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A family of range restricted iterative methods
for linear discrete ill-posed problems

Laura Dykes a · Lothar Reichel a

Abstract

The solution of large linear systems of equations with a matrix of ill-determined rank and an error-
contaminated right-hand side requires the use of specially designed iterative methods in order to avoid
severe error propagation. The choice of solution subspace is important for the quality of the computed
approximate solution, because this solution typically is determined in a subspace of fairly small dimension.
This paper presents a family of range restricted minimal residual iterative methods that modify the
well-known GMRES method by allowing other initial vectors for the solution subspace. A comparison
of the iterates computed by different range restricted minimal residual methods can be helpful for
determining which iterates may provide accurate approximations of the desired solution. Numerical
examples illustrate the competitiveness of the new methods and how iterates from different methods can
be compared.
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1 Introduction
This paper describes a family of iterative methods for the computation of approximate solutions of linear systems of equations

Ax = b, A∈ Rm×m, x , b ∈ Rm, (1)

with a large matrix A of ill-determined rank. Thus, A has many “tiny” singular values of different orders of magnitude. In
particular, A is severely ill-conditioned and may be singular. Linear systems of equations (1) with a matrix of this kind are
commonly referred to as linear discrete ill-posed problems. They are obtained, for instance, by the discretization of linear
ill-posed problems, such as Fredholm integral equations of the first kind with a smooth kernel.

In many linear discrete ill-posed problems that arise in science and engineering, the right-hand side vector b is determined by
measurement and is contaminated by an error that stems from measurement inaccuracies and possibly discretization. Thus,

b = b̂+ e, (2)

where b̂ ∈ Rm denotes the unknown error-free right-hand side. The error-vector e is referred to as “noise.”
We would like to compute the solution of minimal Euclidean norm, x̂ , of the linear discrete ill-posed problem with the

unknown error-free right-hand side
Ax = b̂. (3)

Since the right-hand side is not known, we seek to determine an approximation of x̂ by computing an approximate solution of the
available linear system of equations (1). Due to the severe ill-conditioning of the matrix A and the error e in b, the least-squares
solution of minimal Euclidean norm of (1) generally does not furnish a useful approximation of x̂ .

A popular approach to determine a meaningful approximation of x̂ is to apply an iterative method to the solution of (1)
and terminate the iterations sufficiently early. This type of solution approach is known as truncated iteration. One can show
that the sensitivity of the computed solution to the error e increases with the number of iterations. Let xk denote the kth
iterate determined by an iterative method, such as GMRES or the conjugate gradient method applied to the normal equations
AT Ax = AT b associated with (1). Then the difference xk − x̂ typically decreases as k increases and is small, but increases with k
for k large. The growth of the difference xk − x̂ for large values of k is caused by severe propagation of the error e in b and of
round-off errors introduced during the computations. This behavior of the iterates is commonly referred to as semiconvergence.
It is important to terminate the iterations when xk is close to x̂ . When an estimate of the norm of e is available, the discrepancy
principle can be used to determine how many iterations to carry out. Truncated iteration based on the discrepancy principle is
analyzed in, e.g., [7, 9].
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GMRES is a popular iterative method for the solution of large nonsymmetric linear systems that arise from the discretization
of well-posed problems, such as Dirichlet boundary value problems for elliptic partial differential equations; see, e.g., Saad [19].
Let the initial iterate be x0 = 0. Then the kth iterate, xk, computed by GMRES applied to the solution of (1) satisfies

‖Axk − b‖= min
x∈Kk(A,b)

‖Ax − b‖, xk ∈Kk(A, b), (4)

where Kk(A, b) = span{b, Ab, . . . , Ak−1 b} is a Krylov subspace and ‖ · ‖ denotes the Euclidean vector norm. We tacitly assume that
k is sufficiently small so that dim(Kk(A, b)) = k. GMRES may determine more accurate approximations of x̂ with less arithmetic
work than the conjugate gradient method applied to the normal equations associated with (1); see [5, 6, 8] for illustrations.

