A unifying framework for interpolation on general Lissajous-Chebyshev points

P. Dencker, W. Erb

Tutorial talk given by W. Erb at the
Dolomites Research Week on Approximation Alba di Canazei (Trento, Italy)
September 4-8 2017

The theory of this talk is published in [7].

The speaker gratefully acknowledges the support of RITA (Rete Italiana di
Approssimazione) for the possibility to give this tutorial.

Outline of the talk

- Introduction
- What are Lissajous-Chebyshev points?
- Preliminary questions towards a unified theory
- Interpolation on Lissajous-Chebyshev nodes $\underline{L C}_{\underline{\underline{\varepsilon}}}^{(\underline{m})}$
- Some description of the involved Lissajous curves
- Interpolation and quadrature on $\underline{\mathbf{L C}}_{\kappa}^{(\underline{m})}$
- Convergence and fast algorithms of the interpolation schemes

Definition of Lissajous-Chebyshev points $\underline{L C}_{\underline{\kappa}}^{(m)}$

We define the sets $\underline{L C}_{\underline{\kappa}}^{(\boldsymbol{m})}$ with help of the index sets

$$
\begin{aligned}
& \mathbf{I}_{\underline{\kappa}}^{(\underline{m})}=\mathbf{I}_{\underline{\kappa}, 0}^{(\boldsymbol{m})} \cup \mathbf{I}_{\underline{\kappa}, 1}^{(\underline{m})} \text { with the sets } \underline{\mathbf{I}}_{\underline{\kappa}, \underline{\mathfrak{k}}}^{(\underline{m})}, \mathfrak{r} \in\{0,1\} \text {, given by } \\
& \underline{\mathbf{I}}_{\underline{\varepsilon}, \mathfrak{r}}^{(\underline{m})}=\left\{\underline{\boldsymbol{i}} \in \mathbb{N}_{0}^{\mathrm{d}} \mid \forall \mathrm{j}: 0 \leq i_{\mathrm{j}} \leq m_{\mathrm{j}} \text { and } i_{\mathrm{j}} \equiv \mathfrak{r}+\kappa_{\mathrm{j}} \quad \bmod 2\right\} .
\end{aligned}
$$

(a) Index set $\mathbf{I}_{(0,0)}^{(4,4)}$

(b) Index set $\mathbf{I}_{(0,0,0)}^{(5,3,2)}$

With the Chebyshev-Gauss-Lobatto points given by

$$
\underline{\mathbf{z}}_{\underline{i}}^{(\underline{\boldsymbol{m}})}=\left(z_{i_{1}}^{\left(m_{1}\right)}, \ldots, z_{i_{\mathrm{d}}}^{\left(m_{\mathrm{d}}\right)}\right), \quad z_{i}^{(m)}=\cos (i \pi / m)
$$

we then define the Lissajous-Chebyshev points as

$$
\underline{\mathbf{L C}}_{\underline{\underline{k}}}^{(\underline{m})}=\left\{{\underline{\mathbf{z}_{\underline{i}}}}_{(\underline{m})}^{\left(\underline{i} \in \underline{\underline{\mathbf{l}}}_{\underline{k}}^{(m)}\right\} .}\right.
$$

Cardinalities of the node sets

We have
with

$$
\begin{aligned}
& \# \underline{\left.\mathbf{I}_{\underline{\boldsymbol{\kappa}}, \mathrm{r}}^{(\boldsymbol{m}}\right)}=\prod_{\mathrm{i} \in\{1, \ldots, \mathrm{~d}\}} \frac{m_{\mathrm{i}}+2}{2} \times \prod_{\mathrm{i} \in\{1, \ldots, \mathrm{~d}\}} \frac{m_{\mathrm{i}}}{2} \times \prod_{\mathrm{i} \in\{1, \ldots, \mathrm{~d}\}} \frac{m_{\mathrm{i}}+1}{2} . \\
& m_{i} \equiv 0 \bmod 2 \quad m_{i} \equiv 0 \bmod 2 \quad m_{i} \equiv 1 \bmod 2
\end{aligned}
$$

Examples

The interpolation nodes $\underline{\mathbf{L C}} \underset{\underline{\underline{L}}}{(\underline{m})}$ are well-known in the literature

- Morrow-Patterson-Xu points 2D: $\underline{\mathbf{L C}}_{\underline{\kappa}}^{(m, m)}[10,11]$.
- Morrow-Patterson-Xu points 3D: $\underline{\mathbf{L C}}_{\underline{\kappa}}^{(m, m, m)}$ [5].
- Padua points: $\underline{\mathbf{L C}}_{(0,0)}^{(\underline{\boldsymbol{m}})}$ for $\underline{\boldsymbol{m}}=(m, m+1)$ or $\underline{\boldsymbol{m}}=(m+1, m)[3,4]$.
- Lissajous nodes in MPI: $\underline{\mathbf{L C}}_{(0,1)}^{\left(2 m_{1}, 2 m_{2}\right)}$ with m_{1}, m_{2} relatively prime [9].
- Degenerate Lissajous curves: $\underline{\mathbf{L C}}_{\underline{\underline{0}}}^{(\boldsymbol{m})}$, in which $\underline{\boldsymbol{m}}$ consists of relatively prime numbers [6].
$\underline{\mathbf{L C}}_{\underline{\underline{\kappa}}}^{(\underline{m})}$ are also well-known nodes for multivariate quadrature [1].

