Model based reconstruction for magnetic particle imaging in 2D and 3D

Tom März, Andreas Weinmann

Canazei, September 2017

Reconstruction Algorithm

Review: The Basic Model

The MPI Core Operator

Reconstruction Formulae in 2D and 3D

Reconstruction Algorithm in 2D and 3D

Basic Principles

Data measured in MPI: voltage $\mathbf{u}(t)$ induced in the recording coils.

By Farraday's law of induction,

$$\mathbf{u}(t) = -\frac{d}{dt}\mathbf{\Phi}(t),$$

where the magnetic flux $\mathbf{\Phi}(t)$ is

$$\mathbf{\Phi}(t) = \mu_0 \int_{\mathbb{R}^3} \mathbf{R}(x) (\mathbf{H}(x,t) + \mathbf{M}(x,t)) \ dx,$$

 μ_0 magnet. permeability.

- The flux $\Phi(t)$ is caused by the applied field H(x, t) and the magnetization response M(x, t).
- **R**(*x*) ∈ ℝ^{3×3} is the sensitivity pattern of the three recording coil pairs.

Basic Principles

Data measured in MPI: voltage $\mathbf{u}(t)$ given by

$$\mathbf{u}(t) = -rac{d}{dt}\mathbf{\Phi}(t), \qquad \mathbf{\Phi}(t) = \mu_0 \int\limits_{\mathbb{R}^3} \mathbf{R}(x) (\mathbf{H}(x,t) + \mathbf{M}(x,t)) \ dx,$$

with magnetic flux $\Phi(t)$, applied field H(x, t), magnetization response $\mathbf{M}(x, t)$.

By the Langevin theory of paramagnetism for superparamagnetic nanoparticles,

$$\mathbf{M}(x,t) = \rho(x) \ m \ \mathcal{L}\left(\frac{|\mathbf{H}(x,t)|}{H_{\text{sat}}}\right) \ \frac{\mathbf{H}(x,t)}{|\mathbf{H}(x,t)|}, \qquad \mathcal{L}(x) = \operatorname{coth}(x) - \frac{1}{x},$$

with \mathcal{L} ...Langevin function, m...magnetic moment of a single particle, H_{sat} ...saturation parameter.

Signal to reconstruct in MPI: concentration of the particles $\rho(x)$.

Data: voltage $\mathbf{u}(t)$ given by

$$\mathbf{u}(t) = -\mu_0 \frac{d}{dt} \int_{\mathbb{R}^3} \mathbf{R}(x) (\mathbf{H}(x,t) + \mathbf{M}(x,t)) \ dx.$$

Reconstruct the particle density $\rho(x)$ given via

$$\mathbf{M}(x,t) = \rho(x) \ m \ \mathcal{L}\left(\frac{|\mathbf{H}(x,t)|}{H_{\text{sat}}}\right) \ \frac{\mathbf{H}(x,t)}{|\mathbf{H}(x,t)|}.$$

Data: voltage $\mathbf{u}(t)$ given by

$$\mathbf{u}(t) = -\mu_0 \frac{d}{dt} \int_{\mathbb{R}^3} \mathbf{R}(x) (\mathbf{H}(x,t) + \mathbf{M}(x,t)) \ dx.$$

Since the applied field **H** does not depend on ρ , consider the data

$$\mathbf{s}(t) = -\mu_0 \frac{d}{dt} \int_{\mathbb{R}^3} \mathbf{R}(x) \mathbf{M}(x, t) \ dx.$$

Reconstruct the particle density $\rho(x)$ given via

$$\mathbf{M}(x,t) = \rho(x) \ m \ \mathcal{L}\left(\frac{|\mathbf{H}(x,t)|}{H_{\text{sat}}}\right) \ \frac{\mathbf{H}(x,t)}{|\mathbf{H}(x,t)|}.$$

Data: voltage $\mathbf{u}(t)$ given by

$$\mathbf{u}(t) = -\mu_0 \frac{d}{dt} \int_{\mathbb{R}^3} \mathbf{R}(x) (\mathbf{H}(x,t) + \mathbf{M}(x,t)) \ dx.$$

Since the applied field **H** does not depend on ρ , consider the data

$$\mathbf{s}(t) = -\mu_0 rac{d}{dt} \int\limits_{\mathbb{R}^3} \mathbf{R}(x) \mathbf{M}(x,t) \ dx.$$

In the interesting field of view, R is almost constant; hence

$$\mathbf{s}(t) = -\mu_0 \mathbf{R} \frac{d}{dt} \int_{\mathbb{R}^3} \mathbf{M}(x, t) \, dx.$$

Reconstruct the particle density $\rho(x)$ given via

$$\mathbf{M}(x,t) = \rho(x) \ m \ \mathcal{L}\left(\frac{|\mathbf{H}(x,t)|}{H_{\text{sat}}}\right) \ \frac{\mathbf{H}(x,t)}{|\mathbf{H}(x,t)|}.$$

Data: voltage $\mathbf{u}(t)$ given by

$$\mathbf{u}(t) = -\mu_0 \frac{d}{dt} \int_{\mathbb{R}^3} \mathbf{R}(x) (\mathbf{H}(x,t) + \mathbf{M}(x,t)) \ dx.$$

Since the applied field ${\bf H}$ does not depend on ρ , consider the data

$$\mathbf{s}(t) = -\mu_0 \frac{d}{dt} \int_{\mathbb{R}^3} \mathbf{R}(x) \mathbf{M}(x,t) \ dx.$$

