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History of the scientific network MathMPI

Goal of the scientific network MathMPI

This project addresses for the first time the systematic study of
mathematical questions related to MPI. The central goal of this
network is the development, analysis and application of
mathematical methods to improve the reconstruction quality in
MPI. In particular, taylored to the specific needs of MPI we
develop elaborate reconstruction algorithms, analyze and refine the
underlying MPI models and test the new methods numerically on
real biomedical data. (from the application to the DFG)
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I 07/2012 First contacts at a summer school in Munich

I 02/2014 Submission of the application to the DFG

I 08/2014 MathMPI starts

I 11/2014 First meeting in Lübeck

I 02/2015 Study group in Munich

I 06/2015 Study group in Ettlingen

I 09/2015 Forth workshop in Hamburg

I 07/2016 Last conference in Osnabrück
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(Lübeck)

I Gael Bringout (Lübeck,
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Main objectives of the project

I Mathematical Analysis of the MPI System Function.
Mathematical analysis of the reconstruction process. The
obtained information is used to get algorithms specifically
tailored to the needs of MPI.

I Modeling and Determination of High Quality System
Functions. Accurate description of the involved physical
processes by removing simplifications of the current MPI
models.

I Development of Elaborate Reconstruction Algorithms.
Design of stable and efficient reconstruction algorithms which
are tailored to clinical needs.

I Application to Biomedical Data. Evaluation of the
performance of reconstruction algorithms on real biomedical
data.
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Introduction to 1D modelling in
Magnetic Particle Imaging
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What is Magnetic Particle Imaging (MPI)?

Knopp, Buzug: Magnetic Particle Imaging, Springer, 2012 [2]
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Basic Principle of Magnetic Particle Imaging

Principle: Recover the density of paramagnetic particles from their
non-linear magnetization response in an applied magnetic field.

What is measured? In the receive coils the time-dependent change
of the particle magnetization is measured via induced voltage .

General model equation:

u(t) = −µ0σ0
d

dt

∫
Object

c(x)m̄(H(x , t))dx

I u(t) induced voltage in the receive coils

I c(x) particle density

I m̄ magnetization response for magnetic field H(x , t).
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General 1D model for Magnetic Particle
Imaging

Simplifications in the 1D case:

I neglect constants µ0, σ0.

I Object = R, x ∈ R.

Then the 1D-model equation is given by [3]:

u(t) = − d

dt

∫
R
c(x)m̄(H(x , t))dx =

∫
R
c(x)s(x , t)dx

with the system kernel

s(x , t) = − d

dt
m̄(H(x , t)) = −dm̄

dH

d

dt
H(x , t).
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1. mathematical formulation for 1D model

Further simplification: H(x , t) is periodic and even in time t with
period T and frequency ω0 = 2π

T . Then, u(t) is an odd periodic
signal with period T .

Now, introduce the Hilbert spaces

X space = L2(R), X time = L2(
[
0, T2

]
)

and the operator

S t : X space → X time, S tc(t) =

∫
R
c(x)s(x , t)dx .

1D-MPI reconstruction problem

Given u ∈ R(S t), find c ∈ X space such that

S tc = u.
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More details about the system kernel s(x , t)

s(x , t) = − d

dt
m̄(H(x , t)) = −dm̄

dH

d

dt
H(x , t).

Generate the following magnetic field:

H(x , t) = Gx︸︷︷︸
HS (x)

−A cos(ω0t)︸ ︷︷ ︸
HD(t)

.

I Selection field HS(x) with gradient G > 0.

I Drive field HD(t) with amplitude A > 0 and frequency ω0.

Then,
s(x , t) = −m̄′(Gx − A cosω0t)Aω0 sinω0t.
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Now, introduce new space variable −A
G ≤ y ≤ A

G by

y =
A

G
cosω0t, t ∈

[
0,

T

2

]
.

then

s(x , y) = −m̄′(G (x − y)) Gω0

√
A2

G2 − y2.

Define function m̄G (x) := m̄(Gx), then

s(x , y) = −m̄′G (x − y) ω0

√
A2

G2 − y2

and we can write for −A
G ≤ y ≤ A

G :

Syc(y) = −ω0

√
A2

G2 − y2
∫
R
c(x)m̄′G (x − y)dx
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If we assume that m̄′ is even, then for −A
G ≤ y ≤ A

G we have :

Syc(y) = −ω0

√
A2

G2 − y2
∫
R
c(x)m̄′G (y − x)dx

= −ω0

√
A2

G2 − y2 (c ∗ m̄′G )(y),

or, equivalently, in the time domain

S tc(t) = −ω0
A

G
sin(ω0t) (c ∗ m̄′G )

(
A

G
cosω0t

)
.
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With kind permission of M. Ahlborg, C. Kaethner (IMT Lübeck)
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Decomposition into basic operators

Define X fov = L2([−A
G ,

A
G ]) and the operators

Qconv : X space → X space, Qconvf (x) = (f ∗ m̄′G )(x)
Q fov : X space → X fov, Q fovf (y) = f (y)

Qtime : X fov → X time, Qtimef (t) = −ω0
A
G sin(ω0t) f ( A

G cosω0t)

Then

S t = Qtime ◦ Q fov ◦ Qconv

and

I Qconv is a bounded operator with ‖Qconv‖ = ‖m̄′G‖1.