Observation 1:

- Polynomial interpolation on all of these point sets is very similar.
- Many of these points have a generating Lissajous curve:

$$
\underline{\ell}_{(4,3)}^{(8,6)}(t)=(\sin 3 t, \sin 4 t)
$$

Non-degenerate Lissajous curve used in Magnetic Particle Imaging [9].

Degenerate Lissajous curve generating the Padua points $[3,4]$.

Observation 2:

- Morrow-Patterson-Xu (MPX) points are more symmetric compared to Padua points. In the literature, there is however no generating curve given for MPX points.
- Interpolation spaces have a slightly more complicated structure [11].

Is there a way to get a single Lissajous curve that connects these points?

Questions considered in this tutorial

- Is there a unified interpolation framework including Padua points, MPX points and Lissajous curves?
- Is there a single generating curve for the MPX points? What are the alternatives?
- Are there fundamental differences in the convergence and the implementation of the different schemes?

Definition of d-dimensional Lissajous curves

We will consider d-dimensional Lissajous curves

$$
\underline{\underline{f}} \underline{\kappa, u, \underline{u}}_{(\underline{m}}: \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{d}}
$$

in the parametrized form
$\underline{\ell}_{\underline{\kappa}, \underline{\boldsymbol{u}}}^{(\boldsymbol{m})}(t)=\left(u_{1} \cos \left(\frac{\operatorname{lcm}[\underline{\boldsymbol{m}}] \cdot t-\kappa_{1} \pi}{m_{1}}\right), \cdots, u_{\mathrm{d}} \cos \left(\frac{\operatorname{lcm}[\underline{\boldsymbol{m}}] \cdot t-\kappa_{\mathrm{d}} \pi}{m_{\mathrm{d}}}\right)\right)$,
where

- $\underline{\boldsymbol{m}}=\left(m_{1}, \ldots, m_{\mathrm{d}}\right) \in \mathbb{N}^{\mathrm{d}}$ are 'frequency dividers',
- $\underline{\boldsymbol{u}} \in\{-1,1\}^{\mathrm{d}}$ are 'reflection parameters',
- $\operatorname{lcm}[\underline{m}]$ is the least common multiple of $m_{1}, \ldots, m_{\mathrm{d}}$,
- $\underline{\boldsymbol{\kappa}}=\left(\kappa_{1}, \ldots, \kappa_{\mathrm{d}}\right) \in \mathbb{R}^{\mathrm{d}}$ specifies additional phase shifts.

The definition guarantees that in any case the minimal period of $\underline{\underline{\ell}} \underline{\underline{\mathcal{L}}, \underline{\mu}}(\underline{\boldsymbol{m}})$ is 2π.
We know: If the entries m_{i} are pairwise relatively prime, then the Lissajous curve $\underline{\ell}_{\underline{\varepsilon}}^{(\boldsymbol{m})}$ generates the points $\underline{L C}_{\underline{\varepsilon}}^{(\boldsymbol{m})}$ [6].

If we try to use Lissajous curves to generate the MPX points we get

Using $\underline{\ell}_{(0,0)}^{(4,4)}(t)=(\cos t, \cos t)$ as generating curve.

Using $\underline{\ell}_{(0,0)}^{(4,4)}(t), \underline{\ell}_{(0,2)}^{(4,4)}(t)$ and $\underline{\ell}_{(0,4)}^{(4,4)}(t)$ as generating curves.

Observation: For MPX points in general more than 1 generating curve is needed. The number depends on $\underline{\boldsymbol{m}}$ and $\underline{\boldsymbol{\kappa}}$.

The union of all generating Lissajous curves forms an algebraic variety

$$
\mathcal{C}_{\underline{\kappa}}^{(\underline{m})}=\left\{\underline{\boldsymbol{x}} \in[-1,1]^{\mathrm{d}} \mid(-1)^{\kappa_{1}} T_{m_{1}}\left(x_{1}\right)=\ldots=(-1)^{\kappa_{\mathrm{d}}} T_{m_{\mathrm{d}}}\left(x_{\mathrm{d}}\right)\right\},
$$

where T_{m} denote the Chebyshev polynomial of first kind of degree m. The variety $\mathcal{C}_{\underline{\underline{L}}}^{(\underline{m})}$ is called Chebyshev variety.