In the interesting field of view, R is almost constant; hence

$$\mathbf{s}(t) = -\mu_0 \mathbf{R} \frac{d}{dt} \int_{\mathbb{R}^3} \mathbf{M}(x, t) \, dx.$$

Hence,

$$\mathbf{s}(t) = -\mu_0 m \mathbf{R} \frac{d}{dt} \int_{\mathbb{R}^3} \rho(x) \, \mathcal{L}\left(\frac{|\mathbf{H}(x,t)|}{H_{\text{sat}}}\right) \, \frac{\mathbf{H}(x,t)}{|\mathbf{H}(x,t)|} \, dx$$

Simplified problem: Reconstruct $\rho(x)$ from voltage data s(t) related via

$$\underbrace{\mathbf{s}(t)}_{\text{data}} = \underbrace{-\mu_0 m \mathbf{R}}_{\text{constants}} \frac{d}{dt} \int_{\mathbb{R}^3} \underbrace{\rho(x)}_{\text{signal}} \underbrace{\mathcal{L}\left(\frac{|\mathbf{H}(x,t)|}{H_{\text{sat}}}\right) \frac{\mathbf{H}(x,t)}{|\mathbf{H}(x,t)|}}_{\mathbf{H}(x,t)|} dx$$

.

Simplification

Simplified problem: Reconstruct $\rho(x)$ from voltage data s(t) related via

$$\underbrace{\mathbf{s}(t)}_{\text{data}} = \underbrace{-\mu_0 m \mathbf{R}}_{\text{constants}} \frac{d}{dt} \int_{\mathbb{R}^3} \underbrace{\rho(x)}_{\text{signal}} \underbrace{\mathcal{L}\left(\frac{|\mathbf{H}(x,t)|}{H_{\text{sat}}}\right) \frac{\mathbf{H}(x,t)}{|\mathbf{H}(x,t)|}}_{\mathbf{H}(x,t)|} dx$$

The applied field **H** cosists of a static field \mathbf{H}^{S} and a dynamic field \mathbf{H}^{D} :

 $\mathbf{H}(x,t) = \mathbf{H}^{S}(x) + \mathbf{H}^{D}(x,t)$

Simplified problem: Reconstruct $\rho(x)$ from voltage data s(t) related via

$$\underbrace{\mathbf{s}(t)}_{\text{data}} = \underbrace{-\mu_0 m \mathbf{R}}_{\text{constants}} \frac{d}{dt} \int_{\mathbb{R}^3} \underbrace{\rho(x)}_{\text{signal}} \underbrace{\mathcal{L}\left(\frac{|\mathbf{H}(x,t)|}{H_{\text{sat}}}\right) \frac{\mathbf{H}(x,t)}{|\mathbf{H}(x,t)|}}_{|\mathbf{H}(x,t)|} dx$$

The applied field **H** cosists of a static field \mathbf{H}^{S} and a dynamic field \mathbf{H}^{D} :

$$\mathbf{H}(x,t) = \mathbf{H}^{S}(x) + \mathbf{H}^{D}(x,t) = \mathbf{G}x + \mathbf{P}\mathbf{I}(t)$$

In the interesting region,

$$\mathbf{H}^{S}(x) = \mathbf{G}x = g \operatorname{diag}(-1, -1, 2) x,$$
 $\mathbf{H}^{D}(x, t) = \mathbf{P} \mathbf{I}(t),$

g... nominal gradient of the static field, I(t)... current in the coils,

P... almost constant sensitivity profile of the drive field coils.

Simplified problem: Reconstruct $\rho(x)$ from voltage data s(t) related via

$$\underbrace{\mathbf{s}(t)}_{\text{data}} = \underbrace{-\mu_0 m \mathbf{R}}_{\text{constants}} \frac{d}{dt} \int_{\mathbb{R}^3} \underbrace{\rho(x)}_{\text{signal}} \underbrace{\mathcal{L}\left(\frac{|\mathbf{H}(x,t)|}{H_{\text{sat}}}\right) \frac{\mathbf{H}(x,t)}{|\mathbf{H}(x,t)|}}_{|\mathbf{H}(x,t)|} dx$$

The applied field **H** cosists of a static field \mathbf{H}^{S} and a dynamic field \mathbf{H}^{D} :

$$\mathbf{H}(x,t) = \mathbf{H}^{\mathcal{S}}(x) + \mathbf{H}^{\mathcal{D}}(x,t) = \mathbf{G}x + \mathbf{P}\mathbf{I}(t)$$

In the interesting region,

$$\mathbf{H}^{S}(x) = \mathbf{G}x = g \operatorname{diag}(-1, -1, 2) x,$$
 $\mathbf{H}^{D}(x, t) = \mathbf{P} \mathbf{I}(t),$

g... nominal gradient of the static field, I(t)... current in the coils,

P... almost constant sensitivity profile of the drive field coils.

The field free point r(t) is given by H(r(t), t) = 0.