For linear discrete ill-posed problems, for which the desired solution x̂ is the discretization of a smooth function, it has been
observed in [6, 11] that the following variant of GMRES, referred to as Range Restricted GMRES (RRGMRES), often delivers
more accurate approximations of x̂ than GMRES. The name of the method stems from that the iterates live in R(A). Here and
throughout this paper R(M) denotes the range of the matrix M . Specifically, the kth iterate, xk, determined by RRGMRES with
initial iterate x0 = 0 satisfies

‖Axk − b‖= min
x∈Kk(A,Ab)

‖Ax − b‖, xk ∈Kk(A, Ab), (5)

where Kk(A, Ab) = span{Ab, A2 b, . . . , Ak b}. Properties of and computed examples with RRGMRES can be found in [2, 6, 18]. A
new implementation with improved numerical properties recently has been described in [13, 14].

It is the purpose of the present paper to generalize the implementation discussed in [13, 14] to be able to determine iterates
x (`)k that solve the minimization problems

‖Ax (`)k − b‖= min
x∈Kk(A,A` b)

‖Ax − b‖, x (`)k ∈Kk(A, A`b), `= 0, 1, . . . ,`max, (6)

for some (small) positive integer `max. The initial iterates x (`)0 are defined to be the zero vector. We refer to the solution method
for a particular value ` as RRGMRES(`). Thus, RRGMRES(0) is standard GMRES (4) and RRGMRES(1) is the method (5).
RRGMRES(`) is a range restricted GMRES method for `≥ 1.

For each RRGMRES(`) method, there is (at least) one iterate x (`)k`
that best approximates the desired solution x̂ . However, it

is difficult to determine which iterates are best approximations of x̂ unless further information about the error e or the desired
solution x̂ is available. We propose to compute iterates for different values of `, say, x (`1)k and x (`2)k for `1 6= `2 and k = 1, 2, . . . ,
and to study the behavior of the function

k = k(`1,`2)→ ‖x
(`1)
k − x (`2)k ‖. (7)

Due to the semiconvergence of the methods, we expect the iterates x (`1)k and x (`2)k to be close when they are accurate approxi-
mations of x̂ , and to differ considerably when they are severely contaminated by propagated error. Therefore, graphs of the
functions (7) indicate which iterates may furnish the best approximations of x̂ . This information may be useful when no bound
for ‖e‖ is available and the discrepancy principle cannot be applied to determine which iterate to choose as an approximation of
x̂ . Information about the functions (7) may be attractive to apply in conjunction with the L-curve or generalized cross validation,
two popular criteria for choosing a suitable iterate when no bound for ‖e‖ is known; see, e.g., [3, 4, 12, 16, 17] for discussions
on several methods for determining a suitable iterate, including the L-curve and generalized cross validation. We remark that
several of these references are concerned with Tikhonov regularization, an alternative to truncated iteration, but the methods
discussed also can be applied to truncated iteration in slightly modified form.

This paper is organized as follows. In Section 2 we describe a solution method for the minimization problems (6) and Section
3 presents a few computed examples. Concluding remarks can be found in Section 4.

2 Computation of approximate solutions with RRGMRES(`)
We first outline the computation of the RRGMRES(1) iterate x (1)k by the method described in [13, 14] and then discuss the
computation of the iterates x (`)k of RRGMRES(`) for 1< `≤ `max. Application of k steps of the Arnoldi process to the matrix A
with initial vector v1 = b/‖b‖ gives the Arnoldi decomposition

AVk = Vk+1Hk+1,k, (8)

where Hk+1,k ∈ R(k+1)×k is upper Hessenberg, the matrix Vk+1 = [v1, v2, . . . , vk+1] ∈ Rm×(k+1) has orthonormal columns that span
the Krylov subspace Kk+1(A, b), and Vk ∈ Rm×k consists of the first k columns of Vk+1. This decomposition is the basis for the
standard GMRES implementation. Its computation requires the evaluation of k matrix-vector products with the matrix A; see
Saad [19] for details.

