Edge preserving and noise reducing reconstruction for magnetic particle imaging

Martin Storath, Andreas Weinmann

joint work with Christina Brandt, Martin Hofmann, Tobias Knopp, Johannes Salamon, Alexander Weber

Canazei
September 2017

Magnetic particle imaging (MPI)

MPI is an emerging imaging modality based on non-linear response of magnetic nanoparticles to an applied magnetic field

■ Invention in 2005 by Gleich and Weizenecker
■ First in-vivo experiment in 2009

Features of MPI

■ MPI. Spatial resolution: 1 mm ; measurement time: 0.1 sec .
■ MRT. Spatial resolution: 1 mm ; measurement time: $10 \mathrm{sec}-30 \mathrm{~min}$.
■ PET. Spatial resolution: 4 mm ; measurement time: 1 min .

Potential applications: cancer detection, blood flow monitoring, tracking of instruments in cardiovascular intervention

Prototypical application: Catheter tracking for angioplasty

Stenosis phantom before (top) and after (bottom) the intervention by a balloon catheter

Image formation in MPI

Forward model of MPI as linear system

$$
A u \approx f
$$

where
■ $f \in \mathbb{R}^{M}$ acquired (noisy) data

- u unknown particle concentration
- A linear system function $A: \mathbb{R}^{n_{1} \times n_{2} \times n_{3}} \rightarrow \mathbb{R}^{M}$, as matrix $\widetilde{A} \in \mathbb{R}^{N \times M}$

System function A
■ here: measuremenent-based using a delta probe
■ alternative: model-based reconstruction (Knopp '10; Goodwill/Conolly '10; März/Weinmann '15)

Image reconstruction ill-posed inverse problem (Knopp '08; März/Weinmann '15)
\sim regularization necessary

State-of-the-art reconstruction in MPI

Currently used reconstruction method: Tikhonov regularization with non-negativity constraints

$$
u_{\rho}=\arg \min _{u \geq 0} \rho\|u\|^{2}+\frac{1}{2}\|A u-f\|^{2}
$$

$+u_{\rho}$ solution of constrained linear system \leadsto standard solvers

- Prior $\rho\|u\|^{2}$ not well matched to image properties \leadsto limited noise suppression, loss of contrast, smoothes out edges

Inflating balloon catheter over time, maximum intensity projection of reconstruction result

Fused lasso regularization

Image characteristics

■ Catheter and background have approximately homogeneous concentration

- Catheter volume is small compared to background

■ Physical assumption: particle concentration is non-negative

Fused lasso model (Tibshirani et al. '05) with non-negativity constraint

$$
u^{\#}=\arg \min _{u \geq 0} \alpha \operatorname{TV}(u)+\beta\|u\|_{1}+\frac{1}{2}\|A u-f\|_{2}^{2}
$$

Discrete version in 1D

$$
u^{\#}=\arg \min _{u \in\left(\mathbb{R}_{0}^{+}\right)^{n}} \alpha \sum_{i}\left|u_{i+1}-u_{i}\right|+\beta \sum_{i}\left|u_{i}\right|+\frac{1}{2} \sum_{i}\left|(A u)_{i}-f_{i}\right|^{2}
$$

Reconstruction example for 1D MPI

Simulated data

Proposed approach ($\beta=0$)

Proposed approach ($\alpha=6 \mathrm{e}-05$)

Direct comparison

Reconstruction example for 1D MPI

Simulated data

Real data of a physical phantom
(two homogeneous spots of length 4 mm in a 5 mm distance, left spot has double particle concentration right spot)

Discretization in 2D

Finite difference discretization (Blake/Zisserman '87; Chambolle '99)

$$
\mathrm{TV}_{2 \mathrm{D}}(u)=\sum_{s=1}^{s} \omega_{s}\left\|\nabla_{\mathrm{a}_{s}} u\right\|_{1}=\sum_{s=1}^{s} \sum_{i j} \omega_{s}\left|u_{i j}-u_{(i, j)+\mathrm{a}_{s}}\right|
$$

with a finite difference system $\mathcal{N}=\left\{a_{1}, \ldots, a_{s}\right\} \subset \mathbb{Z}^{2} \backslash\{0\}$ and weights $\omega_{1}, \ldots, \omega_{S}>0$.