I Q fov is a projection operator with ‖Q fov‖ = 1.

I Qtime is a bounded operator with ‖Qtime‖ = 1.
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Frequency measurements

Sometimes: frequency information of u is given as measured data.
Introduce Hilbert space X freq = l2(N) and a new operator

Qfft : X time → X freq, Qfft(f )(n) =
2

T

∫ T
2

0
f (t) sin(nω0t)dt.

Then, we get a new forward operator and a new imaging model
based on measured frequencies:

S f : X space → X freq, S f = Qfft ◦ Qtime ◦ Q fov ◦ Qconv.

S fc(n) = −A

G

2ω0

T

∫ T
2

0
sin(ω0t) (c∗M ′G )

(
A

G
cosω0t

)
sin(nω0t)dt
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Alternative description of S fc(n) with substitution y = A
G cosω0t:

S fc(n) = − 2

T

∫ A
G

− A
G

(c ∗M ′G )(y) sin

(
n arccos

G

A
y

)
dy ,

= − 2

T

∫ A
G

− A
G

(c ∗ m̄′G )(y)Un−1
(
G
A y
)√

1− G2

A2 y2dy

S fc(n) can be interpreted as Chebyshev transform (with the
Chebyshev polynomials of second kind) of the function c ∗ m̄′G .

X cheb = L2
(

[−A
G ,

A
G ],
√

1− G2

A2 y2
)
,

QchebT : X cheb → X freq,

QchebTf (n) = − 2

T

∫ A
G

− A
G

f (y)Un−1
(
G
A y
)√

1− G2

A2 y2dy
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Summary

S f = QchebT◦Qemb◦Q fov◦Qconv = Qfft◦Qtime◦Q fov◦Qconv

X space X space X fov X time X freq

X cheb

Qconv Q fov Qtime Qfft

Qemb QchebT

The Hilbert spaces X time, X cheb and X freq are isometric
isomorphic, the respective reconstructions equivalent..
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Notation for reconstruction in MPI

x-space reconstruction (according to Goodwill & Conolly)

Given u ∈ X space, find c ∈ X fov such that

Sconvc = Q fov ◦ Qconvc = u.

Independent of used time trajectory.

x-space reconstruction (language of Knopp & Buzug)

Given u ∈ X time, find c ∈ X fov such that

S tc = Qtime ◦ Q fov ◦ Qconvc = u.

Chebyshev reconstruction

Given û ∈ X freq, find c ∈ X fov such that

S fc = QchebT ◦ Qemb ◦ Q fov ◦ Qconvc = û.
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S f modelling with Chebyshev polynomials

S fc(n) = − 2

T

∫ A
G

− A
G

(c ∗ m̄′G )(y)Un−1
(
G
A y
)√

1− G 2

A2 y2dy

= − 2

T

∫
R

(c ∗ m̄′G )(y)1l[− A
G , AG ](y)Un−1

(
G
A y
)√

1− G 2

A2 y2dy

= − 2

T

∫
R
c(y)

(
m̄′G ∗

(
1l[− A

G , AG ]Un−1
(
G
A ·
)√

1− G 2

A2 (·)2
))

(y)dy

Define

s f
n(x) = − 2

T

(
m̄′G ∗

(
1l[− A

G , AG ]Un−1

(
G

A
·
)√

1− G 2

A2
(·)2
))

(x).

Then
S fc(n) = 〈s f

n, c〉.
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Pre- and postprocessing operators

Beside the mentioned operators, additional pre- and post
processing operators are involved in the reconstruction process,
depending on the used scanners.

I A transfer function (preprocessing) to fit the rows s fn to a
measured system matrix.

I A symmetrization operator (preprocessing).

I Merging operators (postprocessing) that glue together
reconstructions from several fields of view.

I Beautification operators, mild deconvolutions ...
(postprocessing)
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The operator Q fov

X space X space X fov X time X freq

X cheb

Qconv Q fov Qtime Qfft

Qemb QchebT

The operator Q fov is a projection operator.

Lemma

The restriction operator Q fov : X space → X fov given by
Q fovf = f |[− A

G
, A
G
] is an orthogonal projection onto the subspace

X fov with operator norm equal to 1.
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The operators Qfft and QchebT.

X space X space X fov X time X freq

X cheb

Qconv Q fov Qtime Qfft

Qemb QchebT

The operator Qfft and QchebT simply perform the sine transform
and the Chebyshev transform, respectively.