Simplified problem: Reconstruct $\rho(x)$ from voltage data s(t) related via

$$\underbrace{\mathbf{s}(t)}_{\text{data}} = \underbrace{-\mu_0 m \mathbf{R}}_{\text{constants}} \frac{d}{dt} \int_{\mathbb{R}^3} \underbrace{\rho(x)}_{\text{signal}} \underbrace{\mathcal{L}\left(\frac{|\mathbf{H}(x,t)|}{H_{\text{sat}}}\right) \frac{\mathbf{H}(x,t)}{|\mathbf{H}(x,t)|}}_{|\mathbf{H}(x,t)|} dx$$

The applied field **H** cosists of a static field \mathbf{H}^{S} and a dynamic field \mathbf{H}^{D} :

$$\mathbf{H}(x,t) = \mathbf{H}^{\mathcal{S}}(x) + \mathbf{H}^{\mathcal{D}}(x,t) = \mathbf{G}x + \mathbf{P}\mathbf{I}(t)$$

In the interesting region,

$$\mathbf{H}^{S}(x) = \mathbf{G}x = g \operatorname{diag}(-1, -1, 2) x,$$
 $\mathbf{H}^{D}(x, t) = \mathbf{P} \mathbf{I}(t),$

g... nominal gradient of the static field, I(t)... current in the coils, **P**... almost constant sensitivity profile of the drive field coils.

The field free point r(t) is given by H(r(t), t) = 0. Then,

 $\mathbf{Gr}(t) = -\mathbf{P} \mathbf{I}(t)$

Simplified problem: Reconstruct $\rho(x)$ from voltage data s(t) related via

$$\underbrace{\mathbf{s}(t)}_{\text{data}} = \underbrace{-\mu_0 m \mathbf{R}}_{\text{constants}} \frac{d}{dt} \int_{\mathbb{R}^3} \underbrace{\rho(x)}_{\text{signal}} \underbrace{\mathcal{L}\left(\frac{|\mathbf{H}(x,t)|}{H_{\text{sat}}}\right) \frac{\mathbf{H}(x,t)}{|\mathbf{H}(x,t)|}}_{|\mathbf{H}(x,t)|} dx$$

The applied field **H** cosists of a static field \mathbf{H}^{S} and a dynamic field \mathbf{H}^{D} :

$$\mathbf{H}(x,t) = \mathbf{H}^{\mathcal{S}}(x) + \mathbf{H}^{\mathcal{D}}(x,t) = \mathbf{G}x + \mathbf{P}\mathbf{I}(t)$$

In the interesting region,

$$\mathbf{H}^{S}(x) = \mathbf{G}x = g \operatorname{diag}(-1, -1, 2) x,$$
 $\mathbf{H}^{D}(x, t) = \mathbf{P} \mathbf{I}(t),$

 $g \dots$ nominal gradient of the static field, $I(t) \dots$ current in the coils, $P \dots$ almost constant sensitivity profile of the drive field coils.

The field free point r(t) is given by H(r(t), t) = 0. Then,

$$\mathbf{G}r(t) = -\mathbf{P}\mathbf{I}(t) \quad \Rightarrow \quad \mathbf{H}(x,t) = \mathbf{G}x - \mathbf{P}\mathbf{I}(t) = -\mathbf{G}(r(t) - x).$$

Simplified problem: Reconstruct $\rho(x)$ from voltage data s(t) related via

$$\underbrace{\mathbf{s}(t)}_{\text{data}} = \underbrace{-\mu_0 m \mathbf{R}}_{\text{constants}} \frac{d}{dt} \int_{\mathbb{R}^3} \underbrace{\rho(x)}_{\text{signal}} \underbrace{\mathcal{L}\left(\frac{|\mathbf{H}(x,t)|}{H_{\text{sat}}}\right) \frac{\mathbf{H}(x,t)}{|\mathbf{H}(x,t)|}}_{\mathbf{H}(x,t)|} dx$$

The applied field **H** cosists of a static field \mathbf{H}^{S} and a dynamic field \mathbf{H}^{D} :

$$\mathbf{H}(x,t) = \mathbf{H}^{\mathcal{S}}(x) + \mathbf{H}^{\mathcal{D}}(x,t) = \mathbf{G}x + \mathbf{P}\mathbf{I}(t)$$

In the interesting region,

$$\mathbf{H}^{S}(x) = \mathbf{G}x = g \operatorname{diag}(-1, -1, 2) x,$$
 $\mathbf{H}^{D}(x, t) = \mathbf{P} \mathbf{I}(t),$

 $g \dots$ nominal gradient of the static field, $\mathbf{I}(t) \dots$ current in the coils, $\mathbf{P} \dots$ almost constant sensitivity profile of the drive field coils.

The field free point r(t) is given by H(r(t), t) = 0. Then,

$$\mathbf{G}r(t) = -\mathbf{P}\mathbf{I}(t) \qquad \Rightarrow \qquad \mathbf{H}(x,t) = \mathbf{G}x - \mathbf{P}\mathbf{I}(t) = -\mathbf{G}(r(t) - x).$$

Hence (Goodwill, Connolly),

$$\mathbf{s}(t) = \mu_0 \ m \ \mathbf{R} \frac{d}{dt} \int_{\mathbb{R}^3} \rho(x) \mathcal{L} \left(\frac{|\mathbf{G}(r(t) - x)|}{H_{\text{sat}}} \right) \ \frac{\mathbf{G}(r(t) - x)}{|\mathbf{G}(r(t) - x)|} \ dx.$$

II. The MPI Core Operator

(or, getting rid of particular trajectories)

