Edge preserving and noise reducing reconstruction for magnetic particle imaging

Martin Storath, Andreas Weinmann

joint work with Christina Brandt, Martin Hofmann, Tobias Knopp, Johannes Salamon, Alexander Weber

Canazei

September 2017

MPI is an emerging imaging modality based on non-linear response of magnetic nanoparticles to an applied magnetic field

- Invention in 2005 by Gleich and Weizenecker
- First in-vivo experiment in 2009

Features of MPI

- *MPI*. Spatial resolution: 1mm ; measurement time: 0.1 sec.
- MRT. Spatial resolution: 1mm ; measurement time: 10 sec -30 min.
- PET. Spatial resolution: 4mm ; measurement time: 1 min.

Potential applications: cancer detection, blood flow monitoring, tracking of instruments in cardiovascular intervention

Prototypical application: Catheter tracking for angioplasty

Stenosis phantom before (top) and after (bottom) the intervention by a balloon catheter

Forward model of MPI as linear system

 $Au \approx f$

where

- $f \in \mathbb{R}^{M}$ acquired (noisy) data
- u unknown particle concentration
- A linear system function $A : \mathbb{R}^{n_1 \times n_2 \times n_3} \to \mathbb{R}^M$, as matrix $\widetilde{A} \in \mathbb{R}^{N \times M}$

System function A

- here: measuremenent-based using a delta probe
- alternative: model-based reconstruction (Knopp '10; Goodwill/Conolly '10; März/Weinmann '15)

Image reconstruction ill-posed inverse problem (Knopp '08; März/Weinmann '15)

ightarrow regularization necessary

Currently used reconstruction method: Tikhonov regularization with non-negativity constraints

$$u_{\rho} = \arg \min_{u \ge 0} \rho ||u||^2 + \frac{1}{2} ||Au - f||^2$$

- + u_{ρ} solution of constrained linear system \rightsquigarrow standard solvers
- − Prior $\rho ||u||^2$ not well matched to image properties \rightarrow limited noise suppression, loss of contrast, smoothes out edges

Inflating balloon catheter over time, maximum intensity projection of reconstruction result

Image characteristics

- Catheter and background have approximately homogeneous concentration
- Catheter volume is small compared to background
- Physical assumption: particle concentration is non-negative

Fused lasso model (Tibshirani et al. '05) with non-negativity constraint

$$u^{\#} = \arg\min_{u\geq 0} \alpha \operatorname{TV}(u) + \beta ||u||_1 + \frac{1}{2} ||Au - f||_2^2.$$

Discrete version in 1D

$$u^{\#} = \arg\min_{u \in (\mathbb{R}^+_0)^n} \alpha \sum_i |u_{i+1} - u_i| + \beta \sum_i |u_i| + \frac{1}{2} \sum_i |(Au)_i - f_i|^2.$$

Simulated data

Simulated data

Real data of a physical phantom

(two homogeneous spots of length 4 mm in a 5 mm distance, left spot has double particle concentration right spot)

Finite difference discretization (Blake/Zisserman '87; Chambolle '99)

$$\mathsf{TV}_{2\mathsf{D}}(u) = \sum_{s=1}^{S} \omega_{s} ||\nabla_{a_{s}} u||_{1} = \sum_{s=1}^{S} \sum_{ij} \omega_{s} |u_{ij} - u_{(i,j)+a_{s}}|,$$

with a finite difference system $\mathcal{N} = \{a_1, ..., a_S\} \subset \mathbb{Z}^2 \setminus \{0\}$ and weights $\omega_1, ..., \omega_S > 0$.

Common finite difference systems

$$\mathcal{N}_0 = \{(1,0), (0,1)\},\$$
$$\mathcal{N}_1 = \{(1,0), (0,1), (1,1), (1,-1)\},\$$
$$\mathcal{N}_2 = \{(1,0), (0,1), (1,1), (1,-1), (-2,-1), (-2,1), (2,1), (2,-1)\},\$$

Discretization (system N, weights ω) gives rise to a metric on \mathbb{R}^2 induced by

$$\|\mathbf{a}\|_{\mathcal{N}} = \sum_{s=1}^{S} \omega_s |\langle \mathbf{a}, \mathbf{a}_s \rangle|, \quad \mathbf{a} \in \mathbb{R}^2.$$

Proposed design criterion for ω (Storath/Weinmann/Frikel/Unser '15)

$$\|a\|_{\mathcal{N}} \stackrel{!}{=} \|a\|_2$$
 for all $a \in \mathcal{N}$

 \rightsquigarrow linear system

$$T\omega = q$$

with
$$T_{rs} = |\langle a_r, a_s \rangle|$$
 and $q_r = ||a_r||_2$

Measure of isotropy *E*: Ratio of shortest and longest vector on the red line (E = 1 is optimal) (Chambolle '99)

