
Edge preserving and noise reducing reconstruction for
magnetic particle imaging

Martin Storath, Andreas Weinmann

joint work with Christina Brandt, Martin Hofmann, Tobias Knopp, Johannes Salamon, Alexander Weber

Canazei

September 2017



Magnetic particle imaging (MPI)

MPI is an emerging imaging modality based on non-linear response of
magnetic nanoparticles to an applied magnetic field

Invention in 2005 by Gleich and Weizenecker

First in-vivo experiment in 2009

Features of MPI

MPI. Spatial resolution: 1mm ; measurement time: 0.1 sec.

MRT. Spatial resolution: 1mm ; measurement time: 10 sec -30 min.

PET. Spatial resolution: 4mm ; measurement time: 1 min.

Potential applications: cancer detection, blood flow monitoring, tracking of
instruments in cardiovascular intervention
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Prototypical application: Catheter tracking for angioplasty

Stenosis phantom before (top) and after (bottom) the intervention by a balloon
catheter
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Image formation in MPI

Forward model of MPI as linear system

Au ≈ f

where

f ∈ RM acquired (noisy) data

u unknown particle concentration

A linear system function A : Rn1×n2×n3 → RM , as matrix Ã ∈ RN×M

System function A

here: measuremenent-based using a delta probe

alternative: model-based reconstruction (Knopp ’10; Goodwill/Conolly ’10; März/Weinmann

’15)

Image reconstruction ill-posed inverse problem (Knopp ’08; März/Weinmann ’15)

{ regularization necessary
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State-of-the-art reconstruction in MPI

Currently used reconstruction method: Tikhonov regularization with
non-negativity constraints

uρ = arg min
u≥0

ρ‖u‖2 +
1
2
‖Au − f‖2

+ uρ solution of constrained linear system{ standard solvers

– Prior ρ‖u‖2 not well matched to image properties{ limited noise
suppression, loss of contrast, smoothes out edges

Inflating balloon catheter over time, maximum intensity projection of reconstruction result
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Fused lasso regularization

Image characteristics

Catheter and background have approximately homogeneous concentration

Catheter volume is small compared to background

Physical assumption: particle concentration is non-negative

Fused lasso model (Tibshirani et al. ’05) with non-negativity constraint

u# = arg min
u≥0

αTV(u) + β ‖u‖1 +
1
2
‖Au − f‖22 .

Discrete version in 1D

u# = arg min
u∈(R+0 )n

α
∑

i

|ui+1 − ui |+ β
∑

i

|ui |+ 1
2

∑
i

|(Au)i − fi |2.
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Reconstruction example for 1D MPI

Simulated data
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Real data of a physical phantom
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Discretization in 2D

Finite difference discretization (Blake/Zisserman ’87; Chambolle ’99)

TV2D(u) =
S∑

s=1

ωs‖∇as u‖1 =
S∑

s=1

∑
ij

ωs |uij − u(i,j)+as |,

with a finite difference system N = {a1, ..., aS } ⊂ Z2 \ {0} and weights
ω1, ..., ωS > 0.

Common finite difference systems

N0 = {(1, 0), (0, 1)},

N1 = {(1, 0), (0, 1), (1, 1), (1,−1)},

N2 = {(1, 0), (0, 1), (1, 1), (1,−1), (−2,−1), (−2, 1), (2, 1), (2,−1)}.
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Derivation of weights

Discretization (system N , weights ω) gives rise to a metric on R2 induced by

‖a‖N =
S∑

s=1

ωs |〈a, as〉|, a ∈ R2.

Proposed design criterion for ω (Storath/Weinmann/Frikel/Unser ’15)

‖a‖N !
= ‖a‖2 for all a ∈ N

{ linear system
Tω = q

with Trs = |〈ar , as〉| and qr = ‖ar‖2

−1 0 1

−1

0

1

Anisotropic N0
(E ≈ 0.71).

−1 0 1

−1

0

1

With diagonals N1
(E ≈ 0.92)

−1 0 1

−1

0

1

“Knight moves” N2 , weights
of Chambolle ’99

(E ≈ 0.95)

−1 0 1

−1

0

1

“Knight moves” N2 ,
proposed weights

(E ≈ 0.97)

Measure of isotropy E: Ratio of shortest and longest vector on the red line (E = 1 is optimal) (Chambolle ’99)
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Adaption to MPI acquisition geometry in 3D (I)

Discretization of the form

TV3D(u) =
S∑

s=1

ωs‖∇as u‖1 =
S∑

s=1

∑
ijk

ωs |uijk − u(i,j,k)+as |.