Theorem

We have
$\underline{\mathbf{L C}_{\underline{\kappa}}^{(\boldsymbol{m})}}=\left\{\underline{\boldsymbol{x}} \in[-1,1]^{\mathrm{d}} \mid(-1)^{\kappa_{1}} T_{m_{1}}\left(x_{1}\right)=\ldots=(-1)^{\kappa_{\mathrm{d}}} T_{m_{\mathrm{d}}}\left(x_{\mathrm{d}}\right) \in\{ \pm 1\}\right\}$.

Note: the elements of $\underline{\mathbf{L C}}_{\underline{\kappa}}^{(\boldsymbol{m})}$ in the interior of the hypercube $[-1,1]^{\mathrm{d}}$ are exactly the singular points of the variety $\mathcal{C}_{\underline{\kappa}}^{(\underline{m})}$.

Characterize the Lissajous curves inside $\mathcal{C}_{\kappa}^{(m)}$

Proposition

Let $\boldsymbol{m} \in \mathbb{N}^{\mathrm{d}}$. There exist (not necessarily uniquely determined) integer vectors $\underline{\boldsymbol{m}}^{\sharp}, \underline{\boldsymbol{m}}^{\boldsymbol{b}} \in \mathbb{N}^{\mathrm{d}}$ such that the following properties are satisfied:

For all $i \in\{1, \ldots, d\}: m_{i}=m_{i}^{b} m_{i}^{\sharp}$
For all $\mathrm{i} \in\{1, \ldots, \mathrm{~d}\}: m_{\mathrm{i}}^{b}$ and m_{i}^{\sharp} are relatively prime.
The numbers $m_{1}^{\sharp}, \ldots, m_{d}^{\sharp}$ are pairwise relatively prime.
We have $\operatorname{Icm}[\underline{\boldsymbol{m}}]=\mathrm{p}\left[\underline{\boldsymbol{m}}^{\sharp}\right]=\prod_{\mathrm{i}=1}^{\mathrm{d}} m_{\mathrm{i}}^{\sharp}$.

Define the sets

$$
H^{\left(\underline{m}^{\sharp}\right)}=\left\{0, \ldots, 2 \mathrm{p}\left[\underline{\boldsymbol{m}}^{\sharp}\right]-1\right\} \quad \text { and } \quad \underline{\boldsymbol{R}}^{\left(\boldsymbol{m}^{b}\right)}=\underset{\mathrm{i}=1}{\mathrm{~d}}\left\{0, \ldots, m_{\mathrm{i}}^{\mathrm{b}}-1\right\} .
$$

Proposition

Let $\underline{\boldsymbol{m}}, \underline{\boldsymbol{m}}^{\sharp}, \underline{\boldsymbol{m}}^{b} \in \mathbb{N}^{\mathrm{d}}$ satisfy the conditions (1a)-(1d), then
a) For all $(I, \underline{\rho}) \in H^{\left(\underline{m}^{\sharp}\right)} \times \underline{\boldsymbol{R}}^{\left(\underline{m}^{\mathrm{b}}\right)}$, there exists a uniquely determined $\underline{\boldsymbol{i}} \in \underline{\mathbf{I}}_{\underline{\underline{\varepsilon}}}^{(\underline{m})}$ and a (not necessarily unique) $\underline{\boldsymbol{v}} \in\{-1,1\}^{\text {d }}$ such that

$$
\forall \mathrm{i} \in\{1, \ldots, \mathrm{~d}\}: \quad i_{\mathrm{i}} \equiv v_{\mathrm{i}}\left(I-2 \rho_{\mathrm{i}} m_{\mathrm{i}}^{\sharp}-\kappa_{\mathrm{i}}\right) \quad \bmod 2 m_{\mathrm{i}} .
$$

Thus, a function $\underline{j}: H^{\left(\underline{m}^{\sharp}\right)} \times \underline{R}^{\left(\underline{m}^{\mathrm{b}}\right)} \rightarrow \underline{\underline{I}}_{\underline{\underline{q}}}^{(\underline{m})}$ is well defined by

$$
\underline{\boldsymbol{j}}(1, \underline{\boldsymbol{\rho}})=\underline{\boldsymbol{i}} .
$$

b) Let $\mathrm{M} \subseteq\{1, \ldots, \mathrm{~d}\}$. If $\underline{\boldsymbol{i}} \in \underline{\underline{\underline{\varepsilon}}} \underline{\underline{\underline{c}}}_{(\underline{m})}^{(a n d} \underline{\underline{z}}_{\underline{\underline{m}}}^{(\boldsymbol{m})} \in \underline{\boldsymbol{F}}_{\mathrm{M}}$, then

$$
\#\left\{(I, \underline{\boldsymbol{\rho}}) \in H^{\left(\boldsymbol{m}^{\sharp}\right)} \times \underline{\boldsymbol{R}}^{\left(\underline{\boldsymbol{m}}^{b}\right)} \mid \underline{\boldsymbol{j}}(I, \underline{\boldsymbol{\rho}})=\underline{\boldsymbol{i}}\right\}=2^{\# \mathrm{M}} .
$$

