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Multivariate Christoffel functions and hyperinterpolation

Stefano De Marchi a · Alvise Sommariva a · Marco Vianello a

Abstract

We obtain upper bounds for Lebesgue constants (uniform norms) of hyperinterpolation operators via
estimates for (the reciprocal of) Christoffel functions, with different measures on the disk and ball, and on
the square and cube. As an application, we show that the Lebesgue constant of total-degree polynomial
interpolation at the Morrow-Patterson minimal cubature points in the square has an O(deg3) upper
bound, explicitly given by the square root of a sextic polynomial in the degree.
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1 Bounding uniform hyperinterpolation norms
Hyperinterpolation is a powerful tool for total-degree polynomial approximation of multivariate continuous functions, introduced
by Sloan in the seminal paper [22]. In brief, it corresponds to a truncated Fourier expansion in a series of orthogonal polynomials
for some measure on a given multidimensional domain, where the Fourier coefficients are discretized by means of a positive
algebraic cubature formula. Since then, theoretical as well as computational aspects of hyperinterpolation as an alternative
to interpolation have attracted much interest, due to the intrinsic difficulties in finding good interpolation nodes, with special
attention to the case of the sphere; cf., e.g., [7, 8, 11, 13, 14, 24, 25].

One of the important features of hyperinterpolation as a polynomial projection consists in the growth of its uniform operator
norm, which we call “Lebesgue constant” by analogy with interpolation (indeed, under certain conditions hyperinterpolation
becomes an interpolation operator). In this note we give upper bounds of the Lebesgue constant of hyperinterpolation via
estimates of a key function in the theory of orthogonal polynomials, the so-called Christoffel function.

Given a compact set K ⊂ Rd and a positive measure µ on K, we shall denote by Pd
n(K) the space of total-degree d-variate

polynomials with degree not greater than n, restricted to K , and by Kn(x , y) the reproducing kernel of Pd
n(K) in L2

dµ(K), that has
the representation (cf. [12, §3.5])

Kn(x , y) =
N
∑

j=1

p j(x )p j(y) , x = (x1, . . . , xd) , y = (y1, . . . , yd) , (1)

where {p j} is any orthonormal basis of Pd
n(K) in L2

dµ(K), N = dim(Pd
n(K)). The function

Kn(x , x ) =
N
∑

j=1

p2
j (x ) (2)

is known as the (reciprocal of) the n-th Christoffel function of µ on K .
We begin with the following observation

Proposition 1.1. Let K ⊂ Rd be a compact set, µ a positive measure on K, and {an} a sequence of positive real numbers such that

an ≥ Cn(dµ, K) =
r

max
x∈K

Kn(x , x ) . (3)

Let
Ln :

�

C(K),‖ · ‖L∞(K)

�

→
�

Pd
n ,‖ · ‖L2

dµ(K)

�

(4)

a sequence of uniformly bounded operators, that is, there is a constant M > 0 such that

‖Ln‖= sup
f 6=0

‖Ln f ‖L2
dµ(K)

‖ f ‖L∞(K)
≤ M

for every n.
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Then, the following estimate holds for the uniform norm

‖Ln‖∞ = sup
f 6=0

‖Ln f ‖L∞(K)

‖ f ‖L∞(K)
≤ anM . (5)

Proof. First, we recall the well-known fact that

Cn(dµ, K) =max

(

‖p‖L∞(K)

‖p‖L2
dµ(K)

, p ∈ Pd
n(K) , p 6= 0

)

, (6)

or in other words Cn(dµ, K) is the norm of the identity Id : (Pd
n(K),‖·‖L2

dµ(K)
)→ (Pd

n(K),‖·‖L∞(K)). Indeed, by the Cauchy-Schwarz

inequality in RN

|p(x )|=

�

�

�

�

�

N
∑

j=1

〈p, p j〉L2
dµ(K)

p j(x )

�

�

�

�

�

≤

√

√

√

√

N
∑

j=1

〈p, p j〉2L2
dµ(K)

Æ

Kn(x , x )

= ‖p‖L2
dµ(K)

Æ

Kn(x , x )≤ ‖p‖L2
dµ(K)

r

max
x∈K

Kn(x , x ) ,

for every p ∈ Pd
n(K) and for every x ∈ K . On the other hand, the maximum on the right-hand side of (6) is attained at the polynomial

p(x ) =
∑N

j=1 p j(x )p j(x ), where x is a maximum point for Kn(x , x ) in K , since p(x ) = Kn(x , x ) and ‖p‖L2
dµ(K)

=
p

Kn(x , x ) .