Lemma

The operators Qfft : X time → X freq and QchebT : X cheb → X freq

are isometries.

W. Erb, A. Weinmann 5.9.2017 Mathematical analysis 23/36



The MPI core operator Qconv

Qconv : X space → X space, Qconvf (x) = (f ∗ m̄′G )(x).

The magnetization m̄G can be modeled with the Langevin function

m̄G (x) = αL(βGx) = α

(
coth(βGx)− 1

βGx

)
where α and β are parameters describing the physical system.
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The Langevin function L(x)
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The MPI core operator Qconv

The convolution kernel is given by

m̄′G (x) = αβGL′(βGx),

where

L′(x) =

{
1
x2
− 1

sinh(x)2
, x 6= 0

1
3 , x = 0

The Fourier transform of L′ is given by

F(L′)(ω) =

√
π

2

(
|ω| − ω coth

π

2
ω
)
.

F(L′)(ω) decays exponentially as ω →∞.
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Lemma

The convolution kernel m̄′G is analytic and the image R(Qconv) is
contained in every Sobolev space Hs(R), s ≥ 0. In particular, the
inverse problem Qconvf = g is ill-posed.
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The trajectory operator Qtime

X space X space X fov X time X freq

X cheb

Qconv Q fov Qtime Qfft

Qemb QchebT

Lemma

The trajectory operator Qtime : X fov → X time given by

Qtimef (t) = −ω0
A

G
sin(ω0t) f ( A

G cosω0t)

is bounded and injective. The inverse problem Qtimef = g is
ill-posed since the multiplier sin(ω0t) vanishes at the boundary
points.
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Main Theorem 1

X fov X space X fov X time X freq

X cheb

Qconv Q fov Qtime Qfft

Qemb QchebT

Theorem

The composed operator Sconv = Q fov ◦ Qconv restricted to the
space X fov is self-adjoint, positive and its image R(Sconv) is
contained in every Sobolev space Hs [−A

G ,
A
G ]. As such,

Sconv : L2[−A
G ,

A
G ]→ Hs [−A

G ,
A
G ] is compact and injective,
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Main Theorem 2

X fov X space X fov X time X freq

X cheb

Qconv Q fov Qtime Qfft

Qemb QchebT

Theorem

The image R(S t) is contained in every Sobolev space Hs [0,T/2],
s ≥ 0. Restricting S t to the space X fov, the operator

S t : X fov → Hs [0,T/2] is compact and injective.

In particular, the inverse problem S tc = u is severely ill-posed.
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Main Theorem 3

X fov X space X fov X time X freq

X cheb

Qconv Q fov Qtime Qfft

Qemb QchebT

Theorem

The image R(S f) of the operator S f is contained in the space c∞
of rapidly decaying sequences. The operator

S f : X fov → c∞ is compact and injective.

The inverse problem S fc = û is therefore also severely ill-posed.
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Some numerical experiments
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Figure: Visualization of the discretization of the operators Sconv and St

with G = 100 and A/G = 50.
Left: St ∈ R2N×N with N = 120.
Right: Sconv ∈ RN×N with N = 120.
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Figure: Singular values of discretizations of Sconv.

Left: For a field of view width A/G = 125, we discretized Sconv using N
sample points. The singular values are displayed in decreasing order.

Right: For a field of view width A/G = 250, we discretized Sconv using
N sample points. The corresponding singular values are displayed in
decreasing order. We observe better approximation for smaller ratio A/G .
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Figure: Singular values of discretizations of St.

Left: For a field of view width A/G = 125, we discretized St using N
sample points. The singular values are displayed in decreasing order.

Right: For a field of view width A/G = 250, we discretized St using N
sample points. The singular values are displayed in decreasing order. We
observe that the singular values initially decrease fast, and that there are
some almost vanishing singular values for each discretization.

W. Erb, A. Weinmann 5.9.2017 Numerics 33/36



0 200 400 600 800 1000 1200 1400 1600 1800 2000
10-6

10-5

10-4

10-3

A/G=40
A/G=20
A/G=10

Figure: The first 2000 singular values of Sconv discretized using
N = 5001 sampling points for different field of view widths A/G . We
view these singular values as a good approximation of the singular values
of Sconv. The semi-logarithmic plot suggests that the singular values
decrease exponentially.

W. Erb, A. Weinmann 5.9.2017 Numerics 34/36



0 200 400 600 800 1000 1200 1400 1600 1800 2000
10-4

10-3

10-2

10-1

100

101

102

A/G=40
A/G=20
A/G=10

Figure: The first 2000 singular values of St discretized using N = 5001
sampling points for different field of view widths A/G . We view these
singular values as a good approximation of the singular values of St. The
semi-logarithmic plot shows that the singular values decrease very fast
initially but then have a slower decay than in the previous figure.
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