ε2α2
k j + ν

2
exp

�

−ν2

�

t2
k +

ε2β2
k j

ε2α2
k j + ν

2

��

,

where βk j = t j − tk cos (θk − θ j) and αk j = sin (θk − θ j).
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Proof. For notational convenience, we let (t,θ ) = (t j ,θ j) and (r,ϕ) = (tk,θk). Recalling the representation of the Gaussian
basis function g ≡ g(t,θ ) in Theorem 4.2, we can compute the weighted Radon transform Rw g by following along the lines
of our proof in Theorem 4.3, which yields

(Rw g)(r,ϕ) =

∫

R
g(x(s))e−ν

2‖x(s)‖2 ds =
p
π

ε

∫

R
e−ε

2(as+b)2 e−ν
2(r2+s2) ds,

where we let a = sin(ϕ − θ ) and b = t − r cos(ϕ − θ ), and where we have used the identity

‖x(s)‖2 = r2 + s2 for x(s) = (r cosϕ − s sinϕ, r sinϕ + s cosϕ).

This immediately yields the entries of Aw by

(Rw g)(r,ϕ) =
p
π

ε
e−ε

2 b2−ν2 r2

∫

R
e−[(ε

2a2+ν2)s2+2absε2] ds

=
p
π

ε
e−ε

2 b2−ν2 r2+ a2 b2ε4

ε2a2+ν2

∫

R
e
−





p
ε2a2+ν2s+ abε2p

ε2a2+ν2





2

ds

=
π

ε
p
ε2a2 + ν2

e
−ν2

�

r2+ ε2 b2

ε2a2+ν2

�

.

Note that for any ν > 0, the entries ak j of Aw are well-defined, even for coincident angles θ j and θk. Indeed, for θ j = θk,
we have αk j = 0, βk j = tk − t j , and so in this case

ak j =
π

εν
exp

�

−ν2

�

t2
k +

ε2(tk − t j)2

ν2

��

.

6 Numerical Results
We have implemented the proposed kernel-based reconstruction scheme for the three kernels φε — Gaussians, inverse
multiquadrics, and compactly supported radial kernels — in combination with the Radon transform’s regularization and by
using the Gaussian weight function wν. We have performed quite comprehensive numerical experiments for various possible
combinations of kernels φε and weights wν, a selection of which we present here for the purpose of illustration.

In our series of numerical experiments concerning the popular phantoms bull’s eye, the crescent-shaped phantom, and
the Shepp-Logan phantom, we found that the Gaussian kernel performs much better than the inverse multiquadrics and
the compactly supported kernel φε(r) = (1− εr)2+, where the performance of the latter two kernels is comparable. This
is supported by our numerical example in Figure 3. Indeed, we obtained the best numerical results – in terms of the
reconstructions’ visual quality and the root mean square error (RMSE) in (22) – for the Gaussian kernel φε(r) = exp(−(εr)2)
in combination with the Gaussian weight function wν(x) = exp(−(ν‖x‖)2), provided that the shape parameters ε and ν
were properly chosen.

In fact, we found that the performance of the Gaussian reconstruction method is quite sensitive to the choice of the
method parameters ε and ν. Therefore, we decided to perform a "fine-tuning" of the Gaussian parameters ε and ν, whose
numerical results are presented in Subsection 6.2. Moreover, in Subsection 6.4 we provide numerical comparisons with
Fourier-based reconstructions, relying on the filtered back projection formula, for Radon data on parallel beam geometry.
In Subsection 6.5, we present numerical results concerning Gaussian reconstruction from scattered Radon data, and in
Subsection 6.3 from regular Radon data (on parallel beam geometry), where we also provide a comparison between different
kernels. Comparisons concerning Gaussian reconstruction on regular Radon data vs scattered Radon data are provided in
the following Subsection 6.1. For a more comprehensive documentation on our numerical experiments, we refer to [14].

