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Introduction

Many wavelet (frame) constructions for image analysis

1) Tensor product wavelets

2) steerable wavelets [Freeman and Adelson ’91]

3) curvelets [Candes, Donoho ’03]

4) shearlets [Labate, Lim, Kutyniok, Weiss ’05]

5) contourlets [Do, Vetterli ’05]

6) Gabor wavelets [Lee ’08]

7) α-molecules [Grohs, Keiper, Kutyniok, Schäfer ’14]
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Wanted properties of a new wavelet system

What is the purpose of the wavelet system?

We want a representation system (ψλ)λ∈Λ for images f ∈ L2(R2)

f =
∑

λ∈Λ

cλ ψλ

that allows a “sparse representation” of the image f .

Best N -term approximation fN ≈ f

fN = argmin

∥∥∥∥∥∥
f −

∑

λ∈ΛN

cλ ψλ

∥∥∥∥∥∥
where ΛN ⊂ Λ, |ΛN | = N.

How to model the image data?
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How to model the image data ?

Image model: Cartoon-like functions Eβ(R2) [Donoho ’01 (β = 2)]

How to model image data?

Image model: Cartoon-like functions E�(R2) (Donoho; 2001 (� = 2))

The class E�(R2), � 2 (1, 2], of cartoon-like functions is defined by

E�(R2) =
n

f 2 L2(R2)
�� f = f0 + f1 · �B

o
,

where B ⇢ [0, 1]2, @B a closed C�-curve, f0, f1 2 C�
0 ([0, 1]2).

(Foo and Bar) ↵-Molecules GAMM 2014 3 / 20

Grohs et al ’14: The class of cartoon-like functions Eβ(R2), β ∈ (1, 2],
is defined by

Eβ(R2) =
{
f ∈ L2(R2) : f = f0 + f1 · χB

}
,

where B ⊂ [0, 1]2, ∂B a closed Cβ-curve, f0, f1 ∈ Cβ0 ([0, 1])2).

[Reprinted figure with permission of G. Kutyniok]
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Wanted properties of a new wavelet system

• Good space-frequency localization

• “Simple structure” of the wavelet system {ψλ}λ∈Λ

(multiscale approach)

• Orthonormal basis or Parseval frame of L2(R2), i.e.,

f =
∑

λ∈Λ

〈f, ψλ〉ψλ

and ∑

λ∈Λ

|〈f, ψλ〉|2 = ‖f‖2
L2(R2)

for all f ∈ L2(R2)

(Parseval equation)

• Good approximation properties: If f is in a certain smoothness
class, then f can be well approximated by a sparse wavelet frame
expansion, such that e.g.

‖f − fN‖22 ≤ C N−β

for (piecewise) Hölder smooth functions of order β.
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Sparse approximation benchmark

Theorem (Donoho ’01)

Allowing only polynomial depth search in a dictionary, the approxi-
mation rate of the best N -term approximation for Eβ(R2), β ∈ (1, 2],
cannot exceed

‖f − fN‖22 ∼ N−β.

Question: Can this bound be reached?

• Classical wavelet systems achieve ‖f − fN‖22 ∼ N−1.

• Specifically designed directional representation systems can reach
this bound up to log-factors.

• Adaptive wavelet frames can reach this bound.
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What can be learned from R1 ?

• “Simple structure” of the wavelet system:
use translations and dilations of only on “mother-wavelet” ψ.

ψj,k = 2j/2 ψ(2j · −k), j, k ∈ Z.

• Good space-frequency localization:
ψ should have compact support or fast decay outside in space and
frequency domain.

• How to ensure that {ψj,k : j, k ∈ Z} is an orthonormal basis

or a (Parseval) frame in L2(R) ?
Try to achieve that

∞∑

j=−∞
|ψ̂(2jω)|2 = 1 ω ∈ R a.e.

(or 0 < A ≤∑∞j=−∞ |ψ̂(2jω)|2 ≤ B <∞)
and has a good frequency localization.
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Example: Meyer wavelets

Choose ψ̂ with supp ψ̂ ⊂ [−2,−1/2]∪ [1/2, 2] Hence supp ψ̂(2−jω) has
support [−2j+1,−2j−1,∪[2j−1, 2j+1].

