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Basic Principles

(courtesy of Knopp et al. 2010)

Data measured in MPI: voltage u(t)
induced in the recording coils.

By Farraday’s law of induction,

u(t) = −
d
dt
Φ(t),

where the magnetic flux Φ(t) is

Φ(t) = µ0

∫
R3

R(x)(H(x, t) + M(x, t)) dx, µ0 magnet. permeability.

• The flux Φ(t) is caused by the applied field H(x, t) and the
magnetization response M(x, t).

• R(x) ∈ R3×3 is the sensitivity pattern of the three recording coil pairs.
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Basic Principles

Data measured in MPI: voltage u(t) given by

u(t) = −
d
dt
Φ(t), Φ(t) = µ0

∫
R3

R(x)(H(x, t) + M(x, t)) dx,

with magnetic flux Φ(t), applied field H(x, t), magnetization response
M(x, t).

By the Langevin theory of paramagnetism for superparamagnetic
nanoparticles,

M(x, t) = ρ(x) m L
(
|H(x, t)|

Hsat

)
H(x, t)
|H(x, t)|

, L(x) = coth(x) −
1
x
,

with L. . . Langevin function, m. . . magnetic moment of a single particle,
Hsat. . . saturation parameter.

Signal to reconstruct in MPI: concentration of the particles ρ(x).
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Simplification
Data: voltage u(t) given by

u(t) = −µ0
d
dt

∫
R3

R(x)(H(x, t) + M(x, t)) dx.

Since the applied field H does not depend on ρ, consider the data

s(t) = −µ0
d
dt

∫
R3

R(x)M(x, t) dx.

In the interesting field of view, R is almost constant; hence

s(t) = −µ0R
d
dt

∫
R3

M(x, t) dx.

Reconstruct the particle density ρ(x) given via

M(x, t) = ρ(x) m L
(
|H(x, t)|

Hsat

)
H(x, t)
|H(x, t)|

.

Hence,

s(t) = −µ0mR
d
dt

∫
R3

ρ(x) L

(
|H(x, t)|

Hsat

)
H(x, t)
|H(x, t)|

dx.
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Simplification
Simplified problem: Reconstruct ρ(x) from voltage data s(t) related via

s(t)︸︷︷︸
data

= −µ0mR︸  ︷︷  ︸
constants

d
dt

∫
R3

ρ(x)︸︷︷︸
signal

L

(
|H(x, t)|

Hsat

)
H(x, t)
|H(x, t)|︸                       ︷︷                       ︸ dx.

The applied field H cosists of a static field HS and a dynamic field HD :

H(x, t) = HS(x) + HD(x, t) = Gx + P I(t)

In the interesting region,

HS(x) = Gx = g diag(−1,−1, 2) x, HD(x, t) = P I(t),

g . . . nominal gradient of the static field, I(t) . . . current in the coils,
P . . . almost constant sensitivity profile of the drive field coils.

The field free point r(t) is given by H(r(t), t) = 0. Then,

Gr(t) = −P I(t) ⇒ H(x, t) = Gx − P I(t) = −G(r(t) − x).

Hence (Goodwill, Connolly),

s(t) = µ0 m R
d
dt

∫
R3

ρ(x)L

(
|G(r(t) − x)|

Hsat

)
G(r(t) − x)

|G(r(t) − x)|
dx.
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II. The MPI Core Operator
(or, getting rid of particular trajectories)
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Decomposing the model

Problem: Reconstruct ρ(x) from voltage data s(t) related via

s(t)︸︷︷︸
data

= −µ0mR︸  ︷︷  ︸
constants

d
dt

∫
R3

ρ(x)︸︷︷︸
signal

L

(
|G(r(t) − x)|

Hsat

)
G(r(t) − x)

|G(r(t) − x)|︸                                    ︷︷                                    ︸
kernel

dx.

