How to construct your own directional wavelet frame ?

Gerlind Plonka Institute for Numerical and Applied Mathematics University of Göttingen

in collaboration with Jianwei Ma

Dolomites Research Week on Approximation

September, 2014

How to construct your own directional wavelet frame ?

Outline

- Introduction: well-known wavelet constructions
- Wanted properties of a directional wavelet system
- What can be learned from the one-dimensional case ?
- How to construct curvelets ?
- What are α -molecules ?
- References

Introduction

Many wavelet (frame) constructions for image analysis

- 1) Tensor product wavelets
- 2) steerable wavelets [Freeman and Adelson '91]
- 3) curvelets [Candes, Donoho '03]
- 4) shearlets [Labate, Lim, Kutyniok, Weiss '05]
- 5) contourlets [Do, Vetterli '05]
- 6) Gabor wavelets [Lee '08]
- 7) α -molecules [Grohs, Keiper, Kutyniok, Schäfer '14]

Wanted properties of a new wavelet system

What is the purpose of the wavelet system? We want a representation system $(\psi_{\lambda})_{\lambda \in \Lambda}$ for images $f \in L^2(\mathbb{R}^2)$

$$f = \sum_{\lambda \in \Lambda} c_\lambda \, \psi_\lambda$$

that allows a "sparse representation" of the image f.

Best N-term approximation $f_N \approx f$

$$f_N = \operatorname{argmin} \left\| f - \sum_{\lambda \in \Lambda_N} c_\lambda \psi_\lambda \right\|$$
 where $\Lambda_N \subset \Lambda, |\Lambda_N|$

How to model the image data?

= N.

How to model the image data ?

Image model: Cartoon-like functions $\mathcal{E}^{\beta}(\mathbb{R}^2)$ [Donoho '01 ($\beta = 2$)]

Grohs et al '14: The class of cartoon-like functions $\mathcal{E}^{\beta}(\mathbb{R}^2), \beta \in (1, 2]$, is defined by

$$\mathcal{E}^{\beta}(\mathbb{R}^2) = \left\{ f \in L^2(\mathbb{R}^2) : f = f_0 + f_1 \cdot \chi_B \right\},\,$$

where $B \subset [0,1]^2$, ∂B a closed C^{β} -curve, $f_0, f_1 \in C_0^{\beta}([0,1])^2)$.

[Reprinted figure with permission of G. Kutyniok]

Wanted properties of a new wavelet system

- Good space-frequency localization
- "Simple structure" of the wavelet system $\{\psi_{\lambda}\}_{\lambda \in \Lambda}$ (multiscale approach)
- Orthonormal basis or Parseval frame of $L^2(\mathbb{R}^2)$, i.e.,

$$f = \sum_{\lambda \in \Lambda} \langle f, \psi_\lambda \rangle \psi_\lambda$$

and

$$\sum_{\lambda \in \Lambda} |\langle f, \psi_{\lambda} \rangle|^2 = ||f||^2_{L^2(\mathbb{R}^2)} \quad \text{for all } f \in L^2(\mathbb{R}^2)$$

(Parseval equation)

• Good approximation properties: If f is in a certain smoothness class, then f can be well approximated by a sparse wavelet frame expansion, such that e.g.

$$||f - f_N||_2^2 \le C N^{-\beta}$$

for (piecewise) Hölder smooth functions of order β .

Theorem (Donoho '01)

Allowing only polynomial depth search in a dictionary, the approximation rate of the best N-term approximation for $\mathcal{E}^{\beta}(\mathbb{R}^2)$, $\beta \in (1, 2]$, cannot exceed

$$|f - f_N||_2^2 \sim N^{-\beta}.$$

Question: Can this bound be reached?

- Classical wavelet systems achieve $||f f_N||_2^2 \sim N^{-1}$.
- Specifically designed directional representation systems can reach this bound up to log-factors.
- Adaptive wavelet frames can reach this bound.

What can be learned from \mathbb{R}^1 ?

• "Simple structure" of the wavelet system: use translations and dilations of only on "mother-wavelet" ψ .

$$\psi_{j,k} = 2^{j/2} \psi(2^j \cdot -k), \qquad j,k \in \mathbb{Z}.$$

- Good space-frequency localization: ψ should have compact support or fast decay outside in space and frequency domain.
- How to ensure that $\{\psi_{j,k} : j, k \in \mathbb{Z}\}$ is an orthonormal basis or a (Parseval) frame in $L^2(\mathbb{R})$? Try to achieve that

$$\sum_{j=-\infty}^{\infty} |\hat{\psi}(2^{j}\omega)|^{2} = 1 \qquad \omega \in \mathbb{R} \ a.e.$$

(or $0 < A \leq \sum_{j=-\infty}^{\infty} |\hat{\psi}(2^{j}\omega)|^{2} \leq B < \infty$) and has a good frequency localization.