Discretization of the form

$$\mathsf{TV}_{3\mathsf{D}}(u) = \sum_{s=1}^{S} \omega_s ||\nabla_{\mathsf{a}_s} u||_1 = \sum_{s=1}^{S} \sum_{ijk} \omega_s |u_{ijk} - u_{(i,j,k)+\mathsf{a}_s}|.$$

with 26-connected neighborhood

$$\mathcal{N}_{3D} = \{ (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,-1,0), (1,0,1), \\ (1,0,-1), (0,1,1), (0,1,-1), (1,1,1), (1,1,-1), (1,-1,-1), (-1,1,-1) \}$$

Discretization of the form

$$\mathsf{TV}_{3\mathsf{D}}(u) = \sum_{s=1}^{S} \omega_{s} ||\nabla_{a_{s}} u||_{1} = \sum_{s=1}^{S} \sum_{ijk} \omega_{s} |u_{ijk} - u_{(i,j,k)+a_{s}}|.$$

with 26-connected neighborhood

$$\begin{split} \mathcal{N}_{\text{3D}} &= \{(1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,-1,0), (1,0,1), \\ &\quad (1,0,-1), (0,1,1), (0,1,-1), (1,1,1), (1,1,-1), (1,-1,-1), (-1,1,-1)\} \end{split}$$

MPI scanner configuration: z-direction has double resolution of x-y resolution

 \sim incorporate into weight design $T\omega = q$ by setting right hand side to

$$q_s = (\sum_{i=1}^3 (\delta_i \cdot (a_s)_i)^2)^{1/2}.$$

where δ vector of voxel face areas, $\delta = (\Delta y \Delta z, \Delta x \Delta z, \Delta x \Delta y)$

Problem: Solving $T\omega = q$ can lead to negative weights

ightarrow solve in least squares sense with non-negativity constraint

$$\min_{\omega} \|T\omega - q\|_2^2, \quad \text{s.t.} \quad \omega \ge 0.$$

Left: Desired distances, Center: anisotropic discretization (8-NH), Right: proposed discretization (based on 26-NH)

Discretization of fused lasso problem

$$u^{\#} = \arg\min_{u} \alpha \sum_{s=1}^{S} \omega_{s} ||\nabla_{a_{s}}u||_{1} + \beta ||u||_{1} + I_{+}(u) + \frac{1}{2} ||Au - f||_{2}^{2},$$

where $I_+(u)$ is equal to 0 if $u_{ij} \ge 0$ for all *i*, *j*, and equal to ∞ otherwise.

Proposed splitting

$$u^{\#} = \arg\min_{u} \sum_{s=1}^{S} \underbrace{(\alpha \omega_{s} ||\nabla_{a_{s}} u||_{1} + \frac{\beta}{S} ||u||_{1})}_{G_{s}(u)} + I_{+}(u) + \underbrace{\frac{1}{2} ||Au - f||_{2}^{2}}_{F(u)},$$

Minimization using generalized forward backward algorithm (Raguet/Fadili/Peyré '13)

Proposed splitting for the fused lasso problem

$$u^{\#} = \arg\min_{u} \sum_{s=1}^{S} \underbrace{(\alpha \omega_{s} ||\nabla_{a_{s}} u||_{1} + \frac{\beta}{S} ||u||_{1})}_{G_{s}(u)} + I_{+}(u) + \underbrace{\frac{1}{2} ||Au - f||_{2}^{2}}_{F(u)}$$

Minimization using a generalized forward backward algorithm (Raguet/Fadili/Peyré '13) Iteration

$$\begin{aligned} z_{1}^{(k+1)} &= z_{1}^{(k)} + \lambda_{k} \left(\operatorname{prox}_{\frac{\gamma G_{1}}{r_{1}}} \left(2u^{(k)} - z_{1}^{(k)} - \gamma \nabla F(u^{(k)}) \right) - u^{(k)} \right), \\ \vdots \\ z_{S}^{(k+1)} &= z_{S}^{(k)} + \lambda_{k} \left(\operatorname{prox}_{\frac{\gamma G_{S}}{r_{S}}} \left(2u^{(k)} - z_{S}^{(k)} - \gamma \nabla F(u^{(k)}) \right) - u^{(k)} \right), \\ z_{S+1}^{(k+1)} &= z_{S+1}^{(k)} + \lambda_{k} \left(\operatorname{prox}_{\frac{\gamma T_{+}}{r_{S+1}}} \left(2u^{(k)} - z_{S+1}^{(k)} - \gamma \nabla F(u^{(k)}) \right) - u^{(k)} \right), \\ u^{(k+1)} &= \sum_{s=1}^{S+1} r_{s} z_{s}^{(k+1)}. \end{aligned}$$

Idea of a (basic, non-relaxed) forward backward algorithm

$$u^{\#} = \arg\min_{u} f_1(u) + f_2(u)$$

with

 f_1 convex, potentially not differentiable, f_2 convex, differentiable.