Introduce the QR factorization
Hk+1,k =Q(1)k+1R(1)k+1,k, (9)

where Q(1)k+1 ∈ R(k+1)×(k+1) is orthogonal and R(1)k+1,k ∈ R(k+1)×k has a leading k×k upper triangular submatrix, R(1)k , and a vanishing

last row. Since Hk+1,k is upper Hessenberg, the matrix Q(1)k+1 can be expressed as a product of k elementary reflections,

Q(1)k+1 = G1G2 · · ·Gk, (10)
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where G j ∈ R(k+1)×(k+1) is a symmetric elementary reflection in the planes j and j+ 1. Thus, G j is the identity matrix except for a

2× 2 block in the rows and columns j and j+ 1. The representation (10) shows that Q(1)k+1 is upper Hessenberg.

Let the matrix Q(1)k+1,k ∈ R(k+1)×k consist of the first k columns of Q(1)k+1 and introduce W (1)
k = Vk+1Q(1)k+1,k. Then it follows from

(8) and (9) that
AVk =W (1)

k R(1)k , (11)

which shows that R(W (1)
k ) =Kk(A, Ab). We assume for ease of exposition that all Krylov subspaces are of full dimension. Then

the minimization problem (6) for `= 1 can be written as

min
y∈Rk
‖AW (1)

k y − b‖ = min
y∈Rk
‖AVk+1Q(1)k+1,k y − b‖

= min
y∈Rk
‖Vk+2Hk+2,k+1Q(1)k+1,k y − b‖

= min
y∈Rk
‖Hk+2,k+1Q(1)k+1,k y − e1‖b‖ ‖,

where e1 = [1, 0, . . . , 0]T denotes the first axis vector and the last equality follows from the fact that Vk+2e1 = b/‖b‖. The matrices
Vk+2 and Hk+2,k+1 are obtained by applying k+1 steps of the Arnoldi process to the matrix A with initial vector v1 = b/‖b‖. Thus,
they are determined by the decomposition (8) with k replaced by k+ 1.

Since both matrices Hk+2,k+1 and Q(1)k+1,k are upper Hessenberg, their product vanishes below the sub-subdiagonal. It follows
that the QR factorization

Hk+2,k+1Q(1)k+1,k =Q(2)k+2R(2)k+2,k

can be computed in only O(k2) arithmetic floating point operations with the aid of elementary reflections. Here Q(2)k+2 ∈ R(k+2)×(k+2)

is orthogonal with zero entries below the sub-subdiagonal and R(2)k+2,k ∈ R(k+2)×k has a leading k× k upper triangular submatrix,

R(2)k , and two vanishing last rows. Thus,
AW (1)

k = Vk+2Q(2)k+2R(2)k+2,k (12)

and
min
y∈Rk
‖AW (1)

k y − b‖= min
y∈Rk
‖R(2)k+2,k y − (Q(2)k+2)

T e1‖b‖ ‖. (13)

Let y (1)k denote the solution of (13). Then the solution of RRGMRES(1) is given by x (1)k =W (1)
k y (1)k .

The solution of RRGMRES(2) can be computed analogously. Thus, let W (2)
k consist of the first k columns of the matrix

Vk+2Q(2)k+2. The relation

AW (1)
k =W (2)

k R(2)k

follows from (12) and shows that R(W (2)
k ) =K(A, A2 b). The minimization problem for RRGMRES(2) can be expressed as

min
y∈Rk
‖AW (2)

k y − b‖ = min
y∈Rk
‖AVk+2Q(2)k+2,k y − b‖

= min
y∈Rk
‖Vk+3Hk+3,k+2Q(2)k+2,k y − b‖

= min
y∈Rk
‖Hk+3,k+2Q(2)k+2,k y − e1‖b‖ ‖,

where the matrices Vk+3 and Hk+3,k+2 are determined by applying k+ 2 steps of the Arnoldi process to the matrix A with initial
vector v1 = b/‖b‖, and the matrix Q(2)k+2,k ∈ R(k+2)×k is obtained by removing the last two columns from Q(2)k+2.