Problem: Reconstruct $\rho(x)$ from voltage data s(t) related via

$$\underbrace{\mathbf{s}(t)}_{\text{data}} = \underbrace{-\mu_0 m \mathbf{R}}_{\text{constants}} \frac{d}{dt} \int_{\mathbb{R}^3} \underbrace{\rho(x)}_{\text{signal}} \underbrace{\mathcal{L}\left(\frac{|\mathbf{G}(r(t) - x)|}{H_{\text{sat}}}\right) \frac{\mathbf{G}(r(t) - x)}{|\mathbf{G}(r(t) - x)|}}_{\text{kernel}} dx$$

From a mathematical viewpoint, by transformation,

$$\bar{\mathbf{s}}(t) = \frac{d}{dt} \int_{\mathbb{R}^3} \bar{\rho}(\widehat{x}) \, \mathcal{L}\left(\frac{|\widehat{r}(t) - \widehat{x}|}{h}\right) \, \frac{\widehat{r}(t) - \widehat{x}}{|\widehat{r}(t) - \widehat{x}|} \, d\widehat{x},$$

Problem: Reconstruct $\rho(x)$ from voltage data s(t) related via

$$\underbrace{\mathbf{s}(t)}_{\text{data}} = \underbrace{-\mu_0 m \mathbf{R}}_{\text{constants}} \frac{d}{dt} \int_{\mathbb{R}^3} \underbrace{\rho(x)}_{\text{signal}} \underbrace{\mathcal{L}\left(\frac{|\mathbf{G}(r(t)-x)|}{H_{\text{sat}}}\right) \frac{\mathbf{G}(r(t)-x)}{|\mathbf{G}(r(t)-x)|}}_{\text{kernel}} dx.$$

From a mathematical viewpoint, by transformation,

$$\mathbf{s}(t) = \frac{d}{dt} \int_{\mathbb{R}^3} \rho(x) \, \mathcal{L}\left(\frac{|r(t)-x|}{h}\right) \, \frac{r(t)-x}{|r(t)-x|} \, dx,$$

Or,

$$\mathbf{s}(t) = \nabla_r \mathbf{\Phi}(r) \dot{r}(t), \quad \text{where} \quad \mathbf{\Phi}(r) = \int_{\mathbb{R}^n} \rho(x) \mathcal{L}\left(\frac{|r-x|}{h}\right) \frac{r-x}{|r-x|} dx.$$

Problem: Reconstruct $\rho(x)$ from voltage data s(t) related via

$$\mathbf{s}(t) = \nabla_r \mathbf{\Phi}(r) \ \dot{r}(t), \qquad \text{where} \quad \mathbf{\Phi}(r) = \int_{\mathbb{R}^n} \rho(x) \ \mathcal{L}\left(\frac{|r-x|}{h}\right) \ \frac{r-x}{|r-x|} \ dx.$$

 \implies The signal **s** only depends on the location *r* and the velocity \dot{r} of the field free point, and not on the particular trajectory.

Problem: Reconstruct $\rho(x)$ from voltage data s(t) related via

$$\mathbf{s}(t) = \nabla_r \mathbf{\Phi}(r) \dot{r}(t), \quad \text{where} \quad \mathbf{\Phi}(r) = \int_{\mathbb{R}^n} \rho(x) \mathcal{L}\left(\frac{|r-x|}{h}\right) \frac{r-x}{|r-x|} dx.$$

 \implies The signal **s** only depends on the location *r* and the velocity \dot{r} of the field free point, and not on the particular trajectory.

• Application: Plugging together different trajectories, overlapping fields of view,...

Problem: Reconstruct $\rho(x)$ from voltage data s(t) related via

$$\mathbf{s}(t) = \nabla_r \mathbf{\Phi}(r) \ \dot{r}(t), \qquad \text{where} \quad \mathbf{\Phi}(r) = \int_{\mathbb{R}^n} \rho(x) \ \mathcal{L}\left(\frac{|r-x|}{h}\right) \ \frac{r-x}{|r-x|} \ dx.$$

 \implies The signal **s** only depends on the location *r* and the velocity \dot{r} of the field free point, and not on the particular trajectory.

- Application: Plugging together different trajectories, overlapping fields of view,...
- Mathematically: view MPI as an operator

 $\rho \rightarrow A_h[\rho](r, v)$

where $A_h[\rho]$ is a function on phase space, linear in the velocity v,

$$\mathcal{A}_{h}[\rho](r)\mathbf{v} = \nabla_{r} \mathbf{\Phi}(r)\mathbf{v} = \int_{\mathbb{R}^{n}} \rho(x) \nabla_{r} \left(\mathcal{L}\left(\frac{|r-x|}{h}\right) \frac{|r-x|}{|r-x|} \right) dx \cdot \mathbf{v}.$$

Problem: Reconstruct $\rho(x)$ from voltage data s(t) related via

$$\mathbf{s}(t) = \nabla_r \mathbf{\Phi}(r) \ \dot{r}(t), \qquad \text{where} \quad \mathbf{\Phi}(r) = \int_{\mathbb{R}^n} \rho(x) \ \mathcal{L}\left(\frac{|r-x|}{h}\right) \ \frac{r-x}{|r-x|} \ dx.$$

 \implies The signal **s** only depends on the location *r* and the velocity \dot{r} of the field free point, and not on the particular trajectory.