We consider the following set of Lissajous curves

$$
\underline{\mathfrak{L}}_{\underline{\kappa_{\underline{\prime}}}}^{\left(\boldsymbol{m}^{\sharp}, \underline{m}^{b}\right)}=\left\{\underline{\ell}_{\left(\kappa_{1}+2 \rho_{1} m_{1}^{\sharp}, \ldots, \kappa_{\mathrm{d}}+2 \rho_{\mathrm{d}} m_{\mathrm{d}}^{\sharp}\right)}^{(\underline{\boldsymbol{m}})} \mid \boldsymbol{\rho} \in \underline{\boldsymbol{R}}^{\left(\underline{\underline{m}}^{b}\right)}\right\} .
$$

Theorem

Let $\underline{\boldsymbol{m}}, \underline{\boldsymbol{m}}^{\sharp}, \underline{\boldsymbol{m}}^{b} \in \mathbb{N}^{\mathrm{d}}$ satisfy the conditions (1a)-(1d).
a) Using the sampling points $t_{l}^{(\underline{m})}$, we have

$$
\underline{\mathbf{L C}}_{\underline{\underline{\varepsilon}}}^{(\boldsymbol{m})}=\left\{\underline{\ell}\left(t_{l}^{(\underline{\boldsymbol{m}})}\right) \mid \underline{\ell} \in \underline{\mathfrak{L}}_{\underline{\underline{k}}}^{\left(\boldsymbol{m}^{\sharp}, \underline{m}^{b}\right)}, l \in H^{\left(\underline{m}^{\sharp}\right)}\right\} .
$$

b) The affine Chebyshev variety $\mathcal{C}_{\underline{\underline{k}}}^{(\boldsymbol{m})}$ can be decomposed as

$$
\mathcal{C}_{\underline{\kappa}}^{(\underline{m})}=\bigcup_{\left.\underline{\ell} \in \underline{\mathfrak{R}}_{\underline{m^{4}}} \boldsymbol{m}^{\prime}, \underline{m}^{b}\right)} \ell([0,2 \pi)) .
$$

Example: MPX points in 2D

One possible decomposition of $\underline{\boldsymbol{m}}$ is given by $\underline{\boldsymbol{m}}^{\sharp}=(m, 1), \underline{\boldsymbol{m}}^{b}=(1, m)$. The respective sets $H^{\left(\underline{m}^{\sharp}\right)}$ and $R\left(\underline{\underline{m}}^{\text {b }}\right)$ are given by

$$
H^{\left(\underline{m}^{\sharp}\right)}=\{0, \ldots, 2 m-1\} \quad \text { and } \quad \underline{R}^{\left(\boldsymbol{m}^{b}\right)}=\{0\} \times\{0, \ldots, m-1\} .
$$

Lissajous-Chebyshev points

Example: Padua points and Lissajous curves

If m_{1} and m_{2} are relatively prime, the decomposition of $\underline{\boldsymbol{m}}$ is given by $\underline{\boldsymbol{m}}^{\sharp}=\left(m_{1}, m_{2}\right), \underline{\boldsymbol{m}}^{b}=(1,1)$. Then

$$
H^{\left(\underline{m}^{\sharp}\right)}=\left\{0, \ldots, 2 m_{1} m_{2}-1\right\} \quad \text { and } \quad \underline{\boldsymbol{R}}^{\left(\underline{m}^{\mathrm{b}}\right)}=\{0\} \times\{0\} .
$$

$$
\underline{\ell}_{(0,0)}^{(5,3)}(t)=(\cos 3 t, \cos 5 t)
$$

$$
\underline{\ell}_{(0,0)}^{(6,5)}(t)=(\cos 5 t, \cos 6 t)
$$

Polynomial interpolation on $\mathbf{L C}_{\underline{\underline{k}}}^{(\underline{m})}$

We are looking for polynomial interpolants of the form

$$
\begin{aligned}
& P_{\underline{\boldsymbol{\kappa}}, h}^{(\underline{m})}(\underline{\boldsymbol{x}})=\sum_{\underline{\boldsymbol{\gamma}} \in \underline{\underline{\mathbf{I}_{\underline{\underline{m}}}^{(m)}}}} c_{\underline{\boldsymbol{\gamma}}}(h) T_{\underline{\boldsymbol{\gamma}}}(\underline{\boldsymbol{x}}), \\
& \tilde{P}_{\underline{\kappa}, h}^{(\underline{m})}(\underline{x})=\sum_{\underline{\gamma} \in \underline{\bar{\Gamma}}_{\underline{\underline{\kappa}}}^{(\underline{m})}} \frac{c_{\underline{\gamma}}(h)}{\#[\underline{\gamma}]} T_{\underline{\boldsymbol{\gamma}}}(\underline{x}),
\end{aligned}
$$

such that the following interpolation condition is satisfied:

$$
\begin{equation*}
P_{\underline{\kappa}, h}^{(\underline{\boldsymbol{m}})}\left(\underline{\underline{z}}_{\underline{\underline{m}}}^{(\underline{\underline{m}})}\right)=\tilde{P}_{\underline{\kappa}, h}^{(\underline{\boldsymbol{m}})}\left(\underline{\underline{z}}_{\underline{\underline{(}}}^{(\underline{m})}\right)=h(\underline{\boldsymbol{i}}), \quad \underline{\boldsymbol{i}} \in \underline{\mathbf{l}}_{\underline{\kappa}}^{(\boldsymbol{m})} . \tag{IP}
\end{equation*}
$$