Consider the QR factorization
Hk+3,k+2Q(2)k+2,k =Q(3)k+3R(3)k+3,k, (14)

where Q(3)k+3 ∈ R(k+3)×(k+3) is orthogonal and R(3)k+3,k ∈ R(k+3)×k has a leading k× k upper triangular submatrix and three vanishing

last rows. Due to the structure of Hk+3,k+2 and Q(2)k+2,k, the matrix Q(3)k+3 vanishes below the sub-sub-subdiagonal. Therefore, the
factorization (14) can be computed in only O(k2) arithmetic floating point operations by the application of a judicious choice of
elementary reflections.

We obtain analogously to (13) that

min
y∈Rk
‖AW (2)

k y − b‖= min
y∈Rk
‖R(3)k+3,k y − (Q(3)k+3)

T e1‖b‖ ‖.

Denote the solution by y (2)k . The kth iterate of RRGMRES(2) then is given by x (2)k =W (2)
k y (2)k .

We may proceed in this manner to determine matrices W (`)
k ∈ Rm×k such that R(W (`)

k ) =K(A, A`b) and compute solutions
x (`)k of the RRGMRES(`) minimization problem for `= 3, 4, . . . ,`max. The computation of these solutions requires the evaluation
of k + `max matrix-vector products with the matrix A. These matrix-vector product evaluations constitute the dominating
computational work for large-scale problems. Typically, only few iterations have to be carried out. This is illustrated in the
following section.
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3 Computed examples
We apply RRGMRES(`) methods to the solution of several standard test problems to illustrate the performance of these methods.
All computations are carried out in MATLAB with about 15 significant decimal digits.

Example 3.1. Let the matrix A be obtained by discretizing the integral equation of the first kind
∫ π/2

−π/2
κ(τ,σ)x(σ)dσ = b(τ), −

π

2
≤ τ≤

π

2
, (15)

where

κ(σ,τ) = (cos(σ) + cos(τ))
�

sin(ξ)
ξ

�2

, ξ= π(sin(σ) + sin(τ)).

The right-hand side function b(τ) is chosen so that the solution x(σ) is the sum of two Gaussian functions. This integral equation
is discussed by Shaw [20]. We discretize it by a Nyström method based on the composite trapezoidal rule with n = 1000
equidistant nodes. This yields the nonsymmetric matrix A ∈ R1000×1000 and the discretized solution x̂ ∈ R1000 from which we
determine b̂ = Ax̂ . A vector e ∈ R1000 with normally distributed random entries with zero mean simulates noise; it is scaled to
correspond to a specified noise-level

ν =
‖e‖
‖b̂‖

. (16)

We determine the contaminated right-hand side in (1) from (2). In our initial computations, we let ν = 0.01.

iterative method error for best iterate
RRGMRES(0) ‖x (0)6 − x̂‖= 4.30
RRGMRES(1) ‖x (1)5 − x̂‖= 4.01
RRGMRES(2) ‖x (2)7 − x̂‖= 2.06
RRGMRES(3) ‖x (3)7 − x̂‖= 2.06
RRGMRES(4) ‖x (4)7 − x̂‖= 2.05

Table 1: Example 3.1: Best iterates generated by RRGMRES(`) for `= 0, 1, . . . , 4, and smallest errors achieved for noise-level ν = 0.01.

Table 1 displays the smallest differences ‖x (`)k − x̂‖ achieved with RRGMRES(`) for 0 ≤ ` ≤ 4. The quality of the best
approximation of x̂ is seen to increase as ` grows from 0 to 4. The table suggests that when the desired solution x̂ is the
discretization of a smooth function, then it may be beneficial to use RRGMRES(`) with `≥ 2.