Common finite difference systems

$$
\begin{aligned}
& \mathcal{N}_{0}=\{(1,0),(0,1)\} \\
& \mathcal{N}_{1}=\{(1,0),(0,1),(1,1),(1,-1)\} \\
& \mathcal{N}_{2}=\{(1,0),(0,1),(1,1),(1,-1),(-2,-1),(-2,1),(2,1),(2,-1)\}
\end{aligned}
$$

Derivation of weights

Discretization (system \mathcal{N}, weights ω) gives rise to a metric on \mathbb{R}^{2} induced by

$$
\|a\|_{\mathcal{N}}=\sum_{s=1}^{S} \omega_{s}\left\langle\left\langle a, a_{s}\right\rangle, \quad a \in \mathbb{R}^{2} .\right.
$$

Proposed design criterion for ω (Storath/Weirmann/Frike/Unser '15)

$$
\|a\|_{\mathcal{N}} \stackrel{!}{=}\|a\|_{2} \quad \text { for all } a \in \mathcal{N}
$$

\leadsto linear system

$$
T \omega=q
$$

with $T_{r s}=\left|\left\langle a_{r}, a_{s}\right\rangle\right|$ and $q_{r}=\left\|a_{r}\right\|_{2}$

Anisotropic N_{0} ($E \approx 0.71$).

With diagonals N_{1} ($E \approx 0.92$)

"Knight moves" \mathcal{N}_{2}, weights of Chambolle '99 ($E \approx 0.95$)

"Knight moves" N_{2}, proposed weights ($E \approx 0.97$)

Adaption to MPI acquisition geometry in 3D (I)

Discretization of the form

$$
\mathrm{TV}_{3 \mathrm{D}}(u)=\sum_{s=1}^{s} \omega_{s}\left\|\nabla_{\mathrm{a}_{s}} u\right\|_{1}=\sum_{s=1}^{s} \sum_{i j k} \omega_{s}\left|u_{i j k}-u_{(i, j, k)+\mathrm{a}_{s}}\right|
$$

with 26-connected neighborhood

$$
\begin{aligned}
\mathcal{N}_{3 D}= & \{(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,-1,0),(1,0,1), \\
& (1,0,-1),(0,1,1),(0,1,-1),(1,1,1),(1,1,-1),(1,-1,-1),(-1,1,-1)\}
\end{aligned}
$$

Adaption to MPI acquisition geometry in 3D (I)

Discretization of the form

$$
\mathrm{TV}_{3 \mathrm{D}}(u)=\sum_{s=1}^{s} \omega_{s}\left\|\nabla_{\mathrm{a}_{s}} u\right\|_{1}=\sum_{s=1}^{s} \sum_{i j k} \omega_{s}\left|u_{i j k}-u_{(i, j, k)+\mathrm{a}_{s}}\right|
$$

with 26-connected neighborhood

$$
\begin{aligned}
\mathcal{N}_{3 D}= & \{(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,-1,0),(1,0,1), \\
& (1,0,-1),(0,1,1),(0,1,-1),(1,1,1),(1,1,-1),(1,-1,-1),(-1,1,-1)\}
\end{aligned}
$$

MPI scanner configuration: z-direction has double resolution of $x-y$ resolution
\leadsto incorporate into weight design $T \omega=q$ by setting right hand side to

$$
q_{s}=\left(\sum_{i=1}^{3}\left(\delta_{i} \cdot\left(a_{s}\right)_{i}\right)^{2}\right)^{1 / 2}
$$

where δ vector of voxel face areas, $\delta=(\Delta y \Delta z, \Delta x \Delta z, \Delta x \Delta y)$

Adaption to MPI acquisition geometry in 3D (II)

Problem: Solving $T \omega=q$ can lead to negative weights
\leadsto solve in least squares sense with non-negativity constraint

$$
\min _{\omega}\|T \omega-q\|_{2}^{2}, \quad \text { s.t. } \quad \omega \geq 0
$$

Left: Desired distances, Center: anisotropic discretization (8-NH), Right: proposed discretization (based on 26-NH)

Splitting of the fused lasso functional

Discretization of fused lasso problem

$$
u^{\#}=\arg \min _{u} \alpha \sum_{s=1}^{S} \omega_{s}\left\|\nabla_{a_{s}} u\right\|_{1}+\beta\|u\|_{1}+I_{+}(u)+\frac{1}{2}\|A u-f\|_{2}^{2}
$$

where $I_{+}(u)$ is equal to 0 if $u_{i j} \geq 0$ for all i, j, and equal to ∞ otherwise.