Then estimate (5) is a consequence of the chain of inequalities

‖Ln f ‖L∞(K) ≤ Cn(dµ, K)‖Ln f ‖L2
dµ(K)

≤ an‖Ln‖‖ f ‖L∞(K) ≤ anM ‖ f ‖L∞(K) . �

Let a cubature formula (w , X ) for µ be given, exact in Pd
2n(K), with nodes X = Xn = {ξi(n) , i = 1, . . . ,V} ⊂ K and positive

weights w = w n = {wi(n) , i = 1, . . . ,V}, V ≥ N = dim(Pd
n(K)), and let {p j , j = 1, . . . , N} be any orthonormal basis of Pd

n(K)
in L2

dµ(K). We recall that the hyperinterpolation operator corresponding to the cubature formula, is the discretized orthogonal
projection Ln : C(K)→ Pd

n(K) defined as

Ln f (x ) =
N
∑

j=1

〈 f , p j〉`2w (X ) p j(x ) ,

where `2
w (X ) denotes the Euclidean space of functions defined on X equipped with the scalar product

〈 f , g〉=
V
∑

i=1

wi f (ξi)g(ξi) .

We can now prove the following result

Corollary 1.2. Assume that (3) holds. Then, the “Lebesgue constant” of any hyperinterpolation operator (i.e., its uniform operator
norm) has the upper bound

‖Ln‖∞ ≤ an

Æ

µ(K) . (7)

Proof. Following [22], we can write by exactness in Pd
2n(K) and the Pythagorean theorem in `2

w (X )

‖Ln f ‖L2
dµ(K)

= ‖Ln f ‖`2w (X ) ≤ ‖ f ‖`2w (X ) =

√

√

√

V
∑

i=1

wi f 2(ξi)

≤

√

√

√

V
∑

i=1

wi ‖ f ‖`∞(X ) =
Æ

µ(K)‖ f ‖`∞(X ) ≤
Æ

µ(K)‖ f ‖L∞(K) ,

so that we can take M =
p

µ(K) in Proposition 1. �

2 Estimates for Christoffel functions
If an orthonormal basis {p j} is known analytically, Cn(dµ, K) can be estimated via the representation (2). Such estimates are
scattered in the literature on multivariate approximation theory. There are several asymptotic results (cf., e.g., [2, 4, 15, 27, 28]
and references therein), and few explicit bounds. Below, we recall or derive some bounds related to standard compact sets and
standard measures.

Dolomites Research Notes on Approximation ISSN 2035-6803



De Marchi · Sommariva · Vianello 28

2.1 Disk and ball

In [2] (cf. also [1]) Bos proved that for the measure with density W0(x ) on the d-dimensional unit euclidean ball K = Bd , where

Wλ(x ) = (1− |x |2)λ−1/2 , λ > −
1
2

, (8)

the following explicit estimate holds

Cn(W0(x ) dx , Bd)≤
√

√ 2
ωd

��

n+ d
d

�

+
�

n+ d − 1
d

��

=O(nd/2) , (9)

ωd being the surface area of the unit sphere Sd ⊂ Rd+1. Observe that (9) gives the exact order of growth, since for any measure
∫

K
Kn(x , x ) dµ= N where N = dim(Pd

n(K)) and thus

Cn(dµ, K)≥
√

√ N
µ(K)

. (10)

Here K = Bd is polynomial determining and hence N =
�n+d

d

�

=O(nd).
In [1] it is also recalled that by the method of [2] it can be proved that Cn has polynomial growth on the ball for all the

measures with density dµ =Wλ(x ) dx , λ≥ 0, for example for the Lebesgue measure dµ = dx , but neither bounds nor the order
of growth are explicitly provided.