with 26-connected neighborhood

N3D = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1,−1, 0), (1, 0, 1),

(1, 0,−1), (0, 1, 1), (0, 1,−1), (1, 1, 1), (1, 1,−1), (1,−1,−1), (−1, 1,−1)}

MPI scanner configuration: z-direction has double resolution of x-y resolution

{ incorporate into weight design Tω = q by setting right hand side to

qs = (
3∑

i=1

(δi · (as)i)
2)1/2.

where δ vector of voxel face areas, δ = (∆y∆z,∆x∆z,∆x∆y)
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Adaption to MPI acquisition geometry in 3D (II)

Problem: Solving Tω = q can lead to negative weights

{ solve in least squares sense with non-negativity constraint

min
ω
‖Tω − q‖22, s.t. ω ≥ 0.

Left: Desired distances, Center: anisotropic discretization (8-NH), Right: proposed discretization (based on 26-NH)
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Splitting of the fused lasso functional

Discretization of fused lasso problem

u# = arg min
u

α

S∑
s=1

ωs‖∇as u‖1 + β‖u‖1 + I+(u) +
1
2
‖Au − f‖22,

where I+(u) is equal to 0 if uij ≥ 0 for all i, j, and equal to ∞ otherwise.

Proposed splitting

u# = arg min
u

S∑
s=1

(αωs‖∇as u‖1 +
β

S
‖u‖1)︸                         ︷︷                         ︸

Gs (u)

+I+(u) +
1
2
‖Au − f‖22︸        ︷︷        ︸

F(u)

,

Minimization using generalized forward backward algorithm (Raguet/Fadili/Peyré ’13)
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Generalized forward backward algorithm

Proposed splitting for the fused lasso problem

u# = arg min
u

S∑
s=1

(αωs‖∇as u‖1 +
β

S
‖u‖1)︸                         ︷︷                         ︸

Gs (u)

+I+(u) +
1
2
‖Au − f‖22︸        ︷︷        ︸

F(u)

,

Minimization using a generalized forward backward algorithm (Raguet/Fadili/Peyré ’13)

Iteration

z(k+1)
1 = z(k)

1 + λk

(
prox γG1

r1

(
2u(k) − z(k)

1 − γ∇F(u(k))
)
− u(k)

)
,

...

z(k+1)
S = z(k)

S + λk

(
prox γGS

rS

(
2u(k) − z(k)

S − γ∇F(u(k))
)
− u(k)

)
,

z(k+1)
S+1 = z(k)

S+1 + λk

(
prox γI+

rS+1

(
2u(k) − z(k)

S+1 − γ∇F(u(k))
)
− u(k)

)
,

u(k+1) =
S+1∑
s=1

rsz(k+1)
s .
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Forward backward algorithm

Idea of a (basic, non-relaxed) forward backward algorithm

u# = arg min
u

f1(u) + f2(u)

with

f1 convex, potentially not differentiable, f2 convex, differentiable.

Iteration
u(k+1) = proxγf1︸ ︷︷ ︸

backward step

(
u(k) − γ∇f2(u(k)︸              ︷︷              ︸

forward step

)
)
,

where

proxαf (u) = arg min
x

αf(x) +
1
2
‖x − u‖22.

Relaxation

u(k+1) = u(k) + λk

(
proxf1/β

(
u(k) − 1

β
∇f2(u(k))

)
− u(k)

)
.

Convergence for β ≥ 1
L , L Lipschitz constant of ∇f2, λk ∈ [ε, 3/2 − ε], ε > 0 (cf.

Combettes ’06).
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Generalized forward backward algorithm

Iteration (Generalized forward backward algorithm)

z(k+1)
1 = z(k)

1 + λk

(
prox γG1

r1

(
2u(k) − z(k)

1 − γ∇F(u(k))
)
− u(k)

)
,

...

z(k+1)
S = z(k)

S + λk

(
prox γGS

rS

(
2u(k) − z(k)

S − γ∇F(u(k))
)
− u(k)

)
,

z(k+1)
S+1 = z(k)

S+1 + λk

(
prox γI+

rS+1

(
2u(k) − z(k)

S+1 − γ∇F(u(k))
)
− u(k)

)
,

u(k+1) =
S+1∑
s=1

rsz(k+1)
s .

Algorithmic parameters and convergence
γ = 1/‖A ∗A‖op, λk = 1, and r1 = . . . = rS+1 = 1/(S + 1), guarantee convergence
(Raguet/Fadili/Peyré ’13)

Advantage. We can explicitly compute the involved proximal mappings.
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Subproblems of the algorithm

Iteration (Generalized forward backward algorithm)

...

z(k+1)
S+1 = z(k)

S+1 + λk

(
prox γI+

rS+1

(
2u(k) − z(k)

S+1 − γ∇F(u(k))
)
− u(k)

)
,

...