Example: Meyer wavelets

Choose $\hat{\psi}$ with supp $\hat{\psi} \in [-2, -1/2] \cup [1/2, 2]$ Hence supp $\hat{\psi}(2^{-j}\omega)$ has support $[-2^{j+1}, -2^{j-1}, \cup [2^{j-1}, 2^{j+1}].$ Choose e.g. for $\omega > 0$

$$\hat{\psi}(\omega) = \begin{cases} \cos[\frac{\pi}{2}\nu(5-6\omega)] & \frac{2}{3} \le \omega \le \frac{5}{6} \\ 1 & \frac{5}{6} \le \omega \le \frac{4}{3} \\ \cos[\frac{\pi}{2}\nu(3\omega-4)] & \frac{4}{3} \le \omega \le \frac{5}{3} \\ 0 & \text{else} \end{cases}$$

where ν is smooth and $\nu(x) = 0$ for $x \leq 0, \ \nu(x) = 1$ for $x \geq 1$ and $\nu(x) + \nu(1-x) = 1$ for $x \in [0,1]$. 0.9 Choose e.g. $\nu(x) = x \cdot \chi_{[0,1]}(x)$ 0.8 0.7 or $\nu(x) = (3x^2 - 2x^3) \cdot \chi_{[0,1]}$ etc. 0.6 0.5

Corresponding tiling of the frequency domain

one-dimensional case:

two-dimensional case: tensor-product wavelets

three types of wavelet functions

 $\hat{\phi}(\omega_1)\hat{\psi}(\omega_2)$ $\hat{\psi}(\omega_1)\hat{\phi}(\omega_2)$ $\hat{\psi}(\omega_1)\hat{\psi}(\omega_2)$

How to construct directional wavelet frames ?

Idea. use translations, dilations and rotations of one "basic function" $\psi.$

Curvelet construction.

- 1. Consider polar coordinates in frequency domain
- 2. Construct curvelet element being locally supported near a wedge.

Curvelet construction

Let
$$\omega = (\omega_1, \omega_2)^T$$
, $r := \sqrt{\omega_1^2 + \omega_2^2}$ and $\sigma := \arctan(\omega_1/\omega_2)$.

Ansatz for the dilated basic curvelet:

$$\hat{\psi}_{j,0,0}(r,\sigma) = 2^{-3j/4} W(2^{-j}r) V_{N_j}(\sigma), \qquad r \ge 0, \ \sigma \in [0,2\pi), \ j \in \mathbb{N}_0$$

with suitable window functions W and V_{N_j} , where $N_j = 4 \cdot 2^{\lceil j/2 \rceil}$ indicates the number of wedges in the circular ring at scale 2^{-j} .

We need:

a) W(r) and $V_{N_j}(\sigma) = V_{per}(2^{-\lceil j/2 \rceil}\sigma)$ should have compact support or exponential decay.

b) Partition of frequency domain:

$$\sum_{j=-\infty}^{\infty} |W(2^j r)|^2 = 1$$

$$\sum_{l=0}^{N_j-1} V_{N_j}^2(\sigma - \frac{2\pi l}{N_j}) = 1 \quad \text{for all } \sigma \in [0, 2\pi).$$

$$\sum_{l=0}^{N_j-1} |2^{3j/4} \hat{\psi}_{j,0,0}(r,\sigma - \frac{2\pi l}{N_j})|^2 = |W(2^{-j}r)|^2 \sum_{l=0}^{N_j-1} V_{N_j}^2(\omega - \frac{2\pi l}{N_j})$$
$$= |W(2^{-j}r)|^2$$

Examples for Window functions.

$$V(\sigma) = \begin{cases} 1 & |\sigma| \le \frac{1}{3} \\ \cos(\frac{\pi}{2}\nu(3|\sigma| - 1)) & \frac{1}{3} \le |\sigma| \le \frac{2}{3}, \\ 0 & \text{else} \end{cases}$$
$$W(r) = \begin{cases} \cos[\frac{\pi}{2}\nu(5 - 6r)] & \frac{2}{3} \le r \le \frac{5}{6} \\ 1 & \frac{5}{6} \le r \le \frac{4}{3} \\ \cos[\frac{\pi}{2}\nu(3r - 4)] & \frac{4}{3} \le r \le \frac{5}{3} \\ 0 & \text{else} \end{cases}$$

with ν as before.

With the windows taken above, we have only a small overlap of supports.

Maximal supports of $\hat{\psi}_{2,k,0}$ and $\hat{\psi}_{2,k,5}$ (dark grey); of $\hat{\psi}_{3,k,6}$ and $\hat{\psi}_{3,k,13}$ (light grey); and of $\hat{\psi}_{4,k,0}$ and $\hat{\psi}_{4,k,11}$ (grey). The translation $k \in \mathbb{Z}^2$ doe not influence the support of the curve let elements.