Figure 1: Example 3.1: Errors in approximate solutions x (`)k for 0≤ `≤ 4 and 1≤ k ≤ 9. The (black) diamonds connected by solid lines show

‖x (0)k − x̂‖, the (black) squares connected by solid lines depict ‖x (1)k − x̂‖, the (blue) circles connected by solid lines display ‖x (2)k − x̂‖, the

(red) stars connected by solid lines show ‖x (3)k − x̂‖, and the (green) circles connected by dash-dotted lines depict ‖x (4)k − x̂‖. The noise-level is
ν = 0.01.

Figure 1 displays the errors ‖x (`)k − x̂‖ for 0 ≤ ` ≤ 4 and 1 ≤ k ≤ 9. The RRGMRES(`) methods for ` = 2,3,4 are seen to
determine iterates with the smallest errors at step 7.

Figure 2 shows differences in norm between pairs of iterates x (`1)k and x (`2)k for 1 ≤ k ≤ 9 and `1 6= `2. The (black) solid
graphs marked by diamonds, squares, circles, and stars show the differences between the RRGMRES(0) iterates and iterates
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Figure 2: Example 3.1: Differences in iterates ‖x (`1)k − x (`2)k ‖ for 0 ≤ `1 6= `2 ≤ 4 and 1 ≤ k ≤ 9. The (black) diamonds connected by

solid lines show ‖x (0)k − x (1)k ‖, the (black) squares connected by solid lines depict ‖x (0)k − x (2)k ‖, the (black) circles connected by solid lines

display ‖x (0)k − x (3)k ‖, the (black) stars connected by solid lines display ‖x (0)k − x (4)k ‖, the (blue) diamonds connected by dash-dotted lines

show ‖x (1)k − x (2)k ‖, the (blue) squares connected by dash-dotted lines depict ‖x (1)k − x (3)k ‖, the (blue) circles connected by solid lines display

‖x (1)k − x (4)k ‖, the (red) diamonds connected by dashed lines show ‖x (2)k − x (3)k ‖, the (red) squares connected by dashed lines depict ‖x (2)k − x (4)k ‖,
and the (magenta) “x” connected by solid lines display ‖x (3)k − x (4)k ‖. The noise-level is ν = 0.01.

generated by RRGMRES(`) for ` ≥ 1. These graphs can be found at the top of the figure, which indicates that the iterates
computed by RRGMRES(0) differ significantly from many of the iterates determined by RRGMRES(`) for ` ≥ 1. The (blue)
dash-dotted graphs marked by diamonds, squares, and circles display the difference between iterates generated by RRGMRES(1)
and those computed by RRGMRES(`) for `≥ 2. All the (blue) graphs are fairly close together and quite near the top of the figure,
except for k = 4. This suggests that the RRGMRES(1) iterates, for k 6= 4, differ significantly from the approximate solutions
computed by RRGMRES(`) for ` > 1. The (red) dashed graphs marked with diamonds and squares display how much the iterates
x (2)k differ from x (3)k and x (4)k , respectively. These graphs are close to the bottom of the figure, and so is the (magenta) solid
graph marked with x , which displays how much the RRGMRES(3) and RRGMRES(4) iterates differ. Figure 2 suggests that the
iterates x (`)4 for `≥ 1 and x (`)7 for `≥ 2 may be accurate approximations of x̂ . The latter of these iterates might furnish the most
accurate approximations of x̂ since they have had a chance to pick up more information about the matrix A than the iterates x (`)4

and have not diverged away from each other. Table 1 shows that, indeed, the iterates x (`)7 for `≥ 2 provide the most accurate
approximations of x̂ . Figure 3 depicts the vectors x̂ and x (4)7 .

Figure 3: Example 3.1: Computed approximate solution x (4)7 (black) solid curve and desired solution x̂ (blue) dashed curve. The noise-level is
ν = 0.01.

