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Introduction

Many wavelet (frame) constructions for image analysis

1) Tensor product wavelets
2) steerable wavelets |Freeman and Adelson "91]
3) curvelets [Candes, Donoho ’03]
4) shearlets [Labate, Lim, Kutyniok, Weiss "05]
5) contourlets |[Do, Vetterli "05]
6) Gabor wavelets [Lee 08|

)

7) a-molecules |Grohs, Keiper, Kutyniok, Schafer '14]




Wanted properties of a new wavelet system

What is the purpose of the wavelet system?

We want a representation system (13)yea for images f € L*(R?)

=Y ety

AEA

that allows a “sparse representation” of the image f.

Best N-term approximation fy =~ f

fny = argmin || f — Z Cy Wy where Apn CA, ‘AN‘ = .
AEA N

How to model the image data?



How to model the image data ?

Image model: Cartoon-like functions £2(R?) [Donoho 01 (8 = 2)]

Grohs et al '14: The class of cartoon-like functions £#(R?), 5 € (1, 2],
is defined by

EPRY) ={f e L’ (R*): f=fo+ f1-xB},

where B C [0,1]?, OB a closed CP-curve, fo, f1 € Cg([(), 1])2).

[Reprinted figure with permission of G. Kutyniok]



Wanted properties of a new wavelet system

* Good space-frequency localization

e “Simple structure” of the wavelet system {1y }rca
(multiscale approach)

e Orthonormal basis or Parseval frame of L?(R?), i.e.,

f=> (fan
AEA
and
D =117, g2, forall f e LA(RY)

AEA
(Parseval equation)

e Good approximation properties: If f is in a certain smoothness
class, then f can be well approximated by a sparse wavelet frame

expansion, such that e.g.
|f = fnlls <CNTP

for (piecewise) Holder smooth functions of order /.



Sparse approximation benchmark

Theorem (Donoho ’01)

Allowing only polynomial depth search in a dictionary, the approxi-
mation rate of the best N-term approximation for E8(R?%), 5 € (1, 2],
cannot exceed

If — fnllz ~ N7

Question: Can this bound be reached?
e Classical wavelet systems achieve ||f — fn|[5 ~ N1,

e Specifically designed directional representation systems can reach
this bound up to log-factors.

 Adaptive wavelet frames can reach this bound.



What can be learned from R! ?

e “Simple structure” of the wavelet system:
use translations and dilations of only on “mother-wavelet” .

* (Good space-frequency localization:
1 should have compact support or fast decay outside in space and
frequency domain.

 How to ensure that {v, : j,k € Z} is an orthonormal basis

or a (Parseval) frame in L*(R) ?
Try to achieve that

0.9

Z H(Dw)|? =1 w € Ra.e.

j=—o

(or 0< A< 2 (2w < B < )
and has a good frequency localization.



Example: Meyer wavelets

Choose 9 with supp W) C —2,—1/2]U[1/2,2] Hence supp (2 9w) has
support [—-2/1T1 —27—1 y[27—1 27+

Choose e.g. for w > 0

cos|5V(5 — 6w)] § <w< %
~ 1 2]l < 2
Ylw) = . 1_. 25
cos|zv(3w—4)] 3 <w< 3

0 else

where v is smooth and v(z) = 0 for z < 0, v(z) = 1 for x > 1 and
v(z)+v(l—x) =1 for z € |0,1].

Choose e.g. v(x) =z - Xj0,11(7) ol

1

or v(z) = (32% — 227) - X[0,1] ete. o
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Corresponding tiling of the frequency domain

one-dimensional case:

two-dimensional case: tensor-product wavelets

three types of wavelet tunctions
QAb(wl)’(L(wg)

(wi)d(ws2)

{?(wl){ﬂ(wz)
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How to construct directional wavelet frames 7

Idea. use translations, dilations and rotations of one “basic function”
Curvelet construction.

1. Consider polar coordinates in frequency domain

2. Construct curvelet element being locally supported near a wedge.

10



Curvelet construction

Let w = (w1, w2)!, 7= \/w% + w3 and o := arctan(wi /ws).
Ansatz for the dilated basic curvelet:
Yi00(r,0) =274 W Q) Vy (0), >0, 0€0,27), j € Ng

with suitable window functions W and V., where N; = 4 - 213/21
indicates the number of wedges in the circular ring at scale 277.