Proposed splitting

$$
u^{\#}=\arg \min _{u} \sum_{s=1}^{S} \underbrace{\left(\alpha \omega_{s}\left\|\nabla_{a_{s}} u\right\|_{1}+\frac{\beta}{S}\|u\|_{1}\right)}_{G_{s}(u)}+I_{+}(u)+\underbrace{\frac{1}{2}\|A u-f\|_{2}^{2}}_{F(u)},
$$

Minimization using generalized forward backward algorithm (Raguet/Fadili/Peyré '13)

Generalized forward backward algorithm

Proposed splitting for the fused lasso problem

$$
u^{\#}=\arg \min _{u} \sum_{s=1}^{S} \underbrace{\left(\alpha \omega_{s}\left\|\nabla_{a_{s}} u\right\|_{1}+\frac{\beta}{S}\|u\|_{1}\right)}_{G_{s}(u)}+I_{+}(u)+\underbrace{\frac{1}{2}\|A u-f\|_{2}^{2}}_{F(u)}
$$

Minimization using a generalized forward backward algorithm (Raguet/Fadii/Peyré '13) Iteration

$$
\begin{aligned}
z_{1}^{(k+1)} & =z_{1}^{(k)}+\lambda_{k}\left(\operatorname{prox}_{\frac{\gamma G_{1}}{r_{1}}}\left(2 u^{(k)}-z_{1}^{(k)}-\gamma \nabla F\left(u^{(k)}\right)\right)-u^{(k)}\right) \\
& \vdots \\
z_{S}^{(k+1)} & =z_{S}^{(k)}+\lambda_{k}\left(\operatorname{prox}_{\frac{\gamma G_{S}}{r_{S}}}\left(2 u^{(k)}-z_{S}^{(k)}-\gamma \nabla F\left(u^{(k)}\right)\right)-u^{(k)}\right) \\
z_{S+1}^{(k+1)} & =z_{S+1}^{(k)}+\lambda_{k}\left(\operatorname{prox}_{\frac{\gamma I_{+}}{r_{S}+1}}\left(2 u^{(k)}-z_{S+1}^{(k)}-\gamma \nabla F\left(u^{(k)}\right)\right)-u^{(k)}\right) \\
u^{(k+1)} & =\sum_{S=1}^{S+1} r_{S} z_{S}^{(k+1)}
\end{aligned}
$$

Forward backward algorithm

Idea of a (basic, non-relaxed) forward backward algorithm

$$
u^{\#}=\arg \min _{u} f_{1}(u)+f_{2}(u)
$$

with
f_{1} convex, potentially not differentiable, $\quad f_{2}$ convex, differentiable.

Iteration

$$
u^{(k+1)}=\underbrace{\operatorname{prox}_{\gamma f_{1}}}_{\text {backward step }}(\underbrace{u^{(k)}-\gamma \nabla f_{2}\left(u^{(k)}\right.}_{\text {forward step }}))
$$

where

$$
\operatorname{prox}_{\alpha f}(u)=\arg \min _{x} \alpha f(x)+\frac{1}{2}\|x-u\|_{2}^{2} .
$$

Relaxation

$$
u^{(k+1)}=u^{(k)}+\lambda_{k}\left(\operatorname{prox}_{f_{1} / \beta}\left(u^{(k)}-\frac{1}{\beta} \nabla f_{2}\left(u^{(k)}\right)\right)-u^{(k)}\right)
$$

Convergence for $\beta \geq \frac{1}{L}, L$ Lipschitz constant of $\nabla f_{2}, \lambda_{k} \in[\varepsilon, 3 / 2-\varepsilon], \varepsilon>0$ (cf. Combettes '06).