We work out in detail the case of the disk with the Lebesgue measure, d = 2 and dµ = dx , where a more direct approach can
be conveniently used. Indeed, consider the Zernike polynomials, an orthogonal basis on the disk with respect to the Lebesgue
measure, which is widely used in optics. We recall that the Zernike orthonormal basis is defined in polar coordinates as

Ẑm
h (r,θ ) =











Ç

2(h+1)
αm

Rm
h (r) cos(mθ ) , m≥ 0

Ç

2(h+1)
αm

Rm
h (r) sin(mθ ) , m< 0

(11)

for 0≤ h≤ n, |m| ≤ h, h−m ∈ 2Z, where

αm =

(

2 , m= 0

1 , m 6= 0
(12)

Rm
h (r) = (−1)(h−m)/2rmPm,0

(h−m)/2(1− 2r2) (13)

and Pm,0
j is the corresponding Jacobi polynomial of degree j. We refer the reader, e.g., to [9, 20] for the properties of Zernike

polynomials. In particular, the relevant property to our purposes is that (cf., e.g., [9, Prop. 3.1])

|Ẑm
h (r,θ )| ≤

√

√2h+ 2
π

, x = (r cos(θ ), r sin(θ )) ∈ B2 ,

for 0≤ h≤ n, |m| ≤ h, h−m ∈ 2Z. Then,

Kn(x , x ) =
n
∑

h=0

∑

|m|≤h,h−m∈2Z

(Ẑm
h (r,θ ))

2 ≤
1
π

n
∑

h=0

∑

|m|≤h,h−m∈2Z

(2h+ 2)

=
1
π

n
∑

h=0

(2h+ 2)(n− h+ 1) =
1

3π
(n+ 1)(n+ 2)(n+ 3) ,

and hence

Cn(dx , B2)≤
1
p

3π

Æ

(n+ 1)(n+ 2)(n+ 3) =O(n3/2) . (14)

2.2 Square and cube

Consider now the case of the d-dimensional cube, K = [−1,1]d , with a product Jacobi measure

dµ=Wα,β (x ) dx , Wα,β (x ) =
d
∏

i=1

(1− x i)
α(1+ x i)

β , α,β > −1 , (15)

and the corresponding total-degree orthonormal product basis

Π
α,β
k (x ) =

d
∏

i=1

P̂α,β
ki
(x i) , 0≤ |k| ≤ n , (16)

where k = (k1, . . . , kd) with ki ≥ 0 and |k| =
∑d

i=1 ki , and P̂α,β
m denotes the m-th degree polynomial of the univariate orthonormal

Jacobi basis with parameters α and β .
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It is known that, for max {α,β} ≥ −1/2, the maximum modulus of the orthonormal polynomials is attained at one of the
endpoints ±1, in particular

|P̂α,β
m (t)| ≤ |P̂α,β

m (sign(α− β))|=
√

√ (2m+α+ β + 1)Γ (m+α+ β + 1)Γ (m+ q+ 1)
2α+β+1 m! Γ (m+min {α,β}+ 1)

≤ c(α,β)mq+1/2 , t ∈ [−1, 1] , q =max {α,β} ≥ −
1
2

, (17)

with a suitable positive constant c(α,β); cf., e.g., [23, Ch. X] and references therein.
By (17) we can estimate the function Kn(x , x ),

max
x∈[−1,1]d

Kn(x , x ) = max
x∈[−1,1]d

∑

0≤|k|≤n

�

Π
α,β
k (x )

�2

=
∑

0≤|k|≤n

d
∏

i=1

�

P̂α,β
ki
(sign(α− β))

�2
≤ (c(α,β))2d

∑

0≤|k|≤n

d
∏

i=1

k2q+1
i

= (c(α,β))2d
n
∑

k1=0

k2q+1
1

n−k1
∑

k2=0

k2q+1
2 · · ·

n−
∑d−1

j=1 k j
∑

kd=0

k2q+1
d =O(n(2q+2)d) ,

which gives the qualitative bound
Cn(Wα,β (x ) dx , [−1,1]d) =O(n(q+1)d) . (18)