From a mathematical viewpoint, by transformation,

s̄(t) =
d
dt

∫
R3

ρ̄(̂x) L

(
|̂r(t) − x̂ |

h

)
r̂(t) − x̂
|̂r(t) − x̂ |

dx̂,

s(t) =
d
dt

∫
R3

ρ(x) L

(
|r(t) − x |

h

)
r(t) − x
|r(t) − x |

dx,

Or,

s(t) = ∇rΦ(r) ṙ(t), where Φ(r) =

∫
Rn

ρ(x) L

(
|r − x |

h

)
r − x
|r − x |

dx.
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Decomposing the model
Problem: Reconstruct ρ(x) from voltage data s(t) related via

s(t) = ∇rΦ(r) ṙ(t), where Φ(r) =

∫
Rn

ρ(x) L

(
|r − x |

h

)
r − x
|r − x |

dx.

=⇒ The signal s only depends on the location r and the velocity ṙ of the
field free point, and not on the particular trajectory.

• Application: Plugging together different trajectories, overlapping
fields of view,. . .

• Mathematically: view MPI as an operator

ρ→ Ah [ρ](r , v)

where Ah [ρ] is a function on phase space, linear in the velocity v ,

Ah [ρ](r)v = ∇rΦ(r)v =

∫
Rn

ρ(x) ∇r

(
L

(
|r − x |

h

)
r − x
|r − x |

)
dx · v .

The MPI core operator Ah is independent of a particular trajectory.
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III. Reconstruction in 2D and 3D
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Idealization limit h → 0

The MPI core operator Ah is given by

Ah [ρ](r)v =

∫
Rn

ρ(x) ∇r

(
L

(
|r − x |

h

)
r − x
|r − x |

)
dx · v .

What happens if h → 0?

• Physical meaning: e.g., temperature decreases, or, particle size
increases.

• In 1D: kernel tends to Dirac pulse.
• Idealized operator without blurring part.
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Idealization limit h → 0
The MPI core operator Ah is given by

Ah [ρ](r) =

∫
Rn
ρ(x) ∇r

(
L

(
|r − x |

h

)
r − x
|r − x |

)
dx.

Theorem (März, W., IPI, 2016)
Let αh [ρ](r) = trace Ah [ρ](r) and let α[ρ](r) = limh→0 αh [ρ](r). Then,

α[ρ](r) =

∫
Rn
ρ(x) κ(r − x) dx,

ρ in BV0(Ω). In dimension n > 1,

κ(r − x) := divr

(
r − x
|r − x |

)
=

n − 1
|r − x |

.

• In 1D, we have a Dirac-kernel κ(r − x) = 2 δ(r − x). A peaking
property was conjectured for nD which is not true by the theorem.

• Striking point: the trace α[ρ] already contains all information on ρ.
This has not been realized before.
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This has not been realized before.
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Relation to the Laplace equation
We consider the MPI core operator Ah and its trace

αh [ρ](r) = trace Ah [ρ](r),

together with the idealization limit

α[ρ](r) = lim
h→0

αh [ρ](r), α[ρ](r) =

∫
Rn
ρ(x) κ(r − x) dx.

Corollary (März, W., IPI, 2016)
We have the following dimension-dependent relations of the kernel κ to
the fundamental solution Φ(r , x) of the Laplace equ. −∆r Φ = δ(r − x),

in 3D, κ(r − x) = 8π Φ(r , x) with Φ(r , x) =
1

4π |r − x |
;

in 2D, κ(r − x) = −2π ∇r Φ(r , x) ·
r − x
|r − x |

;

with Φ(r , x) = −
1
2π

log(|r − x |).

in 1D, κ(r − x) = −2
d2

dr2 Φ(r , x) with Φ(r , x) = −|r − x |/2.
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Reconstruction Formula
Corollary (Reconstruction Formula for the Idealized Case,
März, W., IPI, 2016)
Consider the idealized MPI core operator

A0[ρ](r) = lim
h→0

Ah [ρ](r) and

data F(r) = A0[ρ](r) at each point r given for the idealized scenario.
Then,

ρ = κ−1 ◦ trace A0[ρ],

where κ is the dimension-dependent convolution kernel from above.