- Application: Plugging together different trajectories, overlapping fields of view,...
- Mathematically: view MPI as an operator

 $\rho \to A_h[\rho](r,v)$

where $A_h[\rho]$ is a function on phase space, linear in the velocity v,

$$\mathcal{A}_{h}[\rho](r)v = \nabla_{r} \Phi(r)v = \int_{\mathbb{R}^{n}} \rho(x) \nabla_{r} \left(\mathcal{L}\left(\frac{|r-x|}{h}\right) \frac{|r-x|}{|r-x|} \right) dx \cdot v.$$

The MPI core operator A_h is independent of a particular trajectory.

III. Reconstruction in 2D and 3D

The MPI core operator A_h is given by

$$A_h[\rho](r)v = \int_{\mathbb{R}^n} \rho(x) \, \nabla_r \left(\mathcal{L}\left(\frac{|r-x|}{h}\right) \, \frac{|r-x|}{|r-x|} \right) \, dx \cdot v.$$

What happens if $h \rightarrow 0$?

- Physical meaning: e.g., temperature decreases, or, particle size increases.
- In 1D: kernel tends to Dirac pulse.
- Idealized operator without blurring part.

The MPI core operator A_h is given by

$$A_h[\rho](r) = \int_{\mathbb{R}^n} \rho(x) \nabla_r \left(\mathcal{L}\left(\frac{|r-x|}{h}\right) \frac{|r-x|}{|r-x|} \right) dx.$$

Theorem (März, W., IPI, 2016)

Let $\alpha_h[\rho](r)$ = trace $A_h[\rho](r)$ and let $\alpha[\rho](r) = \lim_{h\to 0} \alpha_h[\rho](r)$. Then,

$$\alpha[\rho](r) = \int_{\mathbb{R}^n} \rho(x) \kappa(r-x) \, dx,$$

 ρ in BV₀(Ω). In dimension n > 1,

$$\kappa(r-x) := \operatorname{div}_r\left(\frac{r-x}{|r-x|}\right) = \frac{n-1}{|r-x|}.$$

The MPI core operator A_h is given by

$$A_h[\rho](r) = \int_{\mathbb{R}^n} \rho(x) \nabla_r \left(\mathcal{L}\left(\frac{|r-x|}{h}\right) \frac{|r-x|}{|r-x|} \right) dx.$$

Theorem (März, W., IPI, 2016)

Let $\alpha_h[\rho](r)$ = trace $A_h[\rho](r)$ and let $\alpha[\rho](r) = \lim_{h\to 0} \alpha_h[\rho](r)$. Then,

$$\alpha[\rho](r) = \int_{\mathbb{R}^n} \rho(x) \kappa(r-x) dx,$$

 ρ in BV₀(Ω). In dimension n > 1,

$$\kappa(r-x) := \operatorname{div}_r\left(\frac{r-x}{|r-x|}\right) = \frac{n-1}{|r-x|}.$$

 In 1D, we have a Dirac-kernel κ(r − x) = 2 δ(r − x). A peaking property was conjectured for nD which is not true by the theorem.

The MPI core operator A_h is given by

$$A_h[\rho](r) = \int_{\mathbb{R}^n} \rho(x) \, \nabla_r \left(\mathcal{L} \left(\frac{|r-x|}{h} \right) \, \frac{|r-x|}{|r-x|} \right) \, dx.$$

Theorem (März, W., IPI, 2016)

Let $\alpha_h[\rho](r)$ = trace $A_h[\rho](r)$ and let $\alpha[\rho](r) = \lim_{h\to 0} \alpha_h[\rho](r)$. Then,

$$\alpha[\rho](r) = \int_{\mathbb{R}^n} \rho(x) \kappa(r-x) dx,$$

 ρ in BV₀(Ω). In dimension n > 1,

$$\kappa(r-x) := \operatorname{div}_r\left(\frac{r-x}{|r-x|}\right) = \frac{n-1}{|r-x|}.$$

- In 1D, we have a Dirac-kernel κ(r − x) = 2 δ(r − x). A peaking property was conjectured for nD which is not true by the theorem.
- Striking point: the trace $\alpha[\rho]$ already contains all information on ρ . This has not been realized before.

Relation to the Laplace equation

We consider the MPI core operator A_h and its trace

$$\alpha_h[\rho](r) = \operatorname{trace} A_h[\rho](r),$$

together with the idealization limit

$$\alpha[\rho](r) = \lim_{h\to 0} \alpha_h[\rho](r), \quad \alpha[\rho](r) = \int_{\mathbb{R}^n} \rho(x) \kappa(r-x) \, dx.$$

Corollary (März, W., IPI, 2016)

We have the following dimension-dependent relations of the kernel κ to the fundamental solution $\Phi(r, x)$ of the Laplace equ. $-\Delta_r \Phi = \delta(r - x)$,

in 3D,
$$\kappa(r-x) = 8\pi \Phi(r, x)$$
 with $\Phi(r, x) = \frac{1}{4\pi |r-x|}$

in 2D, $\kappa(r-x) = -2\pi \nabla_r \Phi(r,x) \cdot \frac{r-x}{|r-x|};$

with
$$\Phi(r, x) = -\frac{1}{2\pi} \log(|r - x|).$$

in 1D,
$$\kappa(r-x) = -2\frac{d}{dr^2}\Phi(r,x)$$
 with $\Phi(r,x) = -|r-x|/2$.

Corollary (Reconstruction Formula for the Idealized Case, März, W., IPI, 2016)

Consider the idealized MPI core operator

$$A_0[\rho](r) = \lim_{h \to 0} A_h[\rho](r)$$
 and

data $F(r) = A_0[\rho](r)$ at each point r given for the idealized scenario. Then,

$$\rho = \kappa^{-1} \circ \text{trace } A_0[\rho],$$

where κ is the dimension-dependent convolution kernel from above.