6.1 Reconstruction of the Crescent-Shaped Phantom
Let us first regard the popular test case crescent-shaped phantom, given by the function

f (x , y) =







1.0 for (x , y) ∈ Ω,
0.5 for (x , y) ∈ Di ,
0.0 for (x , y) ∈ R2 \ Do,

on the unit square Ω= [0,1]2, where

Di = {(x , y) ∈ R2 : (x − 1/8)2 + y2 ≤ 9/64}
Do = {(x , y) ∈ R2 : x2 + y2 ≤ 1/4},

as shown in Figure 1 (a). Figures 1 (b),(c) show the reconstruction of the crescent-shaped phantom obtained with the
Gaussian kernel φε and the Gaussian weight function wν for parameters ε = 40 and ν = 0.7, and for n = 3888 different
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Radon lines. The Radon samples were taken on a set of n regularly distributed lines generated by parallel beam geometry,
and on a set of n scattered Radon lines. In either case, the crescent-shaped phantom f is localized and reconstructed
fairly well by the proposed kernel-based reconstruction scheme. But the quality of the reconstruction on parallel beams,
Figure 1 (b), is superior to that on scattered lines, Figure 1 (c). This is due to the uniform coverage of the Radon lines
over the computational domain Ω. The geometry of the Radon lines are visible in the display of the reconstructions in
Figures 1 (b),(c), especially between the boundary of the domain Ω and the phantom’s boundary.

(a) crescent-shaped phantom (b) parallel beam geometry (c) scattered Radon data

Figure 1: Crescent-shaped phantom. (a) Original phantom; (b)-(c) reconstruction of crescent-shaped phantom using the Gaussian kernel
φε with ε = 40 and the Gaussian weight function wν with ν = 0.7 from n = 3888 Radon samples taken on (b) regularly spaced Radon lines
(parallel beam geometry), (c) scattered Radon lines.

6.2 Selection of the Gaussian Shape Parameters
In this subsection, we discuss the selection of the method parameters ε (for the Gaussian kernel φε) and ν (for the Gaussian
weight function wν), here applied to the phantom bull’s eye, defined as

f (x , y) =











1/2 iff x2 + y2 ≤ 1/16;
1/4 iff 1/16< x2 + y2 ≤ 1/4;
1 iff 1/4< x2 + y2 ≤ 9/16;
0 iff 9/16< x2 + y2.

The phantom bull’s eye is displayed in Figure 3, second row, first column. In our numerical experiments, we have analyzed
the behaviour of the Gaussian reconstruction error as a bivariate function of the parameters ε and ν. For the error measure,
we consider using the standard root mean square error

RMSE=

√

√

√

√

1

J

J
∑

j=1

( f j − f̂ j)2, (22)

where J is the size of the image (i.e., the number of pixels) and { f j}Jj=1, { f̂ j}Jj=1 are the greyscale values at the pixels of the
original image bull’s eye and of the reconstructed image, respectively.

Let us first consider the variation of the shape parameter ε of the Gaussian kernel φε. In our numerical experiments, we
have fixed the weight parameter at ν = 0.7. For different choices of N and M , we have used parallel beam geometry with N
angles and 2M + 1 parallel lines per angle, resulting in a number of n= N × (2M + 1) Radon samples for each numerical
experiment. With the variation of the shape parameter ε, we have recorded an "optimal" value ε∗, where, according to our
numerical observations, the RMSE is minimal. The following Table 1 reflects our results. Note that the "optimal" value ε∗

increases with the number n of Radon data taken. This is not too surprising insofar as in plain kernel-based interpolation,
the shape parameter of the Gaussian kernel is recommended to be proportional to the density of the sample points: the
higher the density of points, the larger ε should be chosen. In our numerical experiments, the sample density increases with
the number n of lines, which explains the monotonicity of ε∗ in Table 1.

N 36 54 72 90 108 126 144 162 180
M 20 30 40 50 60 70 80 90 100
n 1,476 3,294 5,832 9,090 13,068 17,766 23,184 29,322 36,180
ε∗ 21.05 28.42 37.36 48.42 59.47 72.10 84.21 90.52 97.37

Table 1: Parameter-tuning for Gaussian kernel φε . Reconstruction of phantom bull’s eye by Gaussian kernel φε , with variation of the
kernel parameter ε. For fixed weight parameter ν= 0.7, and for different choices of N angles θ and 2M + 1 lines per angle in a parallel
beam geometry. For each experiment, the "optimal" shape parameter ε∗, whose resulting RMSE is minimal, is shown.
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Figure 2: Parameter-tuning for Gaussian weight function wν. Reconstruction of phantom bull’s eye by the Gaussian kernel φε(r) =
exp(−(εr)2) for ε = 30. The graph of the RMSE as a function of the weight parameter ν is shown.