- $T_{\underline{\gamma}}(\underline{\boldsymbol{x}})=\prod_{\mathrm{i}=1}^{\mathrm{d}} \cos \left(\gamma_{\mathrm{i}} \arccos x_{\mathrm{i}}\right)$ are multivariate Chebyshev polynomials,
- $\underline{\underline{\Gamma}}_{\underline{\kappa}}^{(\boldsymbol{m})}, \underline{\boldsymbol{\Gamma}}_{\underline{\kappa}}^{(\underline{\boldsymbol{m}})}$ are appropriate spectral index sets.

Examples

For the Padua points $\underline{\mathbf{L C}}_{(0,0)}^{(6,5)}$ we use the index set $\underline{\Gamma}_{(0,0)}^{(6,5)}$.

For the MPX points $\underline{\mathbf{L C}}_{(0,0)}^{(5,5)}$, we can use the index set $\overline{\mathbf{\Gamma}}^{(0,0)}(5,5)$.

General defintion of spectral index sets $\bar{\Gamma}_{\underline{\kappa}}^{(\underline{m})}$

For $\underline{\boldsymbol{m}} \in \mathbb{N}^{d}, \underline{\boldsymbol{\kappa}} \in \mathbb{N}^{\mathrm{d}}, \mathfrak{r} \in\{0,1\}$, we define the cubic index sets

$$
\underline{\boldsymbol{\Gamma}}_{\underline{\kappa}, \mathfrak{r}}^{(\boldsymbol{m})}=\left\{\begin{array}{l|l}
\underline{\gamma} \in \mathbb{N}_{0}^{\mathrm{d}} & \begin{array}{l}
\forall \mathrm{i} \text { with } \kappa_{\mathrm{i}} \equiv \mathfrak{r} \quad \bmod 2: 2 \gamma_{\mathrm{i}} \leq m_{\mathrm{i}}, \\
\forall \mathrm{i} \text { with } \kappa_{\mathrm{i}} \equiv \equiv \mathrm{r}
\end{array} \\
\bmod 2: 2 \gamma_{\mathrm{i}}<m_{\mathrm{i}}
\end{array}\right\},
$$

and the spectral index sets
$\overline{\boldsymbol{\Gamma}}_{\underline{\kappa}}^{(\underline{\boldsymbol{m}})}=\left\{\begin{array}{l|ll}\underline{\gamma} \in \mathbb{N}_{0}^{d} & \begin{array}{ll}\forall \mathrm{i} \in\{1, \ldots, \mathrm{~d}\}: & \gamma_{\mathrm{i}} \leq m_{\mathrm{i}}, \\ \forall \mathrm{i}, \mathrm{j} \text { with } \mathrm{i} \neq \mathrm{j}: & \gamma_{\mathrm{i}} / m_{\mathrm{i}}+\gamma_{\mathrm{j}} / m_{\mathrm{j}} \leq 1, \\ & \forall \mathrm{i}, \mathrm{j} \text { with } \kappa_{\mathrm{i}} \not \equiv \kappa_{\mathrm{j}}\end{array} & \bmod 2: \\ \left(\gamma_{\mathrm{i}}, \gamma_{\mathrm{j}}\right) \neq\left(m_{\mathrm{i}} / 2, m_{\mathrm{j}} / 2\right)\end{array}\right\}$.
For $\mathrm{d}=2, \overline{\boldsymbol{\Gamma}}_{\underline{\kappa}}^{(\boldsymbol{m})}$ contains all integer vectors inside a triangle.
If $\mathrm{d}>2$, the spectral index set $\underline{\bar{\Gamma}}_{\underline{\boldsymbol{\kappa}}}^{(\underline{m})}$ has a polyhedral structure.

Examples in 3D

The spectral index set $\underline{\bar{\Gamma}}_{(0,0,0)}^{(4,4,4)}$ for the MPX points.

The spectral index set $\overline{\mathbf{\Gamma}}_{(0,0,1)}^{(5,4,2)}$.