Generalized forward backward algorithm

Iteration (Generalized forward backward algorithm)

$$
\begin{aligned}
& z_{1}^{(k+1)}=z_{1}^{(k)}+\lambda_{k}\left(\operatorname{prox}_{\frac{\gamma G_{1}}{r_{1}}}\left(2 u^{(k)}-z_{1}^{(k)}-\gamma \nabla F\left(u^{(k)}\right)\right)-u^{(k)}\right) \\
& \vdots \\
& z_{S}^{(k+1)}= z_{S}^{(k)}+\lambda_{k}\left(\operatorname{prox}_{\frac{\gamma G_{S}}{r_{S}}}\left(2 u^{(k)}-z_{S}^{(k)}-\gamma \nabla F\left(u^{(k)}\right)\right)-u^{(k)}\right), \\
& z_{S+1}^{(k+1)}= z_{S+1}^{(k)}+\lambda_{k}\left(\operatorname{prox}_{\frac{\gamma I_{+}}{r_{S+1}}}\left(2 u^{(k)}-z_{S+1}^{(k)}-\gamma \nabla F\left(u^{(k)}\right)\right)-u^{(k)}\right), \\
& u^{(k+1)}=\sum_{S=1}^{S+1} r_{S} z_{S}^{(k+1)}
\end{aligned}
$$

Algorithmic parameters and convergence
$\gamma=1 /\left\|A^{*} A\right\|_{\text {op }}, \lambda_{k}=1$, and $r_{1}=\ldots=r_{S+1}=1 /(S+1)$, guarantee convergence (Raguet/Fadili/Peyré '13)

Advantage. We can explicitly compute the involved proximal mappings.

Subproblems of the algorithm

Iteration (Generalized forward backward algorithm)

$$
z_{S+1}^{(k+1)}=z_{S+1}^{(k)}+\lambda_{k}\left(\operatorname{prox}_{\frac{\gamma I_{+}}{r_{S+1}}}\left(2 u^{(k)}-z_{S+1}^{(k)}-\gamma \nabla F\left(u^{(k)}\right)\right)-u^{(k)}\right)
$$

Gradient step in F

$$
\nabla F(u)=A^{*}(A u-f)
$$

Only matrix vector multiplication $O(M N)$
\leadsto NO linear system for (large and dense) system matrix A needs to be solved!

Subproblems of the algorithm

Iteration (Generalized forward backward algorithm)

$$
z_{S+1}^{(k+1)}=z_{S+1}^{(k)}+\lambda_{k}\left(\operatorname{prox}_{\frac{\gamma I_{+}}{r_{S+1}}}\left(2 u^{(k)}-z_{S+1}^{(k)}-\gamma \nabla F\left(u^{(k)}\right)\right)-u^{(k)}\right)
$$

Gradient step in F

$$
\nabla F(u)=A^{*}(A u-f)
$$

Only matrix vector multiplication $O(M N)$
\leadsto NO linear system for (large and dense) system matrix A needs to be solved!
Proximal mappings of $I_{+} \leadsto$ cutting negative values

$$
\left(\operatorname{prox}_{\gamma I_{+} / r_{S+1}}(u)\right)_{i j}=\arg \min _{r \in \mathbb{R}} \gamma \frac{I_{+}(r)}{r_{S+1}}+\frac{1}{2}\left\|r-u_{i j}\right\|_{2}^{2}=\max \left(0, u_{i j}\right)
$$

where $I_{+}(u)$ is equal to 0 if $u_{i j} \geq 0$ for all i, j, and equal to ∞ otherwise.

Subproblems of the algorithm

Iteration (Generalized forward backward algorithm)

$$
\begin{aligned}
z_{1}^{(k+1)} & =z_{1}^{(k)}+\lambda_{k}\left(\operatorname{prox}_{\frac{\gamma G_{1}}{r_{1}}}\left(2 u^{(k)}-z_{1}^{(k)}-\gamma \nabla F\left(u^{(k)}\right)\right)-u^{(k)}\right) \\
& \vdots \\
z_{S}^{(k+1)} & =z_{S}^{(k)}+\lambda_{k}\left(\operatorname{prox}_{\frac{\gamma G_{S}}{\tau_{S}}}\left(2 u^{(k)}-z_{S}^{(k)}-\gamma \nabla F\left(u^{(k)}\right)\right)-u^{(k)}\right)
\end{aligned}
$$

where

$$
G_{s}(u)=\alpha \omega_{s}\left\|\nabla_{a_{s}} u\right\|_{1}+\frac{\beta}{S}\|u\|_{1} .
$$