Choose e.g. for ω > 0

ψ̂(ω) =





cos[π2ν(5− 6ω)] 2
3 ≤ ω ≤ 5

6

1 5
6 ≤ ω ≤ 4

3

cos[π2ν(3ω − 4)] 4
3 ≤ ω ≤ 5

3
0 else

where ν is smooth and ν(x) = 0 for x ≤ 0, ν(x) = 1 for x ≥ 1 and
ν(x) + ν(1− x) = 1 for x ∈ [0, 1].

Choose e.g. ν(x) = x · χ[0,1](x)

or ν(x) = (3x2 − 2x3) · χ[0,1] etc.
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Figure 2: Plot of a Meyer wavelet b (⇠) in frequency domain.

This admissibility condition also ensures the typical wavelet property b (0) =
R1
�1  (x) dx = 0.

A particularly good frequency localization is obtained, if b is compactly supported in
[�2, �1/2][ [1/2, 2]. Such a construction has been used for Meyer wavelets, see Figure 2. Ob-
viously, the dilated Meyer wavelets b (2�j⇠) generate a tiling of the frequency axis
into frequency bands, where b (2�j⇠) has its support inside the intervals [�2j+1,�2j�1] [
[2j�1, 2j+1]. In this case, for a fixed ⇠ 2 R, at most two wavelet functions in the sum (1) over-
lap. We remark that the condition (1) implies even more! It ensures that the function family
{ j,k : j, k 2 Z} forms a tight frame of L2(R), see e.g. [50], Theorem 5.1.

Finally, a localization property of the dyadic wavelet transform in space domain is guaranteed
if also  is localized, i.e., if b is smooth.

4.2 How to transfer this idea to the curvelet construction?

We wish to transfer this construction principle to the two-dimensional case for image analysis
and incorporate a certain rotation invariance. So, we wish to construct a frame, generated
again by one basic element, a basic curvelet �, this time using translations, dilations and
rotations of �. Following the considerations in the one-dimensional case, the elements of the
curvelet family should now provide a tiling of the two-dimensional frequency space.
Therefore the curvelet construction is now based on the following two main ideas [11].

1. Consider polar coordinates in frequency domain.

2. Construct curvelet elements being locally supported near wedges according to
Figure 3, where the number of wedges is Nj = 4 · 2dj/2e at the scale 2�j , i.e., it doubles
in each second circular ring. (Here dxe denotes the smallest integer being greater than or
equal to x.)

Let now ⇠ = (⇠1, ⇠2)
T be the variable in frequency domain. Further, let r =

p
⇠21 + ⇠22 ,

! = arctan ⇠1
⇠2

be the polar coordinates in frequency domain. For the ”dilated basic curvelets”
in polar coordinates we use the ansatz

b�j,0,0(r, !) := 2�3j/4 W (2�jr) eVNj (!), r � 0, ! 2 [0, 2⇡), j 2 N0, (2)

where we use suitable window functions W and eVNj , and where a rotation of b�j,0,0 corresponds

to the translation of a 2⇡-periodic window function eVNj . The index Nj indicates the number

6
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Corresponding tiling of the frequency domain

one-dimensional case:

0 2 4 8 16

4

two-dimensional case: tensor-product wavelets

three types of wavelet functions

φ̂(ω1)ψ̂(ω2)

ψ̂(ω1)φ̂(ω2)

ψ̂(ω1)ψ̂(ω2)

recalled in Subsection 2.1, the notion of a system of α-molecules is introduced in Subsection 2.2. It is
then shown in Section 3 that various versions of wavelets, curvelets, ridgelets, and shearlets (in this order)
are indeed instances of α-molecules. The analysis of the cross-Gramian of two systems of α-molecules
showing their almost orthogonality based on an α-scaled index distance is presented in Section 4. This
fact is utilized in Section 5 to introduce the notion of sparsity equivalence for systems of α-molecules,
analyze the ability of the framework to transfer sparse approximation results from one system to another,
and at last, provide results on the optimal sparse approximation behavior of α-molecules with respect
to a certain class of cartoon-like functions depending on their control parameters. Finally, several highly
technical and lengthy proofs are outsourced to Section 6.