We introduce a class decomposition $\left[\overline{\underline{\boldsymbol{T}}}_{\underline{\kappa}}^{(\underline{m})}\right]$ of $\overline{\underline{\boldsymbol{\Gamma}}}_{\underline{\kappa}}^{(\underline{m})}$. We define

$$
\mathrm{K}^{(\underline{m})}(\underline{\gamma})=\left\{\mathrm{j} \in\{1, \ldots, \mathrm{~d}\} \mid \gamma_{\mathrm{j}} / m_{\mathrm{j}}=\max \underline{(\underline{m})}^{\underline{\gamma}]}\right\}
$$

where $\max ^{(\underline{m})}[\underline{\gamma}]=\max \left\{\gamma_{\mathrm{i}} / m_{\mathrm{i}} \mid \mathrm{i} \in\{1, \ldots, \mathrm{~d}\}\right\}$.
Further, using the flip operator

$$
\mathfrak{s}_{j}^{(\underline{m})}(\underline{\gamma})=\left(\gamma_{1}, \ldots, \gamma_{j-1}, m_{j}-\gamma_{j}, \gamma_{j+1}, \ldots, \gamma_{d}\right)
$$

we define the sets $\mathfrak{S}^{(\underline{m})}(\underline{\gamma})=\left\{\mathfrak{s}_{j}^{(\underline{m})}(\underline{\gamma}) \mid j \in K^{(\underline{m})}(\underline{\gamma})\right\}$.
Now, we introduce the class decomposition $\left[\underline{\boldsymbol{\Gamma}_{\underline{\kappa}}}\right]$ as

$$
\left[\overline{\underline{\Gamma}}_{\underline{\kappa}}^{(\boldsymbol{m})}\right]=\left\{\{\underline{\boldsymbol{\gamma}}\} \mid \underline{\boldsymbol{\gamma}} \in \underline{\mathbf{\Gamma}}_{\underline{\kappa}, 0}^{(\underline{m})}\right\} \cup\left\{\mathfrak{S}^{(\boldsymbol{m})}(\underline{\gamma}) \mid \underline{\gamma} \in \underline{\mathbf{\Gamma}}_{\underline{\kappa}, 1}^{(\underline{m})}\right\} .
$$

The set $\underline{\boldsymbol{\Gamma}}_{\underline{\kappa}}^{(\underline{m})}$ denotes a set of representatives of $\left[\overline{\underline{\Gamma}}_{\underline{\boldsymbol{\kappa}}}^{(\underline{m})}\right]$.

By this definition of the class decomposition $\left[\overline{\underline{\Gamma}}_{\underline{\kappa}}^{(\underline{m})}\right]$ we get

$$
\#\left[\underline{\bar{\Gamma}}_{\underline{\kappa}}^{(\underline{m})}\right]=\# \underline{\boldsymbol{\Gamma}}_{\underline{\kappa}, 0}^{(\boldsymbol{m})}+\# \underline{\boldsymbol{\Gamma}}_{\underline{\kappa}, 1}^{(\boldsymbol{m})}=\# \underline{\underline{\underline{I}}}_{\underline{\kappa}, 1}^{(\underline{m})}+\# \underline{\mathbf{I}}_{\underline{\kappa}, 0}^{(\underline{m})}=\# \underline{\underline{\varepsilon}}_{\underline{\kappa}}^{(\boldsymbol{m})}=\# \underline{\mathbf{L}}_{\underline{\kappa}}^{(\boldsymbol{m})}
$$

In special cases (as for instance the Padua points) the situation is simpler.

Proposition

Let $\underline{\boldsymbol{\kappa}} \in \mathbb{Z}^{\mathrm{d}}$. The following statements are equivalent.
i) We have $\operatorname{gcd}\left\{m_{\mathrm{i}}, m_{\mathrm{j}}\right\} \leq 2$ for all $\mathrm{i}, \mathrm{j} \in\{1, \ldots, \mathrm{~d}\}$ with $\mathrm{i} \neq \mathrm{j}$.
ii) All classes in $\left[\underline{\underline{\bar{\Gamma}}_{\underline{\boldsymbol{\kappa}}}^{(\underline{m}}}\right] \backslash\left\{\mathfrak{S}^{(\underline{m})}(\underline{\mathbf{0}})\right\}$ consist of precisely one element.

Examples

The spectral index set $\overline{\mathbf{\Gamma}}_{(0,0)}^{(4,4)}$ for MPX points.

The spectral index set $\overline{\mathbf{\Gamma}}_{(0,0,1)}^{(5,4,2)}$.

Discrete orthogonality structure

For $\underline{\boldsymbol{i}} \in \underline{\mathbf{I}}_{\underline{\underline{k}}}^{(\boldsymbol{m})}$, the weights are given by

$$
\mathfrak{w}_{\underline{\kappa}, \underline{i}}^{(\underline{m})}=2^{\# \mathrm{M}} /(2 \mathrm{p}[\underline{\boldsymbol{m}}]) \quad \text { if } \underline{\underline{z}}_{\underline{i}}^{(\boldsymbol{m})} \in \underline{\mathbf{L C}}_{\underline{\boldsymbol{\kappa}}}^{(\boldsymbol{m})} \cap \underline{\boldsymbol{F}}_{\mathrm{M}}^{\mathrm{d}} .
$$