Corollary (Reconstruction Formula for the Idealized Case, März, W., IPI, 2016)

Consider the idealized MPI core operator

$$A_0[\rho](r) = \lim_{h \to 0} A_h[\rho](r)$$
 and

data $F(r) = A_0[\rho](r)$ at each point r given for the idealized scenario. Then,

$$\rho = \kappa^{-1} \circ \text{trace } \mathsf{A}_0[\rho],$$

where κ is the dimension-dependent convolution kernel from above.

That means, we take the pointwise trace and then deconvolve w.r.t. the dimension-dependent κ .

Corollary (Reconstruction Formula for the Idealized Case, März, W., IPI, 2016)

Consider the idealized MPI core operator

$$A_0[\rho](r) = \lim_{h \to 0} A_h[\rho](r)$$
 and

data $F(r) = A_0[\rho](r)$ at each point r given for the idealized scenario. Then,

$$\rho = \kappa^{-1} \circ \text{trace } A_0[\rho],$$

where κ is the dimension-dependent convolution kernel from above.

That means, we take the pointwise trace and then deconvolve w.r.t. the dimension-dependent κ . In particular, in 3*D*,

$$\rho = \frac{1}{8\pi} \Delta \circ \text{trace } A_0[\rho],$$

III-Posedness

Corollary (III-Posedness März, W., IPI, 2016)

Even the idealized MPI problem is ill-posed in 2D and 3D. Depending on the dimension the degree of ill-posedness, i.e., the order of gained Sobolev smoothness of the forward operator, is one in 2D, and two in 3D.

III-Posedness

Corollary (III-Posedness März, W., IPI, 2016)

Even the idealized MPI problem is ill-posed in 2D and 3D. Depending on the dimension the degree of ill-posedness, i.e., the order of gained Sobolev smoothness of the forward operator, is one in 2D, and two in 3D.

Remark. This is not the case in 1D where κ is a Dirac distribution.

Non-idealized situation

We consider the non-idealized situation h > 0 now.

Theorem (März, W., IPI, 2016)

The trace $\alpha_h[\rho]$ of the MPI core operator $A_h[\rho]$ is given by

$$\alpha_h[\rho](r) = \int_{\mathbb{R}^n} \rho(x) \kappa_h(r-x) dx,$$

 $\rho \in \mathsf{BV}_0(\Omega)$, where the convolution kernel κ_h is given by

$$\kappa_h(y) = \frac{1}{h} f\left(\frac{|y|}{h}\right), \quad \text{with} \quad f(z) = \mathcal{L}'(z) + \mathcal{L}(z) \frac{n-1}{z}, \quad (1)$$

L the Langevin function;

Non-idealized situation

We consider the non-idealized situation h > 0 now.

Theorem (März, W., IPI, 2016)

The trace $\alpha_h[\rho]$ of the MPI core operator $A_h[\rho]$ is given by

$$\alpha_{\hbar}[\rho](r) = \int_{\mathbb{R}^n} \rho(x) \kappa_{\hbar}(r-x) dx,$$

 $\rho \in \mathsf{BV}_0(\Omega)$, where the convolution kernel κ_h is given by

$$\kappa_h(y) = \frac{1}{h} f\left(\frac{|y|}{h}\right), \quad \text{with} \quad f(z) = \mathcal{L}'(z) + \mathcal{L}(z) \frac{n-1}{z}, \quad (1)$$

 \mathcal{L} the Langevin function; f is analytic with only purely imaginary singularities; near zero, f has the power series expansion

$$f(z) = \sum_{k=0}^{\infty} \frac{2^{2k+2}B_{2k+2}}{(2k+2)!} (2k+n) z^{2k}, \quad B_l \text{ the } l\text{-th Bernoulli number,}$$

with a convergence radius of π . Thus κ_h is analytic.

Corollary (Reconstruction Formula for the the Non-Idealized Case, März, W., IPI, 2016)

Consider the MPI core operator $A_h[\rho](r)$ and suppose that data $F(r) = A_h[\rho](r)$ at each point *r* is given. Then,

 $\kappa_h * \rho = \text{trace } A_h[\rho],$

where κ_h is the analytic convolution kernel $\kappa_h(y) = \frac{1}{h} f\left(\frac{|y|}{h}\right)$ with $f(z) = \mathcal{L}'(z) + \mathcal{L}(z) \frac{n-1}{z}$ from the slide before.

Corollary (Reconstruction Formula for the the Non-Idealized Case, März, W., IPI, 2016)

Consider the MPI core operator $A_h[\rho](r)$ and suppose that data $F(r) = A_h[\rho](r)$ at each point *r* is given. Then,

 $\kappa_h * \rho = \text{trace } A_h[\rho],$

where κ_h is the analytic convolution kernel $\kappa_h(y) = \frac{1}{h} f\left(\frac{|y|}{h}\right)$ with $f(z) = \mathcal{L}'(z) + \mathcal{L}(z) \frac{n-1}{z}$ from the slide before.

That means, we take the pointwise trace and then deconvolve w.r.t. κ_h .