In the case of the Lebesgue measure (α = β = 0), it is worth recalling that (18) is also a consequence of a general result
by Bos and Milman [5, Thm. 7.1], concerning generalized Markov type inequalities. Such a result, specialized to the present
context, says that there is a universal constant c > 0 such that for every p ∈ Pd

n([−1,1]d)










∂ k1

∂ x k1
1

· · ·
∂ kd

∂ x kd
d

p











Lp2 ([−1,1]d )

≤ 8d(cn2)|k|+d
�

1
p1
− 1

p2

�

‖p‖Lp1 ([−1,1]d ) (19)

for 1≤ p1 < p2 ≤∞, so that for k = 0, p1 = 2 and p2 =∞ we get the bound

Cn(dx , [−1,1]d)≤ (8
p

c n)d . (20)

In specific instances, it is possible to compute exactly Cn. We work out in detail three relevant cases: W0,0 ≡ 1 (the Lebesgue
measure), W− 1

2 ,− 1
2

(product Chebyshev measure of the first kind), and W1
2 , 1

2
(product Chebyshev measure of the second kind), in

dimensions d = 1, 2,3.
Concerning the Lebesgue measure, we start from the following bound for the univariate Legendre orthonormal polynomials

(cf., e.g., [19, Ch. 18])

|P̂0,0
m (t)| ≤ P̂0,0

m (1) =

√

√2m+ 1
2

, t ∈ [−1,1] ,

from which we have

max
x∈[−1,1]d

Kn(x , x ) =
∑

0≤|k|≤n

d
∏

i=1

�

P̂0,0
ki
(1)
�2

=
1
2d

n
∑

k1=0

(2k1 + 1)
n−k1
∑

k2=0

(2k2 + 1) · · ·
n−
∑d−1

j=1 k j
∑

kd=0

(2kd + 1) , (21)

and then by easy calculations

Cn(d x , [−1,1]) =
1
p

2
(n+ 1) , (22)

Cn(dx , [−1, 1]2) =
1

2
p

6

Æ

(n+ 1)(n+ 2)(n2 + 3n+ 3) , (23)

Cn(dx , [−1, 1]3) =
1

12
p

10

Æ

(n+ 1)(n+ 2)2(n+ 3)(2n2 + 8n+ 15) (24)

(here and below, the one-dimensional instances are well-known and reported only for completeness).
In the case of the Chebyshev measure of the first kind, α = β = − 1

2 , consider the following bound for the univariate
orthonormal Chebyshev polynomials (cf., e.g., [16])

|P̂−
1
2 ,− 1

2
m (t)|= |T̂m(t)| ≤ T̂m(1) =

√

√2−δ0,m

π
, t ∈ [−1,1] ,
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which entails by a little algebra

πd max
x∈[−1,1]d

Kn(x , x ) = πd
∑

0≤|k|≤n

d
∏

i=1

�

T̂ki
(1)
�2

=
n
∑

k1=0

(2−δ0,k1
)

n−k1
∑

k2=0

(2−δ0,k2
) · · ·

n−
∑d−1

j=1 k j
∑

k2=0

(2−δ0,kd
)

= cd,0 + cd,1

n
∑

k1=1

1+ cd,2

n
∑

k1=1

n−k1
∑

k2=1

1+ · · ·+ cd,d

n
∑

k1=1

· · ·
n−
∑d−1

j=1 k j
∑

kd=1

1

= cd,0 + cd,1

n
∑

h1=1

1+ cd,2

n
∑

h1=1

h1−1
∑

h2=1

1+ · · ·+ cd,d

n
∑

h1=1

· · ·
hd−1−1
∑

hd=1

1 , (25)

by the change of variables hi = n+ 1−
∑i

j=1 k j , 1≤ i ≤ d, where cd,0 = 1, cd,d = 2d and {cd,i} satisfies the recurrence relation

cd+1,i = cd,i + 2cd,i−1 , i = 1, . . . , d , d ≥ 1 . (26)

The last row in (25) shows that the i-th nested summation counts the number of subsets of {1, . . . , n} with cardinality i, that is
�n

i

�

, so finally we get

Cn(W− 1
2 ,− 1

2
(x ) dx , [−1, 1]d) =

1
πd/2

√

√

√

d
∑

i=0

cd,i

�

n
i

�

(27)

and in particular

Cn(W− 1
2 ,− 1

2
(x) d x , [−1, 1]) =

1
p
π

p
2n+ 1 (28)