2 A General Framework for Applied Harmonic Analysis

Aiming to introduce a general framework, which encompasses most multiscale representation systems
developed within the area of applied harmonic analysis, we start by reviewing some of the most prominent
systems, namely wavelets [10], ridgelets [3], curvelets [5], and shearlets [23]. If the framework shall be
meaningful, those systems should undoubtedly be included; serving us as intuition and guideline for the
definition of α-molecules.

2.1 Prominent Multiscale Representation Systems

Historically correct, we will start with recalling the definition of wavelets. Since the notion of α-curvelets
from [21] allows us to unify the notions of ridgelets and curvelets, we will then introduce those, followed
by the definitions of (second generation) curvelets, and then ridgelets. We conclude this subsection by
stating the definition of shearlets. Throughout, we will use the version ϕ̂(ξ) = Fϕ(ξ) =

∫
R ϕ(x)e−2πixξ dx

for the Fourier transform of f ∈ L1(Rd), and extend it in the usual way to tempered distributions.

2.1.1 Wavelets

Of the various wavelet constructions for L2(R2), the tensor product construction (cf. [32]) is the most
widely utilized one. Starting with a given multi-resolution analysis of L2(R) with scaling function φ0 ∈
L2(R) and wavelet φ1 ∈ L2(R), the functions ψe ∈ L2(R2) are defined for every index e = (e1, e2) ∈ E,
where E = {0, 1}2, as the tensor products

ψe = φe1 ⊗ φe2 . (1)

These functions serve as the generators for the wavelet system defined below. The corresponding tiling
of the frequency plane is illustrated in Figure 1.

Definition 2.1. Let φ0, φ1 ∈ L2(R) and ψe ∈ L2(R2), e ∈ E, be defined as above. Further, let σ > 1,
τ > 0 be fixed sampling parameters. The associated wavelet system W

(
φ0, φ1;σ, τ

)
is then defined by

W
(
φ0, φ1;σ, τ

)
=
{
ψ(0,0)(· − τk) : k ∈ Z2

}
∪
{
σjψe(σj · −τk) : e ∈ E\{(0, 0)}, j ∈ N0, k ∈ Z2

}
.

Figure 1: Partition of Fourier domain induced by tensor wavelets.

4
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How to construct directional wavelet frames ?

Idea. use translations, dilations and rotations of one “basic function”
ψ.

Curvelet construction.

1. Consider polar coordinates in frequency domain

2. Construct curvelet element being locally supported near a wedge.

2
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Curvelet construction

Let ω = (ω1, ω2)T , r :=
√
ω2

1 + ω2
2 and σ := arctan(ω1/ω2).

Ansatz for the dilated basic curvelet:

ψ̂j,0,0(r, σ) = 2−3j/4W (2−jr)VNj
(σ), r ≥ 0, σ ∈ [0, 2π), j ∈ N0

with suitable window functions W and VNj
, where Nj = 4 · 2dj/2e

indicates the number of wedges in the circular ring at scale 2−j .

We need:
a) W (r) and VNj

(σ) = Vper(2
−dj/2eσ) should have compact support or

exponential decay.

b) Partition of frequency domain:

∞∑

j=−∞
|W (2jr)|2 = 1

Nj−1∑

l=0

V 2
Nj

(σ − 2πl

Nj
) = 1 for all σ ∈ [0, 2π).

11



Indeed we then have

Nj−1∑

l=0

|23j/4ψ̂j,0,0(r, σ − 2πl

Nj
)|2 = |W (2−jr)|2

Nj−1∑

l=0

V 2
Nj

(ω − 2πl

Nj
)

= |W (2−jr)|2

Examples for Window functions.