Proximal mappings of $G_{s} \leadsto$ decomposes into pathwise univariate fused lasso problems of the form

$$
v^{\#}=\arg \min _{v \in \mathbb{R}^{n}} \alpha^{\prime} \sum_{i=1}^{n-1}\left|v_{i+1}-v_{i}\right|+\beta^{\prime} \sum_{i=1}^{n}\left|v_{i}\right|+\frac{1}{2} \sum_{i=1}^{n}\left(v_{i}-f_{i}^{\prime}\right)^{2}
$$

Solver for univariate fused lasso problems

Exact solution $v^{\#}$ of 1D fused lasso problem in two stages

$$
v^{\#}=\arg \min _{v \in \mathbb{R}^{n}} \alpha^{\prime} \sum_{i=1}^{n-1}\left|v_{i+1}-v_{i}\right|+\beta^{\prime} \sum_{i=1}^{n}\left|v_{i}\right|+\frac{1}{2} \sum_{i=1}^{n}\left(v_{i}-f_{i}^{\prime}\right)^{2}
$$

(i) solve TV problem (i.e. fused lasso with $\beta^{\prime}=0$)

$$
u^{0}=\arg \min _{v \in \mathbb{R}^{n}} \alpha^{\prime} \sum_{i=1}^{n-1}\left|v_{i+1}-v_{i}\right|+\frac{1}{2} \sum_{i=1}^{n}\left(v_{i}-f_{i}^{\prime}\right)^{2}
$$

using taut string algorithm (Davies/Kovac '01; Condat '13)
(ii) fused lasso solution by soft-thresholding of u^{0} (Friedman et al. '07)

$$
v_{i}^{\#}=\mathrm{ST}_{\beta^{\prime}}\left(u_{i}^{0}\right)=\operatorname{sign}\left(u_{i}^{0}\right) \max \left(\left|u_{i}^{0}\right|-\beta^{\prime}, 0\right), \quad i=1, \ldots, n
$$

Key for fast algorithm: both steps have linear complexity

Reconstruction from simulated data

Reconstruction from simulated data with different noise levels

NRMSE=0.073, SSIM=0.360

NRMSE=0.029, $\mathrm{SSIM}=0.993$

NRMSE=0.084, SSIM=0.386

NRMSE=0.037, SSIM=989
15% noise

NRMSE=0.093, SSIM=0.379

NRMSE $=0.041$, SSIM $=0.986$

Prototypical application: in-vitro angioplasty of a stenosis

Scanner setup

- Preclinical MPI scanner from Philips/Bruker
- selection field gradient:
$1.5 \mathrm{Tm}^{-1} \mu_{0}^{-1}$ in z and
$0.75 \mathrm{Tm}^{-1} \mu_{0}^{-1}$ in x, y-direction
■ Vessel phantom: polyvinyl chloride tube
- Balloon catheter inflated with ferudextran (pressure between 4.5 to 20 bar)
■ 20000 frames without averaging
■ Matrix measured with a $2 \times 2 \times 1 \mathrm{~mm}^{3}$ delta probe filled with Resovist
- Field of view $25 \times 25 \times 25$
\Rightarrow System matrix of size 13104×15625

Stenosis phantom before and after experiment

3D real data: reconstruction

Results visualized as maximum intensity projection along z-axis
baseline method
proposed method

SNR $=14.1 \mathrm{~dB}$
0.7 seconds per frame

SNR $=30.0 \mathrm{~dB}$
5.0 seconds per frame

3D real data: reconstruction

Intensity profile at central axis over time (left: baseline, right: proposed)

Isosurface rendering of catheter intensity (top: baseline; bottom: proposed)

Summary

Summary

■ Fused lasso model for noise suppressing and edge preserving reconstruction in 3D+time MPI

■ Quasi-isotropic discretization adapted to 3D acquisition geometry
■ Efficient minimization algorithm (parallelizable, no linear system to be solved explicitly)

Main reference:

M. Storath, C. Brandt, M. Hofmann, T. Knopp, J. Salamon, A. Weber, A. Weinmann "Edge preserving and noise reducing reconstruction for magnetic particle imaging" IEEE T Medical Imaging, 2017