We need: |
a) W(r) and Vi, (o) = Voer (2713/215) should have compact support or
exponential decay.

b) Partition of frequency domain:

D Iw@n)|?=1
j=—00
N;—1
Z V]%j(a — 2—7Tl) =1 for all o € |0, 2m).
=0 N
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Indeed we then have

N,;—1 - N,;—1

. A 0 o
> 129 0000 — S = WP D VE (@
=0 J (=0

= |W(27r)]?

Examples for Window functions.

1 o] < %
V(o) = q cos(5v(3lo| —1)) 3 <o <3,

0 else

™ _ 2 )

cos[gv(5—6r) 5<r<g

1 S Ly 8

Wir) = - 1,25

COS[§V(3T — 4)] 3 > T ~ 3
0 else

with v as before.

27l

Nj)
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The window Vy is obtained by 27-periodization of V(No /27).
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With the windows taken above, we have only a small overlap of sup-
ports.
Maximal supports of T:DQ,].C,O and @2,;{,5 (dark grey); of {bg,k,@ and ?:bgjk,lg

(light grey); and of @247;{7,0 and @4,;{,11 (grey). The translation k € Z*
doe not influence the support of the curve let elements.

&2
32
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Can we do something else ?

e The window Vy is a low-pass-filter. Any one-dimensional scaling
function ¢ (being suitable localized in time and frequency) can
serve as the window V' and leads to Vi, by 2m-periodization ot

¢(Njo/2m).
e The window W is a high-pass filter. Any one-dimensional wavelet

function v (being suitable localized in time and frequency) can serve
as the window W.
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How many wedges should be taken in one circular ring ?

* For curvelet construction, choose N; = 4 - 2li/2] wedges in the
circular ring with 2971/2 < < 20+1/2 (gcale 277).

e If the number of wedges in a fixed way leads to steerable wavelets.

e If the number of wedges increases like 1/scale (like 27), we obtain
ridgelets.

e If the number of wedges increases like 4/1/scale, we obtain curve-
lets.
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The complete set of curvelet elements

We employ rotations and translations of the dilated basic curvelet
¥5.0,0- We choose

a) N =4. 213/21 equidistant rotation angles at level j

_ 2l

0 :
7,0 ij

|=0,...,N; —1.

b) the positions

k1 ko )T

257 935/2

with k1, ko € Z, Ry rotation matrix with angle 6. Then the family of
curvelet functions is given by

Vi k0(X) = ¥j00(Rg, , (x — b)) = 10,00(A} Ry, x — k)

- 270
A%,Z ~ ( 0 QU/?W> '

Ht _ it Rl
by = by 4, = jojl(

with
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General directional representation systems (Grohs et al. ’14)

* a-scaling matrix: A, g = (8 3(2)‘) , seRy, ae|0,1]
e a=1 > > @
¢ o =1 . . .
* o= 0 . g .




Directional Representation Systems
Basic ingredients. Take a “mother wavelet” g € L?(R?) and consider

e Translation
g—9(-—p), peEACR

* Scaling
s 0
g%g(Aa,E); Aa,s: <O a) : SER+

e Orientation

Rotation: g — ¢g(Ryg-), Ry = <(ij§§ —(j(s);n@@)) 0 € [0,27).

1 a 1 0
Shears: g — g(Sq-), Sa—(o 1) orSa—<a 1) a € R.

We obtain
%,e,p(ﬂ?) — 5(1+a)/29(Aa,5R9($ — p))
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Directional Representation Systems

e Ridgelets (Candes, Donoho ’99): Rotations, s =2, a =0

e Curvelets (Candes, Donoho ’03): Rotations, s =2 a=1/2
e Shearlets (Kutyniok, Labate '06): Shearings, s =2, a = 1/2
e a-Shearlets (Kutyniok et al. '12): Shearings s > 0, a € [0, 1]
e a-Curvelets (Grohs et al. '14): Rotations s > 0, o € [0, 1]

Common framework — a-Molecules (Grohs et al. '14)
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