(observe that (28) coincides with the bound in (9) for d = 1),

Cn(W− 1
2 ,− 1

2
(x ) dx , [−1,1]2) =

1
π

p

2n2 + 2n+ 1 , (29)

Cn(W− 1
2 ,− 1

2
(x ) dx , [−1,1]3) =

1
p

3π3

p

4n3 + 6n2 + 8n+ 3 . (30)

Concerning the product Chebyshev measure of the second kind, α = β = 1
2 , we start from the following bound for the

corresponding univariate orthonormal polynomials (cf., e.g., [16])

|P̂
1
2 , 1

2
m (t)|= |Ûm(t)| ≤ Ûm(1) =

√

√ 2
π
(m+ 1) , t ∈ [−1,1] ,

which leads to

max
x∈[−1,1]d

Kn(x , x ) =
∑

0≤|k|≤n

d
∏

i=1

�

Ûki
(1)
�2

=
�

2
π

�d n
∑

k1=0

(k1 + 1)2
n−k1
∑

k2=0

(k2 + 1)2 · · ·
n−
∑d−1

j=1 k j
∑

kd=0

(kd + 1)2 , (31)

and by easy calculations

Cn(W1
2 , 1

2
(x) d x , [−1,1]) =

1
p

3π

Æ

(n+ 1)(n+ 2)(2n+ 3) , (32)

Cn(W1
2 , 1

2
(x ) dx , [−1,1]2) =

1

3π
p

10

Æ

P6(n) ,

P6(n) = (n+ 1)(n+ 2)(n+ 3)(n+ 4)(2n2 + 10n+ 15) , (33)

Cn(W1
2 , 1

2
(x ) dx , [−1, 1]3) =

1

18
p

35π3

Æ

P9(n) ,

P9(n) = (n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6)(2n+ 7)(n2 + 7n+ 18) . (34)
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2.3 Upper bounds for Lebesgue constants

Corollary 1 allows to provide upper bounds for the uniform norm of any hyperinterpolation operator, i.e. for its “Lebesgue
constant”, independent of the underlying cubature formula, whenever we are able to estimate the maximum of Kn(x , x ). Such
bounds are typically overestimates of the actual order of growth.

The fact that Lebesgue constants of hyperinterpolation can be estimated independently of the sampling nodes is not surprising.
Indeed, recently Wade in [24] has proved that for hyperinterpolation operators with respect to Gegenbauer measures (8) on the
d-dimensional ball, the following bilateral bound holds

ad,λn(d−1)/2+λ ≤ ‖Ln‖∞ ≤ bd,λn(d−1)/2+λ , n even , d > 1 , (35)

where ad,λ and bd,λ are positive constants. Such a result improves a previous upper bound O(n log(n)) for hyperinterpolation
with respect to the Lebesgue measure on the disk (λ= 1/2, d = 2), cf. [13]. Incidentally, we observe that differently from what
is stated in [24] the upper bound cannot hold for λ= 0 and d = 1, since it would imply that the Lebesgue constant is bounded,
which is certainly false since any polynomial projection operator has a uniform norm that increases at least logarithmically in the
degree (cf. [21]).

If λ = 0, Corollary 1 gives via (9) ‖Ln‖∞ =O(nd/2), that is in view of [24] an overestimate of the actual order of growth by a
factor

p
n (for any d). On the other hand, in the case of the Lebesgue measure on the disk (λ= 1/2, d = 2), by (7) and (14) we

get ‖Ln‖∞ =O(n3/2), again an overestimate by a factor
p

n.
Concerning the d-dimensional cube, a quite recent result has given an affirmative answer to a conjecture stated in [8] for d = 3,

namely that for any hyperinterpolation operator with respect to the Chebyshev measure of the first kind dµ=W−1/2,−1/2(x ) dx
(cf. (15)), the following estimate holds

‖Ln‖∞ =O(logd(n)) . (36)

An estimate of this kind was previously obtained in the case of hyperinterpolation at the Morrow-Patterson-Xu points of the
square [7]. Observe that such a growth order of the Lebesgue constant is optimal, in view of the general result for polynomial
projection operators in [21]. In the context of the present note, Corollary 1 gives via (27) ‖Ln‖∞ =O(nd/2), that is an ovestimate
of the actual order of growth by a factor (

p
n/ log(n))d .