The above computations illustrate that it may be advantageous to let `≥ 2 in RRGMRES(`) when the noise-level (16) is 0.01.
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ν = 1 · 10−3 ν = 1 · 10−4

iterative method error for best iterate error for best iterate
RRGMRES(0) ‖x (0)7 − x̂‖= 1.77 ‖x (0)8 − x̂‖= 1.63
RRGMRES(1) ‖x (1)7 − x̂‖= 1.76 ‖x (1)7 − x̂‖= 1.64
RRGMRES(2) ‖x (2)7 − x̂‖= 1.65 ‖x (2)8 − x̂‖= 1.50
RRGMRES(3) ‖x (3)7 − x̂‖= 1.65 ‖x (3)10 − x̂‖= 1.49
RRGMRES(4) ‖x (4)7 − x̂‖= 1.65 ‖x (4)9 − x̂‖= 1.48

Table 2: Example 3.1: Best iterates generated by RRGMRES(`) for `= 0, 1, . . . , 4, and smallest errors achieved for two noise-levels.

Table 2 shows that this may be the case also for smaller noise-levels. 2
Example 3.2. The matrix of this example is obtained by discretizing the integral equation of the first kind

∫ 6

−6

κ(t, s)x(s)ds = b(t), −6≤ t ≤ 6, (17)

discussed by Phillips [15]. Its solution, kernel, and right-hand side are given by

x(s) =
�

1+ cos(π
3

s), if |s|< 3,
0, otherwise,

κ(t, s) = x(t − s),

b(t) = (6− |t|)(1+
1

2
cos(

π

3
t)) +

9

2π
sin(

π

3
|t|).

We discretize this integral equation by a Nyström method based on a composite trapezoidal quadrature rule with 1000 equidistant
nodes. This gives the nonsymmetric matrix A ∈ R1000×1000. A discretization of the exact solution defines x̂ ∈ R1000 and we let
b̂ = Ax̂ . The contaminated right-hand side b ∈ R1000 is defined analogously as in Example 3.1. The noise-level is ν = 0.01 unless
specified otherwise.

iterative method error for best iterate
RRGMRES(0) ‖x (0)10 − x̂‖= 0.782
RRGMRES(1) ‖x (1)8 − x̂‖= 0.550
RRGMRES(2) ‖x (2)9 − x̂‖= 0.466
RRGMRES(3) ‖x (3)9 − x̂‖= 0.504
RRGMRES(4) ‖x (4)9 − x̂‖= 0.458

Table 3: Example 3.2: Best iterates generated by RRGMRES(`) for `= 0,1, . . . , 4, and smallest errors achieved. The noise-level is ν = 0.01.

Table 3 is analogous to Table 1 and displays the smallest differences ‖x (`)k − x̂‖ achieved with RRGMRES(`) for 0≤ `≤ 4.
Similarly as for Table 1, the present table shows that letting `≥ 2 may improve the accuracy of the best iterate x (`)k .

Figure 4 displays the errors ‖x (`)k − x̂‖ for 0≤ `≤ 4 and 1≤ k ≤ 16, and shows the iterates x (`)k determined by RRGMRES(`)
for `≥ 2 to be accurate approximations of x̂ for 5≤ k ≤ 9.

Figure 5 shows differences in norm between pairs of iterates x (`1)k and x (`2)k for 1≤ k ≤ 16 and 0≤ `1 6= `2 ≤ 4. This figure
is analogous to Figure 2. The closeness of the red and magenta graphs for 6≤ k ≤ 10 indicates that the iterates x (`)k for these
values of k and 3≤ `≤ 4 furnish accurate approximations of x̂ . This is in agreement with Figure 4. Figure 6 shows the vectors x̂
and x (4)9 .

ν = 1 · 10−3 ν = 1 · 10−4

iterative method error for best iterate error for best iterate
RRGMRES(0) ‖x (0)8 − x̂‖= 0.284 ‖x (0)12 − x̂‖= 0.099
RRGMRES(1) ‖x (1)10 − x̂‖= 0.176 ‖x (1)14 − x̂‖= 0.072
RRGMRES(2) ‖x (2)12 − x̂‖= 0.176 ‖x (2)17 − x̂‖= 0.063
RRGMRES(3) ‖x (3)11 − x̂‖= 0.215 ‖x (3)17 − x̂‖= 0.066
RRGMRES(4) ‖x (4)12 − x̂‖= 0.176 ‖x (4)18 − x̂‖= 0.061

Table 4: Example 3.2: Best iterates generated by RRGMRES(`) for `= 0, 1, . . . , 4, and smallest errors achieved for two noise-levels.