Iteration

$$u^{(k+1)} = \underbrace{\operatorname{prox}_{\gamma f_1}}_{\operatorname{backward step}} \left(\underbrace{u^{(k)} - \gamma \nabla f_2(u^{(k)})}_{\operatorname{forward step}} \right),$$

where

$$\operatorname{prox}_{\alpha f}(u) = \arg\min_{x} \alpha f(x) + \frac{1}{2} ||x - u||_{2}^{2}$$

Relaxation

$$u^{(k+1)} = u^{(k)} + \lambda_k \left(\text{prox}_{f_1/\beta} \left(u^{(k)} - \frac{1}{\beta} \nabla f_2(u^{(k)}) \right) - u^{(k)} \right).$$

Convergence for $\beta \ge \frac{1}{L}$, *L* Lipschitz constant of ∇f_2 , $\lambda_k \in [\varepsilon, 3/2 - \varepsilon]$, $\varepsilon > 0$ (cf. Combettes '06).

Iteration (Generalized forward backward algorithm)

$$\begin{aligned} z_{1}^{(k+1)} &= z_{1}^{(k)} + \lambda_{k} \left(\operatorname{prox}_{\frac{\gamma G_{1}}{r_{1}}} \left(2u^{(k)} - z_{1}^{(k)} - \gamma \nabla F(u^{(k)}) \right) - u^{(k)} \right), \\ \vdots \\ z_{S}^{(k+1)} &= z_{S}^{(k)} + \lambda_{k} \left(\operatorname{prox}_{\frac{\gamma G_{S}}{r_{S}}} \left(2u^{(k)} - z_{S}^{(k)} - \gamma \nabla F(u^{(k)}) \right) - u^{(k)} \right), \\ z_{S+1}^{(k+1)} &= z_{S+1}^{(k)} + \lambda_{k} \left(\operatorname{prox}_{\frac{\gamma I_{+}}{r_{S+1}}} \left(2u^{(k)} - z_{S+1}^{(k)} - \gamma \nabla F(u^{(k)}) \right) - u^{(k)} \right), \\ u^{(k+1)} &= \sum_{s=1}^{S+1} r_{s} z_{S}^{(k+1)}. \end{aligned}$$

Algorithmic parameters and convergence

 $\gamma = 1/||A^*A||_{op}, \lambda_k = 1, \text{ and } r_1 = \ldots = r_{S+1} = 1/(S+1), \text{ guarantee convergence}$ (Raguet/Fadiil/Peyré '13)

Advantage. We can explicitly compute the involved proximal mappings.

:

Iteration (Generalized forward backward algorithm)

$$z_{S+1}^{(k+1)} = z_{S+1}^{(k)} + \lambda_k \left(\operatorname{prox}_{\frac{\gamma I_+}{I_{S+1}}} \left(2u^{(k)} - z_{S+1}^{(k)} - \gamma \nabla F(u^{(k)}) \right) - u^{(k)} \right),$$

:

Gradient step in F

$$\nabla F(u) = A^*(Au - f).$$

Only matrix vector multiplication O(MN)

 \sim NO linear system for (large and dense) system matrix A needs to be solved!

:

Iteration (Generalized forward backward algorithm)

$$z_{S+1}^{(k+1)} = z_{S+1}^{(k)} + \lambda_k \left(\operatorname{prox}_{\frac{\gamma I_+}{I_{S+1}}} \left(2u^{(k)} - z_{S+1}^{(k)} - \gamma \nabla F(u^{(k)}) \right) - u^{(k)} \right),$$

Gradient step in F

$$\nabla F(u) = A^*(Au - f).$$

Only matrix vector multiplication O(MN)

→ NO linear system for (large and dense) system matrix A needs to be solved!

Proximal mappings of $\mathcal{I}_+ \rightsquigarrow$ cutting negative values

$$(\operatorname{prox}_{\gamma I_+/r_{S+1}}(u))_{ij} = \arg\min_{r\in\mathbb{R}}\gamma \frac{I_+(r)}{r_{S+1}} + \frac{1}{2}||r-u_{ij}||_2^2 = \max(0, u_{ij}).$$

where $I_+(u)$ is equal to 0 if $u_{ij} \ge 0$ for all *i*, *j*, and equal to ∞ otherwise.