For other Jacobi measures, there are apparently no results in the literature for d > 1. Again, Corollary 1 and (27) provide the
estimate

‖Ln‖∞ =O(n(q+1)d) , (37)

for any hyperinterpolation operator with respect to any Jacobi measure with q = max {α,β} ≥ −1/2. The fact that (37) is
an overestimate of the Lebesgue constant is manifest in dimension one, where it is well-known that the Lebesgue constant of
interpolation at the zeros of Pα,β

n+1 increases asymptotically like log(n) for q ≤ −1/2, and like nq+1/2 for q > −1/2, in view of a
classical result by Szëgo; cf. [17] and references therein. Indeed, in such cases the hyperinterpolation operator based on the
Gauss-Jacobi formula is just an interpolation operator at the Gauss-Jacobi nodes, cf. [22, Lemma 3].

We specialize now (37) to the case of the product Chebyshev measure of the second kind, and in particular to interpolation at
the Morrow-Patterson points of the square, originally studied in [18]. We recall that, for even degree n, such points are the set
{(xm, yk)} ⊂ (−1,1)2 defined as

xm = cos
� mπ

n+ 2

�

, yk =







cos
�

2kπ
n+3

�

m odd

cos
� (2k−1)π

n+3

�

m even
(38)

1≤ m≤ n+ 1, 1≤ k ≤ n
2 + 1. This set consists of N =

�n+2
2

�

= dim(P2
n) points, and is unisolvent for polynomial interpolation on

the square. Indeed, by the bivariate Christoffel-Darboux formula [26], the corresponding fundamental Lagrange polynomials
have an explicit expression in terms of second kind Chebyshev polynomials, i.e., the interpolation problem has a constructive
solution.

On the other hand, the Morrow-Patterson points support one of the few known minimal positive cubature formulas, namely a
formula that has degree of exactness 2n for the product Chebyshev measure of the second kind, dµ=W1

2 , 1
2
(x1, x2) d x1d x2, cf.

[18]. Hence, we can construct an hyperinterpolation polynomial of degree not greater than n at these points, that in view of
minimality of the formula turns out to be the interpolation polynomial, by [22, Lemma 3].

Concerning the growth of the Lebesgue constant, say ΛM P
n , Bos [3] proved that ΛM P

n = O(n6), by means of the bivariate
Christoffel-Darboux formula. Now, interpreting interpolation at the Morrow-Patterson points as hyperinterpolation, we can state
the following

Proposition 2.1. The Lebesgue constant of bivariate polynomial interpolation at the Morrow-Patterson points has the following
upper bound

ΛM P
n ≤

1

6
p

10

Æ

(n+ 1)(n+ 2)(n+ 3)(n+ 4)(2n2 + 10n+ 15) =O(n3) . (39)

Proof. As observed above, the hyperinterpolation operator at the Morrow-Patterson points is just the interpolation operator. Then
we obtain (39), which is valid for any hyperinterpolation operator with respect to the product Chebyshev measure of the second
kind, in view of Corollary 1 and (33), recalling that µ([−1,1]2) = π2/4. �
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On the other hand, we have numerical evidence that (39) is an overestimate of the order of growth, see Figure 1. Indeed, the
numerical results in [6] show that the values of ΛM P

n in the range n= 2, 4, 6, . . . , 60 are well-fitted by the quadratic polynomial
(0.7n+ 1)2, so it can be conjectured that the actual order of growth is ΛM P

n =O(n2).

Acknowledgments. Work partially supported by the “ex-60%” funds and by the biennial project CPDA124755 of the University
of Padova, and by the GNCS-INdAM.

Figure 1: The upper bound (39) (◦) and the numerically evaluated Lebesgue constant (∗) of interpolation at the Morrow-Patterson points (log
scale).
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