Table 3 shows that it may be beneficial to let `≥ 2 in RRGMRES(`) when the noise-level (16) is 0.01. Table 4 indicates that
this also is true for smaller noise-levels. 2
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Figure 4: Example 3.2: Errors in approximate solutions x (`)k for 0≤ `≤ 4 and 1≤ k ≤ 16. The (black) diamonds connected by solid lines show

‖x (0)k − x̂‖, the (black) squares connected by solid lines depict ‖x (1)k − x̂‖, the (blue) circles connected by solid lines display ‖x (2)k − x̂‖, the

(red) stars connected by solid lines show ‖x (3)k − x̂‖, and the (green) circles connected by dash-dotted lines depict ‖x (4)k − x̂‖. The noise-level is
ν = 0.01.

Figure 5: Example 3.2: Differences in iterates ‖x (`1)k − x (`2)k ‖ for 0 ≤ `1 6= `2 ≤ 4 and 1 ≤ k ≤ 16. The (black) diamonds connected by

solid lines show ‖x (0)k − x (1)k ‖, the (black) squares connected by solid lines depict ‖x (0)k − x (2)k ‖, the (black) circles connected by solid lines

display ‖x (0)k − x (3)k ‖, the (black) stars connected by solid lines display ‖x (0)k − x (4)k ‖, the (blue) diamonds connected by dash-dotted lines

show ‖x (1)k − x (2)k ‖, the (blue) squares connected by dash-dotted lines depict ‖x (1)k − x (3)k ‖, the (blue) circles connected by solid lines display

‖x (1)k − x (4)k ‖, the (red) diamonds connected by dashed lines show ‖x (2)k − x (3)k ‖, the (red) squares connected by dashed lines depict ‖x (2)k − x (4)k ‖,
and the (magenta) “x” connected by solid lines display ‖x (3)k − x (4)k ‖. The noise-level is ν = 0.01.

Example 3.3. The Fredholm integral equation of the first kind
∫ π

0

κ(σ,τ)x(τ)dτ= b(σ), 0≤ σ ≤
π

2
, (18)

with κ(σ,τ) = exp(σ cos(τ)), b(σ) = 2sinh(σ)/σ, and solution x(τ) = sin(τ) is discussed by Baart [1]. We use the MATLAB
code baart from [10] to discretize (18) by a Galerkin method with 1000 orthonormal box functions as test and trial functions.
The code produces the nonsymmetric matrix A ∈ R1000×1000 and the scaled discrete approximation x̂ ∈ R1000 of x(τ). The
noise-free right-hand side is given by b̂ = Ax̂ . The entries of the noise vector e ∈ R1000 are generated in the same way as in
Example 3.1. Unless specified otherwise, the noise-level is ν = 1 · 10−3. The contaminated right-hand side is defined by (2).

Table 5 shows the smallest differences ‖x (`)k − x̂‖ achieved by RRGMRES(`) for 0≤ `≤ 4. For this example the RRGMRES(`)
methods for `≥ 1 perform about the same, and better than RRGMRES(0). In particular, the table illustrates that letting `≥ 2
does not result in worse approximations of x̂ than `= 1.
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Figure 6: Example 3.2: Computed approximate solution x (4)9 (black) solid curve and desired solution x̂ (blue) dashed curve. The noise-level is
ν = 0.01.

iterative method error for best iterate
RRGMRES(0) ‖x (0)3 − x̂‖= 0.058
RRGMRES(1) ‖x (1)3 − x̂‖= 0.045
RRGMRES(2) ‖x (2)3 − x̂‖= 0.045
RRGMRES(3) ‖x (3)3 − x̂‖= 0.045
RRGMRES(4) ‖x (4)3 − x̂‖= 0.045

Table 5: Example 3.3: Best iterates generated by RRGMRES(`) for `= 0, 1, . . . , 4, and smallest errors achieved. The noise-level is ν = 1 · 10−3.