Next we consider the variation of the shape parameter ν for the Gaussian weight function wν in (20). Figure 2 shows
the RMSE as a function of ν, for constant kernel shape parameter ε = 30 and for a fixed number n= 1230 of Radon lines
(on a parallel beam geometry). We have observed that the minimal RMSE is attained at ν∗ = 0.4522 (cf. Figure 2). Note
that the graph in Figure 2 illustrates the dependence between the RMSE and the weight parameter ν quite well.

We have further performed a series of rather extensive numerical experiments concerning the phantoms bull’s eye,
the crescent-shaped phantom, and the Shepp-Logan phantom, where our reconstructions were computed on a parallel
beam geometry with N = 30 angles and 2M + 1= 41 lines per angle, so that the number of Radon samples is n= 1230.
Table 2 shows "optimal" combinations of values ε∗ for the Gaussian kernel and ν∗ for the Gaussian weight, whose resulting
RMSE≡ RMSE(ε,ν) is minimal.

Phantom kernel φε weight wν
crescent-shaped phantom ε∗ = 19.66 ν∗ = 0.51
bull’s eye ε∗ = 15.52 ν∗ = 0.45
Shepp-Logan phantom ε∗ = 18.28 ν∗ = 2.06

Table 2: "Optimal" shape parameters for Gaussian kernel and Gaussian weight. Fine-tuning of shape parameter ε∗ and weight
parameter ν∗ for three different phantoms by Gaussian reconstruction on parallel beam geometry (for N = 30 angles and 2M +1 = 41 lines
per angle).

6.3 Comparison of Kernel-based Reconstructions on Parallel Beam Geometry
In Figure 3 we show a comparison between reconstructions from the three different kernels, where for each kernel, we have
performed a fine-tuning of the method parameters ε and ν. For the Gaussian kernel, the "optimal" parameters ε∗ and ν∗ are
in Table 2.

On our numerical results of Figure 3 we can conclude that the reconstruction quality obtained from the Gaussian kernel
is clearly superior to those obtained from the compactly supported and the inverse multiquadric kernel, provided that the
Gaussian method parameters ε and ν are well-chosen. Note that the performance of the compactly supported kernel and
the inverse multiquadric kernel is comparable. This complies with our numerical results, as documented in [14].

6.4 Kernel-based vs Fourier-based Reconstruction
We compare the proposed kernel-based Gaussian reconstruction method with Fourier-based reconstructions, relying on the
filtered back projection formula (3), where we considered using the standard Shepp-Logan low pass filter, given as

A(ω) = |ω| ·
�

sin(πω/(2L))
πω/(2L)

�

·χ[−L,L](ω) =

¨ 2L
π
· | sin(πω/(2L))| iff |ω| ≤ L;

0 iff |ω|> L.

so that the filter |S| in (3) is being replaced by A(S). Note that A(S)≈ |S| for small frequencies S.
We use three popular phantoms: the crescent-shaped phantom, the bull’s eye, and the Shepp-Logan phantom, shown in

Figure 4.
We remark that the standard implementation of the Fourier-based filtered back projection formula (3) relies on a

regular distribution of Radon lines. To this end, we work with a parallel beam geometry. In this case, by the discretization
θk = kπ/N , for k = 0, . . . , N − 1, of the angular variable θ ∈ [0,π) and t j = jd (for some fixed sampling spacing d > 0),
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Figure 3: Kernel-based reconstructions on parallel beam geometry. The reconstructions are obtained from n= 1230 Radon samples,
on a parallel beam geometry with N = 30 angles and 2M + 1 = 41 lines per angle. The original phantoms (1st col), their reconstruction by
inverse multiquadric (2nd col), by the compactly supported kernel (3rd col), and by the Gaussian kernel (4th col) are shown. The "optimal"
values for the Gaussian parameters ε and ν are in Table 2.

Crescent-shaped phantom Bull’s eye Shepp-Logan phantom

Figure 4: Three popular phantoms. Crescent-shaped phantom, bull’s eye, and Shepp-Logan (each of size 256× 256).

where j = −M , . . . , M , for the radial variable t ∈ R, the data acquisition relies on (2M + 1)× N regularly distributed Radon
lines `t j ,θk