V (σ) =





1 |σ| ≤ 1
3

cos(π2ν(3|σ| − 1)) 1
3 ≤ |σ| ≤ 2

3 ,
0 else

W (r) =





cos[π2ν(5− 6r)] 2
3 ≤ r ≤ 5

6

1 5
6 ≤ r ≤ 4

3

cos[π2ν(3r − 4)] 4
3 ≤ r ≤ 5

3
0 else

with ν as before.
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The window VN is obtained by 2π-periodization of V (Nσ/2π).
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With the windows taken above, we have only a small overlap of sup-
ports.

Maximal supports of ψ̂2,k,0 and ψ̂2,k,5 (dark grey); of ψ̂3,k,6 and ψ̂3,k,13

(light grey); and of ψ̂4,k,0 and ψ̂4,k,11 (grey). The translation k ∈ Z2

doe not influence the support of the curve let elements.

32

16
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32−16 −4
ξ1

ξ2
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Can we do something else ?

• The window VN is a low-pass-filter. Any one-dimensional scaling
function φ (being suitable localized in time and frequency) can
serve as the window V and leads to VNj

by 2π-periodization of

φ(Njσ/2π).

• The window W is a high-pass filter. Any one-dimensional wavelet
function ψ (being suitable localized in time and frequency) can serve
as the window W .
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How many wedges should be taken in one circular ring ?

• For curvelet construction, choose Nj = 4 · 2dj/2e wedges in the

circular ring with 2j−1/2 ≤ r ≤ 2j+1/2 (scale 2−j).

• If the number of wedges in a fixed way leads to steerable wavelets.

• If the number of wedges increases like 1/scale (like 2j), we obtain
ridgelets.

• If the number of wedges increases like
√

1/scale, we obtain curve-
lets.

2
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The complete set of curvelet elements

We employ rotations and translations of the dilated basic curvelet
ψj,0,0. We choose

a) Nj = 4 · 2dj/2e equidistant rotation angles at level j

θj,l :=
2πl

Nj
, l = 0, . . . , Nj − 1.

b) the positions

bj,lk = bj,lk1,k2
:= R−1

θj,l
(
k1

2j
,
k2

2j/2
)T

with k1, k2 ∈ Z, Rθ rotation matrix with angle θ. Then the family of
curvelet functions is given by

ψj,k,l(x) := ψj,0,0(Rθj,l(x− bj,lk )) = ψ0,0,0(Aj
2,2Rθj,lx− k)

with

Aj
2,2 =

(
2j 0
0 2dj/2e

)
.
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General directional representation systems (Grohs et al. ’14)

• α-scaling matrix: Aα,s =

(
s 0
0 sα

)
, s ∈ R+, α ∈ [0, 1]

• α = 1

• α = 1
2

• α = 0

↵-Scaling

↵-Scaling Matrix: A↵,s =

✓
s 0
0 s↵

◆
, s 2 R+, ↵ 2 [0, 1]

↵ = 1:

↵ = 1
2 :

↵ = 0:

(Foo and Bar) ↵-Molecules GAMM 2014 5 / 20
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Directional Representation Systems

Basic ingredients. Take a “mother wavelet” g ∈ L2(R2) and consider

• Translation
g → g(· − p), p ∈ Λ ⊂ R2

• Scaling

g → g(Aα,s·), Aα,s =

(
s 0
0 sα

)
, s ∈ R+

• Orientation

Rotation: g → g(Rθ·), Rθ =

(
cos θ − sin θ
sin θ cos θ

)
, θ ∈ [0, 2π).

Shears: g → g(Sa·), Sa =

(
1 a
0 1

)
or Sa =

(
1 0
a 1

)
a ∈ R.

We obtain
ψs,θ,p(x) = s(1+α)/2g(Aα,sRθ(x− p)).
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Directional Representation Systems

• Ridgelets (Candes, Donoho ’99): Rotations, s = 2, α = 0

• Curvelets (Candes, Donoho ’03): Rotations, s = 2 α = 1/2

• Shearlets (Kutyniok, Labate ’06): Shearings, s = 2, α = 1/2

• α-Shearlets (Kutyniok et al. ’12): Shearings s > 0, α ∈ [0, 1]

• α-Curvelets (Grohs et al. ’14): Rotations s > 0, α ∈ [0, 1]

Common framework → α-Molecules (Grohs et al. ’14)
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