That means, we take the pointwise trace and then deconvolve w.r.t. the
dimension-dependent κ. In particular, in 3D,

ρ =
1
8π

∆ ◦ trace A0[ρ],
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Ill-Posedness

Corollary (Ill-Posedness März, W., IPI, 2016)
Even the idealized MPI problem is ill-posed in 2D and 3D. Depending on
the dimension the degree of ill-posedness, i.e., the order of gained
Sobolev smoothness of the forward operator, is one in 2D, and two in 3D.

Remark. This is not the case in 1D where κ is a Dirac distribution.
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Non-idealized situation
We consider the non-idealized situation h > 0 now.

Theorem (März, W., IPI, 2016)
The trace αh [ρ] of the MPI core operator Ah [ρ] is given by

αh [ρ](r) =

∫
Rn
ρ(x) κh(r − x) dx,

ρ ∈ BV0(Ω), where the convolution kernel κh is given by

κh(y) =
1
h

f
(
|y |
h

)
, with f(z) = L′(z) +L(z)

n − 1
z

, (1)

L the Langevin function;

f is analytic with only purely imaginary
singularities; near zero, f has the power series expansion

f(z) =
∞∑

k=0

22k+2B2k+2

(2k + 2)!
(2k + n) z2k , Bl the l-th Bernoulli number,

with a convergence radius of π. Thus κh is analytic.
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Reconstruction Formula

Corollary (Reconstruction Formula for the the Non-Idealized
Case, März, W., IPI, 2016)
Consider the MPI core operator Ah [ρ](r) and suppose that data
F(r) = Ah [ρ](r) at each point r is given. Then,

κh ∗ ρ = trace Ah [ρ],

where κh is the analytic convolution kernel κh(y) = 1
h f

(
|y |
h

)
with
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z from the slide before.
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Ill-Posedness

Corollary (Ill-Posedness März, W., IPI, 2016)
The non-idealized MPI problem is severely ill-posed in the following
sense: there are no two spaces Hs ,Ht in the (Hilbert-)Sobolev scale,
such that the trace αh of the MPI operator induces an isomorphism
αh : Hs → Ht between these two spaces.

18 / 28



The Basic Model The MPI Core Operator Reconstruction in 2D and 3D Reconstruction Algorithm

There is a particularly nice relation between the traces α[ρ] and αh [ρ] of
the idealized and the non-idealized MPI operators in 3D.

Theorem (März, W., IPI, 2016)
In 3D, we have that

αh [ρ] = −
∆κh

8π
∗ α[ρ].

This tells us that in 3D the non-idealized αh [ρ] is a massively smoothed
version of the idealized α[ρ]. Recall that

κh(y) =
1
h

f
(
|y |
h

)
, with f(z) =

∞∑
k=0

22k+2B2k+2

(2k + 2)!
(2k + n) z2k .
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IV. Reconstruction Algorithm
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Discretization and Given Data
We use the derived reconstruction formulae to design a reconstruction
algorithm for MPI in 2D/3D.
Measured data: Samples sk = s(tk ) of time data s(t) associated with
a scan trajectory r(t).

• Recall: r(t) is related with the electrical current I(t) via

r(t) = −G−1P I(t),

G = g diag(−1,−1, 2), g . . . nominal gradient of the static field, P . . .
sensitivity profile of the drive field coils.

• The measured data are a discrete sampling of the MPI core operator
applied to ρ

sk = s(tk ) = Ah [ρ](rk )vk ,

at location rk = r(tk ), with the trajectory having tangent vk = v(tk )
at time tk , for finitely many measurements indexed by k .

• Note: the presented approach is independent of the particular
trajectory type employed.
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Major Algorithmic Steps
Measured data are a discrete sampling of the MPI core operator applied
to ρ

sk = s(tk ) = Ah [ρ](rk )vk ,

at location rk = r(tk ), with the trajectory having tangent vk = v(tk ).
Reconstruction formula:

κh ◦ ρ = trace Ah [ρ],

Our scheme may be subdivided into two major steps.