and the measure $\omega_{\underline{\underline{k}}}^{(\underline{m})}$ on the power set of $\underline{\mathbf{I}}_{\underline{\underline{\kappa}}}^{(\boldsymbol{m})}$ by $\left.\omega_{\underline{\kappa}}^{(\underline{m})}\{\underline{\underline{i}}\}\right)=\mathfrak{w}_{\underline{\kappa}, \underline{i}}^{(\underline{\boldsymbol{m}})}$.
Denote by $\mathcal{L}\left(\underline{\mathbf{I}_{\underline{\kappa}}}(\underline{m})\right.$ the set of the functions $h: \mathbf{I}_{\underline{\kappa}}^{(\underline{m})} \rightarrow \mathbb{C}$.
To prove the unisolvence of the interpolation problem (IP), we show that

$$
\chi_{\underline{\underline{q}}}^{(\underline{m})}(\underline{\boldsymbol{i}})=T_{\underline{\boldsymbol{\gamma}}}\left(\underline{\underline{Z}}_{\underline{\underline{(}}}^{(\underline{\underline{1}})}\right)=\prod_{\mathrm{i}=1}^{\mathrm{d}} \cos \left(\gamma_{\mathrm{i}} \mathrm{i}_{\mathrm{i}} \pi / m_{\mathrm{i}}\right), \quad \underline{\boldsymbol{\gamma}} \in \underline{\boldsymbol{\Gamma}}_{\underline{\mathcal{K}}}^{(\underline{m})},
$$

is an orthogonal basis of the Hilbert space $\mathcal{L}\left(\underline{\mathbf{I}}_{\underline{\mathcal{L}}}^{(\underline{m})}\right)$ with respect to

$$
\langle f, g\rangle_{\omega_{\underline{\underline{\varepsilon}}}^{(m)}}=\sum_{\underline{i} \in \underline{\underline{I}}_{\underline{\underline{\varepsilon}}}^{(\underline{m})}} f(\underline{i}) \overline{g(\underline{i})} \mathfrak{w}_{\underline{\kappa}, \underline{i}}^{(\underline{m})} .
$$

Proposition

For $\underline{\gamma} \in \mathbb{N}_{0}^{\boldsymbol{d}}$ and $\chi_{\underline{\underline{q}}}^{(\underline{\underline{m}})} \in \mathcal{L}\left(\underline{\underline{I}_{\underline{\underline{L}}}^{(\underline{m})}}\right)$ we have

$$
\sum_{\underline{i} \in \underline{I}_{\underline{\underline{k}}}^{(\underline{m})}} \chi_{\underline{\underline{q}}}^{(\underline{m})}(\underline{i}) \mathfrak{w}_{\underline{\mathfrak{k}}}^{(\underline{m})} \neq 0
$$

if and only if
there exists $\underline{\boldsymbol{h}} \in \mathbb{N}_{0}^{\mathrm{d}}$ with $\gamma_{\mathrm{i}}=h_{\mathrm{i}} m_{\mathrm{i}}, \mathrm{i}=1, \ldots, \mathrm{~d}$, and $\sum_{\mathrm{i}=1}^{\mathrm{d}} h_{\mathrm{i}} \in 2 \mathbb{N}_{0}$.

For the proof of the orthogonality we further need the product formula

$$
\chi_{\underline{\underline{q}}}^{(\underline{\boldsymbol{m}})} \chi_{\underline{\boldsymbol{\gamma}}^{\prime}}^{(\underline{\boldsymbol{m}})}=\frac{1}{2^{\mathrm{d}}} \sum_{\underline{\boldsymbol{v}} \in\{-1,1\}^{\mathrm{d}}} \chi_{\left(\left|\gamma_{1}+v_{1} \gamma_{1}^{\prime}\right|, \ldots,\left|\gamma_{\mathrm{d}}+v_{\mathrm{d}} \gamma_{\mathrm{d}}^{\prime}\right|\right)}^{(\underline{\boldsymbol{m}})}
$$

Main interpolation result

We consider $\Pi_{\underline{\kappa}}^{(\boldsymbol{m})}=\operatorname{span}\left\{T_{\underline{\boldsymbol{\gamma}}} \mid \underline{\gamma} \in \underline{\boldsymbol{\Gamma}}_{\underline{\kappa}}^{(\boldsymbol{m})}\right\}$ and an appropriately defined space $\tilde{\Pi}_{\underline{\kappa}}^{(\underline{m})}$ regarding (anti-)symmetries on the classes $[\underline{\gamma}]$, see $[7]$.