Gradient step in F
∇F(u) = A ∗(Au − f).

Only matrix vector multiplication O(MN)
{ NO linear system for (large and dense) system matrix A needs to be solved!

Proximal mappings of I+ { cutting negative values

(proxγI+/rS+1
(u))ij = arg min

r∈R
γ
I+(r)

rS+1
+

1
2
‖r − uij‖22 = max(0, uij).

where I+(u) is equal to 0 if uij ≥ 0 for all i, j, and equal to ∞ otherwise.
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Subproblems of the algorithm

Iteration (Generalized forward backward algorithm)

z(k+1)
1 = z(k)

1 + λk

(
prox γG1

r1

(
2u(k) − z(k)

1 − γ∇F(u(k))
)
− u(k)

)
,

...

z(k+1)
S = z(k)

S + λk

(
prox γGS

rS

(
2u(k) − z(k)

S − γ∇F(u(k))
)
− u(k)

)
,

...

where
Gs(u) = αωs‖∇as u‖1 +

β

S
‖u‖1.

Proximal mappings of Gs { decomposes into pathwise univariate fused lasso
problems of the form

v# = arg min
v∈Rn

α′
n−1∑
i=1

|vi+1 − vi |+ β′
n∑

i=1

|vi |+ 1
2

n∑
i=1

(vi − f ′i )2.
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Solver for univariate fused lasso problems

Exact solution v# of 1D fused lasso problem in two stages

v# = arg min
v∈Rn

α′
n−1∑
i=1

|vi+1 − vi |+ β′
n∑

i=1

|vi |+ 1
2

n∑
i=1

(vi − f ′i )2.

(i) solve TV problem (i.e. fused lasso with β′ = 0)

u0 = arg min
v∈Rn

α′
n−1∑
i=1

|vi+1 − vi |+ 1
2

n∑
i=1

(vi − f ′i )2

using taut string algorithm (Davies/Kovac ’01; Condat ’13)

(ii) fused lasso solution by soft-thresholding of u0 (Friedman et al. ’07)

v#
i = STβ′(u0

i ) = sign(u0
i ) max(|u0

i | − β′, 0), i = 1, . . . , n.

Key for fast algorithm: both steps have linear complexity

Fast implementation of taut string algorithm by L. Condat
http://www.gipsa-lab.grenoble-inp.fr/~laurent.condat/software.html
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Reconstruction from simulated data

Original image Tikhonov
reconstruction

Fused-lasso
reconstruction
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Reconstruction from simulated data with different noise levels
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Prototypical application: in-vitro angioplasty of a stenosis

Scanner setup

Preclinical MPI scanner from
Philips/Bruker

selection field gradient:
1.5Tm−1µ−1

0 in z and
0.75Tm−1µ−1

0 in x,y-direction

Vessel phantom: polyvinyl chloride
tube
Balloon catheter inflated with
ferudextran (pressure between 4.5
to 20 bar)

20000 frames without averaging

Matrix measured with a
2 × 2 × 1 mm3 delta probe filled with
Resovist

Field of view 25 × 25 × 25

⇒ System matrix of size 13104 × 15625

Stenosis phantom before and after experiment
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3D real data: reconstruction

Results visualized as maximum intensity projection along z-axis

baseline method

SNR = 14.1 dB
0.7 seconds per frame

proposed method

SNR = 30.0 dB
5.0 seconds per frame
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3D real data: reconstruction

400 500 600 700 800 900 1000

Frame number

5

10

15

20

25

x
 c

o
o
rd

in
a
te

 o
f 
v
o
x
e
l

400 500 600 700 800 900 1000

Frame number

5

10

15

20

25

x
 c

o
o
rd

in
a
te

 o
f 
v
o
x
e
l

Intensity profile at central axis over time (left: baseline, right: proposed)

Isosurface rendering of catheter intensity (top: baseline; bottom: proposed)
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Summary

Summary

Fused lasso model for noise suppressing and edge preserving
reconstruction in 3D+time MPI

Quasi-isotropic discretization adapted to 3D acquisition geometry

Efficient minimization algorithm (parallelizable, no linear system to be solved
explicitly)

Main reference:
M. Storath, C. Brandt, M. Hofmann, T. Knopp, J. Salamon, A. Weber, A. Weinmann
“Edge preserving and noise reducing reconstruction for magnetic particle imaging”
IEEE T Medical Imaging, 2017
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