. Note that for any fixed angle θk, the Radon lines `t j ,θk
, −M ≤ j ≤ M , are parallel (at uniform distance d and

symmetric about the origin), which explains the naming parallel beam geometry. For illustration, Figure 5 (a) shows a set of
(2M + 1)× N = 110 Radon lines `t j ,θk

on parallel beam geometry, where we let N = 10, M = 5, and d = 0.2.
Now let us turn to our numerical comparisons between Fourier-based and kernel-based reconstructions. In each test

case, we let N = 45 and M = 40, so that (2M + 1)× N = 3645 Radon samples are taken. In the kernel-based Gaussian
reconstruction, we have used the "optimal" parameters shown in Table 2. The resulting reconstructions obtained from the
two methods are displayed in Figure 6. Given our numerical results, we can conclude that our kernel-based reconstruction
method is competitive to the Fourier-based reconstruction method, by the visual quality of their reconstructions and by the
RMSE.
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(a) Radon lines on parallel beam geometry (b) Scattered Radon lines

Figure 5: (a) Radon lines on parallel beam geometry. A set of 110 Radon lines `t j ,θk
is shown, using increments of π/10 for the radial

variable θk, i.e., N = 10, with 2M + 1= 11 different Radon lines per angle, letting t j = jd, for j = −5, . . . , 5, at sampling spacing d = 0.2.
(b) Scattered Radon lines. A set of 170 randomly distributed Radon lines `t j ,θ j

is shown, j = 1, . . . , 170.

Crescent-shaped phantom Bull’s eye Shepp-Logan phantom

Figure 6: Kernel-based vs Fourier-based reconstruction. For the phantoms crescent-shaped, bull’s eye, and Shepp-Logan, their Fourier-
based reconstructions (1st row) and kernel-based reconstructions (2nd row) are shown. The six reconstructions are computed from
(2M + 1)× N = 3645 Radon samples (where we let N = 45 and M = 40) on parallel beam geometry, respectively. The corresponding root
mean square errors (RMSEs) are displayed in Table 3.

Table 3: Kernel-based vs Fourier-based reconstruction. For the reconstructions in Figure 6, their RMSE are shown.

Phantom Kernel-based Fourier-based
crescent-shaped 0.10 0.12
bull’s eye 0.14 0.13
Shepp-Logan 0.16 0.18
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6.5 Reconstruction from Scattered Radon Data
Let us turn to the reconstruction from scattered Radon data. In our numerical experiments, we have generated sets of
unstructured Radon lines by random, so that the geometry of the sample lines is unstructured. Figure 5 (b) shows one
example for a set of 170 randomly distributed Radon lines in the domain [−1, 1]2.

We applied our kernel-based reconstruction method to a sequence of n= 2000, 5000, 10000,20000 randomly chosen
scattered Radon lines, taken from the phantoms bull’s eye and crescent-shaped.

Figure 7 shows the obtained sequences of reconstructions, where in each test case we have used "optimal" shape
parameters from Table 2. The corresponding RMSE values are shown in Table 4.

Although the geometry of the scattered Radon lines are visible in the displays of Figure 7, the basic features of the two
phantoms are captured very well, where the reconstruction quality is improved as the number n of Radon samples increases.

Note that the RMSE values (in Table 4) are not monotonically decreasing. This is due to the random distribution of the
scattered Radon lines, cf. Figure 7. Nevertheless, the global trend of the RMSE values is, at increasing n, monotonically
decreasing.

Table 4: Scattered Radon lines. RMSE for kernel-based reconstructions in Figure 7, for n= 2000, . . . , 20000 scattered Radon lines.

Phantom 2000 5000 10000 20000
crescent-shaped 0.15 0.14 0.14 0.12
bull’s eye 0.19 0.17 0.21 0.19

Figure 7: Kernel-based reconstruction from scattered Radon data. For the test cases bull’s eye (first row) and crescent-shaped phantom
(second row), a sequence of scattered Radon data is taken. The figure shows the corresponding reconstructions for an increasing number
n= 2000,5000,10000,20000 of scattered Radon samples (from left to right), obtained from the proposed kernel-based reconstruction
method. The corresponding root mean square errors (RMSEs) are displayed in Table 4.

7 Final Remarks and Conclusion
We developed a kernel-based image reconstruction method for scattered Radon data. The proposed reconstruction method
relies on Hermite-Birkhoff interpolation by positive definite Gaussian kernels in combination with a regularization of the
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Radon transform by Gaussian weights. Our kernel-based reconstruction method is shown to be competitive with Fourier-
based reconstructions from Radon data on parallel beam geometry. The main advantage of the proposed kernel-based
reconstruction method is its enhanced flexibility. In fact, the kernel-based method can unconditionally be applied to arbitrary
distributions of Radon lines. This is in contrast to classical Fourier-based reconstructions whose implementation relies on
the filtered back projection formula.
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