III-Posedness

Corollary (III-Posedness März, W., IPI, 2016)

The non-idealized MPI problem is severely ill-posed in the following sense: there are no two spaces H^s , H^t in the (Hilbert-)Sobolev scale, such that the trace α_h of the MPI operator induces an isomorphism $\alpha_h : H^s \to H^t$ between these two spaces.

There is a particularly nice relation between the traces $\alpha[\rho]$ and $\alpha_h[\rho]$ of the idealized and the non-idealized MPI operators in 3D.

Theorem (März, W., IPI, 2016)

In 3D, we have that

$$\alpha_h[\rho] = -\frac{\Delta \kappa_h}{8\pi} * \alpha[\rho].$$

This tells us that in 3D the non-idealized $\alpha_h[\rho]$ is a massively smoothed version of the idealized $\alpha[\rho]$. Recall that

$$\kappa_h(y) = \frac{1}{h} f\left(\frac{|y|}{h}\right), \quad \text{with} \quad f(z) = \sum_{k=0}^{\infty} \frac{2^{2k+2}B_{2k+2}}{(2k+2)!} (2k+n) z^{2k}.$$

IV. Reconstruction Algorithm

We use the derived reconstruction formulae to design a reconstruction algorithm for MPI in 2D/3D. **Measured data: Samples** $\mathbf{s}_k = \mathbf{s}(t_k)$ of time data $\mathbf{s}(t)$ associated with a scan trajectory r(t).

We use the derived reconstruction formulae to design a reconstruction algorithm for MPI in 2D/3D. **Measured data:** Samples $\mathbf{s}_k = \mathbf{s}(t_k)$ of time data $\mathbf{s}(t)$ associated with a scan trajectory r(t).

• Recall: r(t) is related with the electrical current I(t) via

$$\mathbf{r}(t) = -\mathbf{G}^{-1}\mathbf{P}\,\mathbf{I}(t),$$

 $G = g \operatorname{diag}(-1, -1, 2), g \dots$ nominal gradient of the static field, $P \dots$ sensitivity profile of the drive field coils.

We use the derived reconstruction formulae to design a reconstruction algorithm for MPI in 2D/3D.

Measured data: Samples $\mathbf{s}_k = \mathbf{s}(t_k)$ of time data $\mathbf{s}(t)$ associated with a scan trajectory r(t).

• Recall: *r*(*t*) is related with the electrical current **I**(*t*) via

$$r(t) = -\mathbf{G}^{-1}\mathbf{P}\mathbf{I}(t),$$

 $G = g \operatorname{diag}(-1, -1, 2), g \dots$ nominal gradient of the static field, $P \dots$ sensitivity profile of the drive field coils.

- The measured data are a discrete sampling of the MPI core operator applied to ρ

$$\mathbf{s}_k = \mathbf{s}(t_k) = \mathbf{A}_h[\rho](r_k)\mathbf{v}_k,$$

at location $r_k = r(t_k)$, with the trajectory having tangent $v_k = v(t_k)$ at time t_k , for finitely many measurements indexed by k.

We use the derived reconstruction formulae to design a reconstruction algorithm for MPI in 2D/3D.

Measured data: Samples $\mathbf{s}_k = \mathbf{s}(t_k)$ of time data $\mathbf{s}(t)$ associated with a scan trajectory r(t).

• Recall: r(t) is related with the electrical current I(t) via

$$r(t) = -\mathbf{G}^{-1}\mathbf{P}\mathbf{I}(t),$$

 $G = g \operatorname{diag}(-1, -1, 2), g \dots$ nominal gradient of the static field, $P \dots$ sensitivity profile of the drive field coils.

- The measured data are a discrete sampling of the MPI core operator applied to ρ

$$\mathbf{s}_k = \mathbf{s}(t_k) = \mathbf{A}_h[\rho](r_k)\mathbf{v}_k,$$

at location $r_k = r(t_k)$, with the trajectory having tangent $v_k = v(t_k)$ at time t_k , for finitely many measurements indexed by k.

• Note: the presented approach is independent of the particular trajectory type employed.

Major Algorithmic Steps

Measured data are a discrete sampling of the MPI core operator applied to ρ

$$\mathbf{s}_k = \mathbf{s}(t_k) = \mathbf{A}_h[\rho](r_k)\mathbf{v}_k,$$

at location $r_k = r(t_k)$, with the trajectory having tangent $v_k = v(t_k)$. Reconstruction formula:

$$\kappa_h \circ \rho = \text{trace } A_h[\rho],$$

Major Algorithmic Steps

Measured data are a discrete sampling of the MPI core operator applied to ρ

$$\mathbf{s}_k = \mathbf{s}(t_k) = \mathbf{A}_h[\rho](\mathbf{r}_k)\mathbf{v}_k,$$

at location $r_k = r(t_k)$, with the trajectory having tangent $v_k = v(t_k)$. Reconstruction formula:

$$\kappa_h \circ \rho = \text{trace } A_h[\rho],$$

Our scheme may be subdivided into two major steps.

Step 1: Deriving trace data on a spacial grid from the raw input. We obtain a grid function *u* representing trace data, i.e.,

 $u \approx \text{trace } A_h[\rho]$

in each pixel (grid cell). (Details follow.)

Major Algorithmic Steps

Measured data are a discrete sampling of the MPI core operator applied to ρ

$$\mathbf{s}_k = \mathbf{s}(t_k) = \mathbf{A}_h[\rho](r_k)\mathbf{v}_k,$$

at location $r_k = r(t_k)$, with the trajectory having tangent $v_k = v(t_k)$. Reconstruction formula:

 $\kappa_h \circ \rho = \text{trace } A_h[\rho],$

Our scheme may be subdivided into two major steps.