Theorem

For $h \in \mathcal{L}\left(\underline{\mathbf{I}}_{\underline{\underline{\kappa}}}^{(\underline{m})}\right)$, the unique coefficients $c_{\underline{\gamma}}(h)$ such that the polynomials
solve the interpolation problem (IP) in $\Pi_{\underline{\underline{\kappa}}}^{(\boldsymbol{m})}$ or $\tilde{\Pi}_{\underline{\underline{\kappa}}}^{(\boldsymbol{m})}$, respectively, are

$$
c_{\underline{\gamma}}(h)=\frac{1}{\left\|\chi_{\underline{\underline{q}}}^{(\underline{m})}\right\|_{\omega_{\underline{\underline{\varepsilon}}}^{(m)}}^{2}}\left\langle h, \chi_{\underline{\underline{q}}}^{(\underline{m})}\right\rangle_{\omega_{\underline{\underline{\varepsilon}}}^{(m)}} .
$$

Efficient computation of the interpolating polynomial

We introduce
and the d-dimensional discrete cosine transform $\hat{g}_{\underline{\kappa}, \underline{\gamma}}^{(\underline{m})}$ of $g_{\underline{\kappa}}^{(\underline{m})}$ starting with

$$
\hat{g}_{\underline{\kappa},\left(\gamma_{1}\right)}^{(\underline{m})}\left(i_{2}, \ldots, i_{\mathrm{d}}\right)=\sum_{i_{i}=0}^{m_{1}} g_{\underline{\underline{\kappa}}}^{(\boldsymbol{m})}(\underline{\boldsymbol{i}}) \cos \left(\gamma_{1} i_{1} \pi / m_{1}\right)
$$

and, then proceeding recursively for $\mathrm{i}=2, \ldots, \mathrm{~d}$ with

$$
\hat{\boldsymbol{g}}_{\underline{\kappa},\left(\gamma_{1}, \ldots, \gamma_{i}\right)}^{(\underline{m})}\left(i_{i+1}, \ldots, i_{\mathrm{d}}\right)=\sum_{\mathrm{i}_{\mathrm{i}}=0}^{m_{\mathrm{i}}} \hat{\boldsymbol{g}}_{\underline{\kappa},\left(\gamma_{1}, \ldots, \gamma_{i-1}\right)}^{(\underline{m})}\left(i_{\mathrm{i}}, \ldots, i_{\mathrm{d}}\right) \cos \left(\gamma_{\mathrm{i}} \dot{i}_{\mathrm{i}} \pi / m_{\mathrm{i}}\right) .
$$

Then, we have

$$
c_{\underline{\gamma}}(h)=\left\|\chi_{\underline{\underline{q}}}^{(\underline{\boldsymbol{m}})}\right\|_{\omega_{\underline{\underline{c}}}^{(\underline{m})}}^{-2} \hat{g}_{\underline{\underline{\kappa}}}^{(\underline{m})}(\underline{\gamma}) .
$$

Using FFT this can be done in $\mathcal{O}(\mathrm{p}[\underline{\boldsymbol{m}}] \log \mathrm{p}[\underline{\boldsymbol{m}}])$ steps.

Matlab toolboxes for interpolation at the nodes $\underline{\mathbf{L C}}_{\underline{\underline{k}}}^{(\boldsymbol{m})}$ are available at https://github.com/WolfgangErb/LC2Ditp https://github.com/WolfgangErb/LC3Ditp
[1] Bojanov, B., and Petrova, G.
On minimal cubature formulae for product weight functions. J. Comput. Appl. Math. 85, 1 (1997), 113-121.
[2] Bos, L., De Marchi, S., And Vianello, M.
Polynomial approximation on Lissajous curves in the d-cube. Appl. Numer. Math. 116 (2017), 47-56.
[3] Bos, L., Caliari, M., De Marchi, S., Vianello, M., and Xu, Y.
Bivariate Lagrange interpolation at the Padua points: the generating curve approach. J. Approx. Theory 143, 1 (2006), 15-25.
[4] Caliari, M., De Marchi, S., Sommariva, A., and Vianello, M.
Padua2DM: fast interpolation and cubature at the Padua points in Matlab/Octave. Numer. Algorithms 56, 1 (2011), 45-60.
[5] De Marchi, S., Vianello, M., and Xu, Y.
New cubature formulae and hyperinterpolation in three variables. BIT 49, 1 (2009), 55-73.
[6] Dencker, P., And Erb, W.
Multivariate polynomial interpolation on Lissajous-Chebyshev nodes. J. Appr. Theory 219 (2017), 15-45.
[7] Dencker, P., and Erb, W.
A unifying theory for multivariate polynomial interpolation on general Lissajous-Chebyshev nodes. arXiv:1711.00557 (2017).
[8] Dencker, P., Erb, W., Kolomoitsev, Y., and Lomako, T.
Lebesgue constants for polyhedral sets and polynomial interpolation on LC nodes. J. Complexity 43 (2017), 1-27.
[9] Erb, W., Kaethner, C., Dencker, P., and Ahlborg, M.
A survey on bivariate Lagrange interpolation on Lissajous nodes. Dolomites Research Notes on Approximation 8 (2015), 23-36.
[10] Morrow, C. R., and Patterson, T. N. L.
Construction of algebraic cubature rules using polynomial ideal theory. SIAM J. Numer. Anal. 15 (1978), 953-976.
[11] Xu, Y.
Lagrange interpolation on Chebyshev points of two variables. J. Approx. Theory 87, 2 (1996), 220-238.