Subproblems of the algorithm

Iteration (Generalized forward backward algorithm)

$$\begin{aligned} z_{1}^{(k+1)} &= z_{1}^{(k)} + \lambda_{k} \left(\operatorname{prox}_{\frac{\gamma G_{1}}{r_{1}}} \left(2u^{(k)} - z_{1}^{(k)} - \gamma \nabla F(u^{(k)}) \right) - u^{(k)} \right), \\ \vdots \\ z_{S}^{(k+1)} &= z_{S}^{(k)} + \lambda_{k} \left(\operatorname{prox}_{\frac{\gamma G_{S}}{r_{S}}} \left(2u^{(k)} - z_{S}^{(k)} - \gamma \nabla F(u^{(k)}) \right) - u^{(k)} \right), \\ \vdots \end{aligned}$$

where

$$G_s(u) = \alpha \omega_s \|\nabla_{a_s} u\|_1 + \frac{\beta}{S} \|u\|_1.$$

Proximal mappings of $G_s \rightsquigarrow$ decomposes into pathwise univariate fused lasso problems of the form

$$v^{\#} = \arg\min_{\mathbf{v}\in\mathbb{R}^n} \alpha' \sum_{i=1}^{n-1} |\mathbf{v}_{i+1} - \mathbf{v}_i| + \beta' \sum_{i=1}^n |\mathbf{v}_i| + \frac{1}{2} \sum_{i=1}^n (\mathbf{v}_i - \mathbf{f}'_i)^2.$$

Exact solution $v^{\#}$ of 1D fused lasso problem in two stages

$$v^{\#} = \arg\min_{v\in\mathbb{R}^n} \alpha' \sum_{i=1}^{n-1} |v_{i+1} - v_i| + \beta' \sum_{i=1}^n |v_i| + \frac{1}{2} \sum_{i=1}^n (v_i - f'_i)^2.$$

(i) solve TV problem (i.e. fused lasso with $\beta' = 0$)

$$u^{0} = \arg\min_{v \in \mathbb{R}^{n}} \alpha' \sum_{i=1}^{n-1} |v_{i+1} - v_{i}| + \frac{1}{2} \sum_{i=1}^{n} (v_{i} - f'_{i})^{2}$$

using taut string algorithm (Davies/Kovac '01; Condat '13)

(ii) fused lasso solution by soft-thresholding of u^0 (Friedman et al. '07)

$$v_i^{\#} = \mathsf{ST}_{\beta'}(u_i^0) = \operatorname{sign}(u_i^0) \max(|u_i^0| - \beta', 0), \quad i = 1, \dots, n.$$

Key for fast algorithm: both steps have linear complexity

Reconstruction from simulated data

	_	1.4
-	-	1.2
-	-	1
-		0.8
		0.6
-		0.4
_	-	0.2

NRMSE=0.073, SSIM=0.360

NRMSE=0.029, SSIM=0.993

10% noise

1.4

1.2

1

0.8

0.6

0.4

0.2

1.4

1.2

1

0.8

0.6

0.4

0.2

NRMSE=0.084, SSIM=0.386

NRMSE=0.037, SSIM=989

15% noise

NRMSE=0.093, SSIM=0.379

NRMSE=0.041, SSIM=0.986

Scanner setup

- Preclinical MPI scanner from Philips/Bruker
 - selection field gradient: $1.5 \text{Tm}^{-1} \mu_0^{-1} \text{ in } z \text{ and}$ $0.75 \text{Tm}^{-1} \mu_0^{-1} \text{ in } x, y \text{-direction}$
- Vessel phantom: polyvinyl chloride tube
- Balloon catheter inflated with ferudextran (pressure between 4.5 to 20 bar)
- 20000 frames without averaging
- Matrix measured with a 2×2×1 mm³ delta probe filled with Resovist
 - Field of view 25 × 25 × 25
 - \Rightarrow System matrix of size 13104 \times 15625

Stenosis phantom before and after experiment

Results visualized as maximum intensity projection along z-axis

baseline method

proposed method

SNR = 14.1 dB 0.7 seconds per frame SNR = 30.0 dB 5.0 seconds per frame

3D real data: reconstruction

Intensity profile at central axis over time (left: baseline, right: proposed)

Isosurface rendering of catheter intensity (top: baseline; bottom: proposed)

Summary

Summary

- Fused lasso model for noise suppressing and edge preserving reconstruction in 3D+time MPI
- Quasi-isotropic discretization adapted to 3D acquisition geometry
- Efficient minimization algorithm (parallelizable, no linear system to be solved explicitly)

Main reference:

M. Storath, C. Brandt, M. Hofmann, T. Knopp, J. Salamon, A. Weber, A. Weinmann "Edge preserving and noise reducing reconstruction for magnetic particle imaging" IEEE T Medical Imaging, 2017