Step 1: Deriving trace data on a spacial grid from the raw input. We
obtain a grid function u representing trace data, i.e.,

u ≈ trace Ah [ρ]

in each pixel (grid cell). (Details follow.)
Step 2: Reconstruction of the signal from the derived trace data by
deconvolution (ill-posed). Regularized solution of the problem

Find ρ in κh ∗ ρ = u,

given u.(Details follow.)
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Example.

Noisy time signal – cut-out Intermediate: trace after spatial fitting.
red: component 1, green: component 2

Reconstruction using our method. Original.
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Trace Data on a Spacial Grid from the Raw Input
Measured data are samples of the MPI core operator applied to ρ,

sk = s(tk ) = Ah [ρ](rk )vk ,

at location rk = r(tk ), tangent vk = v(tk ). Reconstruction formula:

κh ◦ ρ = trace Ah [ρ].

Step 1: Deriving trace data on a spacial grid from the raw input.
Find a grid function u

u ≈ trace Ah [ρ] defined on a grid of N1 × N2 cells.

• On each cell, u is constant; each cell i is represented by its center
point xi .

• A time sample tk belongs to cell i, if r(tk ) is in this cell; For each cell
i, we collect the signal data s(tki ) from samples tki belonging to the
cell i and gather them in a matrix Si . Accordingly, we collect the
velocity vectors ṙ(tki ) = v(tki ) and gather them in a matrix Vi .

• We obtain the matrix fitting problem w.r.t. Ai ,

Ai Vi = Ah [ρ](xi) Vi = Si . (2)

which we solve by least squares fitting. Then, ui := trace Ai .
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Signal Reconstruction from the Trace Data by
Deconvolution

Reconstruction formula:

κh ◦ ρ = trace Ah [ρ].

Step 1 yields a grid function u

u ≈ trace Ah [ρ] defined on a grid of N1 × N2 cells.

Step 2: Reconstruction of the signal from the derived trace data by
deconvolution (ill-posed). Regularized solution of the problem

Find ρ in κh ∗ ρ = u,

given u by classical Tychonov regularization

ρ = arg min
ρ̂

µ ‖D ρ̂ ‖22 + ‖Kh ρ̂ − u‖22. (3)

We solve the corresponding discrete Euler-Lagrange equation

− µ Lρ + Kh (Khρ − u) = 0. (4)

Here, −L = DT D is the five point stencil discretization of the Laplacian
with zero Dirichlet boundary and Kh = KT

h is symmetric.
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Reconstruction Algorithm - Summary
input : Time dependent samples sk = s(tk ) along trajectory rk = r(tk ) with

tangent vk = ṙ(tk ) at times tk ; regularization parameter µ.
output: Reconstructed particle density ρ.

for k ← 1 to K do
// Associate time samples with pixel grid.

if rk in cell i then
V(i)← [V(i), vk ]; //Append tangent direction.

S(i)← [S(i), sk ]; // Append data value.

end
end
for i ← 1 to I do
// For each cell fit trace data using (2).
[Qi ,Ri]← QR(VT

i );
Ai ← Si Qi RT

i ;
ui ← trace Ai ;

end
// Regularized deconvolution of the trace data using (3) by
// solving (4) with conjugate gradients (CG).
ρ = CG(−µ L + K 2

h , Khu);
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Summary

• We have reviewed the MPI model.
• We have extracted the MPI core operator.
• We have analyzed the idealized situation and the non-idealized

situation.
• We have obtained reconstruction formulae for both cases based on

matrix traces of the MPI core operator.
• We have seen that even the idealized MPI problem is ill-posed in 2D

and 3D, which contrasts the 1D situation.
• We have seen that the MPI problem is severly ill-posed.
• We have derived a reconstruction algorithm based on the

reconstruction formulae.
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