Step 1: Deriving trace data on a spacial grid from the raw input. We obtain a grid function *u* representing trace data, i.e.,

 $u \approx \text{trace } A_h[\rho]$

in each pixel (grid cell). (Details follow.)

Step 2: Reconstruction of the signal from the derived trace data by deconvolution (ill-posed). Regularized solution of the problem

Find ρ in $\kappa_h * \rho = u$,

given u.(Details follow.)

Example.

red: component 1, green: component 2

Reconstruction using our method.

Intermediate: trace after spatial fitting.

Original.

Trace Data on a Spacial Grid from the Raw Input

Measured data are samples of the MPI core operator applied to ρ ,

 $\mathbf{s}_k = \mathbf{s}(t_k) = A_h[\rho](r_k)\mathbf{v}_k,$

at location $r_k = r(t_k)$, tangent $v_k = v(t_k)$. Reconstruction formula:

$$\kappa_h \circ \rho = \text{trace } A_h[\rho].$$

Step 1: Deriving trace data on a spacial grid from the raw input. Find a grid function *u*

 $u \approx \text{trace } A_h[\rho] \text{ defined on a grid of } N_1 \times N_2 \text{ cells.}$

- On each cell, *u* is constant; each cell *i* is represented by its center point *x_i*.
- A time sample t_k belongs to cell *i*, if $r(t_k)$ is in this cell; For each cell *i*, we collect the signal data $\mathbf{s}(t_{k_i})$ from samples t_{k_i} belonging to the cell *i* and gather them in a matrix S_i . Accordingly, we collect the velocity vectors $\dot{r}(t_{k_i}) = v(t_{k_i})$ and gather them in a matrix V_i .
- We obtain the matrix fitting problem w.r.t. A_i,

$$A_i V_i = A_h[\rho](x_i) V_i = S_i.$$
(2)

which we solve by least squares fitting. Then, $u_i := \text{trace } A_i$.

Reconstruction Algorithm

Signal Reconstruction from the Trace Data by Deconvolution

Reconstruction formula:

 $\kappa_h \circ \rho = \text{trace } A_h[\rho].$

Step 1 yields a grid function u

 $u \approx \text{trace } A_h[\rho] \text{ defined on a grid of } N_1 \times N_2 \text{ cells.}$

Step 2: Reconstruction of the signal from the derived trace data by deconvolution (ill-posed). Regularized solution of the problem

Find ρ in $\kappa_h * \rho = u$,

given u by classical Tychonov regularization

$$\rho = \arg\min_{\widehat{\rho}} \ \mu \ \|D \ \widehat{\rho} \ \|_2^2 + \|K_h \ \widehat{\rho} - u\|_2^2. \tag{3}$$

We solve the corresponding discrete Euler-Lagrange equation

$$-\mu L\rho + K_h (K_h \rho - u) = 0. \tag{4}$$

Here, $-L = D^T D$ is the five point stencil discretization of the Laplacian with zero Dirichlet boundary and $K_h = K_h^T$ is symmetric.

Reconstruction Algorithm - Summary

input : Time dependent samples $s_k = s(t_k)$ along trajectory $r_k = r(t_k)$ with tangent $v_k = \dot{r}(t_k)$ at times t_k ; regularization parameter μ . **output**: Reconstructed particle density ρ .

```
for k \leftarrow 1 to K do

| // \text{Associate time samples with pixel grid.}

if r_k in cell i then

| V(i) \leftarrow [V(i), v_k]; // Append tangent direction.

S(i) \leftarrow [S(i), s_k]; // Append data value.

end

end

for i \leftarrow 1 to / do

| // \text{ For each cell fit trace data using (2).}

[Q_i, R_i] \leftarrow QR(V_i^T);
```

$$\begin{array}{c} A_i \leftarrow S_i \ Q_i \ R_i^{\top}; \\ u_i \leftarrow \text{trace } A_i; \end{array}$$

end

// Regularized deconvolution of the trace data using (3) by // solving (4) with conjugate gradients (CG). $\rho = CG(-\mu L + K_h^2, K_h u);$

Summary

- We have reviewed the MPI model.
- We have extracted the MPI core operator.
- We have analyzed the idealized situation and the non-idealized situation.
- We have obtained reconstruction formulae for both cases based on matrix traces of the MPI core operator.
- We have seen that even the idealized MPI problem is ill-posed in 2D and 3D, which contrasts the 1D situation.
- We have seen that the MPI problem is severly ill-posed.
- We have derived a reconstruction algorithm based on the reconstruction formulae.

Some References

B. Gleich and Jürgen Weizenecker.

Tomographic imaging using the nonlinear response of magnetic particles. *Nature*, 435:1214–1217, 2005.

T. Knopp and Thorsten Buzug.

Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation.

Springer, 2012.

P. Goodwill and S. Conolly.

The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation.

IEEE Transactions on Medical Imaging, 29:1851–1859, 2010.

P. Goodwill and S. Conolly.

Multidimensional X-space magnetic particle imaging.

IEEE Transactions on Medical Imaging, 30:1581–1590, 2011.

T. März and A. Weinmann.

Model-based reconstruction for magnetic particle imaging in 2D and 3D. *Inverse Problems and Imaging*, 10:1087 – 1110, 2016.