Can we do something else ?

- The window V_N is a low-pass-filter. Any one-dimensional scaling function ϕ (being suitable localized in time and frequency) can serve as the window V and leads to V_{N_j} by 2π -periodization of $\phi(N_j\sigma/2\pi)$.
- The window W is a high-pass filter. Any one-dimensional wavelet function ψ (being suitable localized in time and frequency) can serve as the window W.

How many wedges should be taken in one circular ring ?

- For curvelet construction, choose $N_j = 4 \cdot 2^{\lceil j/2 \rceil}$ wedges in the circular ring with $2^{j-1/2} \leq r \leq 2^{j+1/2}$ (scale 2^{-j}).
- If the number of wedges in a fixed way leads to steerable wavelets.
- If the number of wedges increases like 1/scale (like 2^j), we obtain ridgelets.
- If the number of wedges increases like $\sqrt{1/\text{scale}}$, we obtain curvelets.

The complete set of curvelet elements

We employ rotations and translations of the dilated basic curvelet $\psi_{j,0,0}$. We choose

a) $N_j = 4 \cdot 2^{\lceil j/2 \rceil}$ equidistant rotation angles at level j

$$\theta_{j,l} := \frac{2\pi l}{N_j}, \qquad l = 0, \dots, N_j - 1.$$

b) the positions

$$\mathbf{b}_{\mathbf{k}}^{j,l} = \mathbf{b}_{k_1,k_2}^{j,l} := \mathbf{R}_{\theta_{j,l}}^{-1} (\frac{k_1}{2^j}, \frac{k_2}{2^{j/2}})^T$$

with $k_1, k_2 \in \mathbb{Z}$, \mathbf{R}_{θ} rotation matrix with angle θ . Then the family of curvelet functions is given by

$$\psi_{j,k,l}(\mathbf{x}) := \psi_{j,0,0}(\mathbf{R}_{\theta_{j,l}}(\mathbf{x} - \mathbf{b}_{\mathbf{k}}^{j,l})) = \psi_{0,0,0}(\mathbf{A}_{2,2}^{j}\mathbf{R}_{\theta_{j,l}}\mathbf{x} - \mathbf{k})$$

with

$$\mathbf{A}_{2,2}^{j} = \begin{pmatrix} 2^{j} & 0\\ 0 & 2^{\lceil j/2 \rceil} \end{pmatrix}.$$

General directional representation systems (Grohs et al. '14)

•
$$\alpha$$
-scaling matrix: $\mathbf{A}_{\alpha,s} = \begin{pmatrix} s & 0 \\ 0 & s^{\alpha} \end{pmatrix}, \quad s \in \mathbb{R}_+, \ \alpha \in [0,1]$

Directional Representation Systems

Basic ingredients. Take a "mother wavelet" $g \in L^2(\mathbb{R}^2)$ and consider

• Translation

$$g \to g(\cdot - p), \quad p \in \Lambda \subset \mathbb{R}^2$$

• Scaling

$$g \to g(\mathbf{A}_{\alpha,s}\cdot), \quad \mathbf{A}_{\alpha,s} = \begin{pmatrix} s & 0\\ 0 & s^{\alpha} \end{pmatrix}, \qquad s \in \mathbb{R}_+$$

• Orientation

Rotation:
$$g \to g(\mathbf{R}_{\theta} \cdot), \quad \mathbf{R}_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \quad \theta \in [0, 2\pi).$$

Shears: $g \to g(\mathbf{S}_{a} \cdot), \quad \mathbf{S}_{a} = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \text{ or } \mathbf{S}_{a} = \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix} a \in \mathbb{R}.$

We obtain

$$\psi_{s,\theta,p}(x) = s^{(1+\alpha)/2} g(\mathbf{A}_{\alpha,s} \mathbf{R}_{\theta}(x-p)).$$

- Ridgelets (Candes, Donoho '99): Rotations, $s=2, \alpha=0$
- Curvelets (Candes, Donoho '03): Rotations, $s = 2 \alpha = 1/2$
- Shearlets (Kutyniok, Labate '06): Shearings, $s=2,\,\alpha=1/2$
- α -Shearlets (Kutyniok et al. '12): Shearings $s > 0, \alpha \in [0, 1]$
- α -Curvelets (Grohs et al. '14): Rotations $s > 0, \alpha \in [0, 1]$

Common framework $\rightarrow \alpha$ -Molecules (Grohs et al. '14)

- Jianwei Ma, Gerlind Plonka. *The curvelet transform: A review of recent applications.* IEEE Signal Processing Magazine 27(2) (March 2010), 118-133.
- Jianwei Ma, Gerlind Plonka.
 - Computing with Curvelets: From Image Processing to Turbulent Flows.
 - Computing in Science and Engineering 11(2) (2009), 72-80.

\thankyou