Figure 7: Example 3.3: Errors in approximate solutions x (`)k for 0≤ `≤ 4 and 1≤ k ≤ 7. The (black) diamonds connected by solid lines show

‖x (0)k − x̂‖, the (black) squares connected by solid lines depict ‖x (1)k − x̂‖, the (blue) circles connected by solid lines display ‖x (2)k − x̂‖, the

(red) stars connected by solid lines show ‖x (3)k − x̂‖, and the (green) circles connected by dash-dotted lines depict ‖x (4)k − x̂‖. The noise-level is
ν = 1 · 10−3.

Figure 7 is analogous to Figure 4, but with a logarithmic scale for the vertical axis. The figure shows all RRGMRES(`)
methods for `≥ 1 to perform about the same, and the best iterate determined by RRGMRES(0) is seen to differ more from x̂
than the iterates computed by the other methods. This is in agreement with Table 5.

Figure 8 is similar to Figure 5, but uses a logarithmic scale for the vertical axis. The figure shows the iterates x (3)3 and x (4)3 to
be very close. This suggests that these iterates may be accurate approximations of x̂ , which is in agreement with Table 5. Figure 9
displays x (4)3 and x̂ . Finally, Table 6 illustrates that it may be beneficial to let `≥ 2 in RRGMRES(`) also for noise-levels different
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Figure 8: Example 3.3: Differences in iterates ‖x (`1)k − x (`2)k ‖ for 0 ≤ `1 6= `2 ≤ 4 and 1 ≤ k ≤ 7. The (black) diamonds connected by

solid lines show ‖x (0)k − x (1)k ‖, the (black) squares connected by solid lines depict ‖x (0)k − x (2)k ‖, the (black) circles connected by solid lines

display ‖x (0)k − x (3)k ‖, the (black) stars connected by solid lines display ‖x (0)k − x (4)k ‖, the (blue) diamonds connected by dash-dotted lines

show ‖x (1)k − x (2)k ‖, the (blue) squares connected by dash-dotted lines depict ‖x (1)k − x (3)k ‖, the (blue) circles connected by solid lines display

‖x (1)k − x (4)k ‖, the (red) diamonds connected by dashed lines show ‖x (2)k − x (3)k ‖, the (red) squares connected by dashed lines depict ‖x (2)k − x (4)k ‖,
and the (magenta) “x” connected by solid lines display ‖x (3)k − x (4)k ‖. The noise-level is ν = 1 · 10−3.

Figure 9: Example 3.3: Computed approximate solution x (4)3 (black) solid curve and desired solution x̂ (blue) dashed curve. The noise-level is
ν = 1 · 10−3.

ν = 1 · 10−2 ν = 1 · 10−4

iterative method error for best iterate error for best iterate
RRGMRES(0) ‖x (0)3 − x̂‖= 0.393 ‖x (0)3 − x̂‖= 0.045
RRGMRES(1) ‖x (1)3 − x̂‖= 0.069 ‖x (1)5 − x̂‖= 0.024
RRGMRES(2) ‖x (2)3 − x̂‖= 0.068 ‖x (2)5 − x̂‖= 0.023
RRGMRES(3) ‖x (3)3 − x̂‖= 0.068 ‖x (3)5 − x̂‖= 0.023
RRGMRES(4) ‖x (4)4 − x̂‖= 0.068 ‖x (4)5 − x̂‖= 0.023

Table 6: Example 3.3: Best iterates generated by RRGMRES(`) for `= 0, 1, . . . , 4, and smallest errors achieved for two noise-levels.

from 1 · 10−3. 2
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4 Conclusion
This paper describes new range restricted GMRES methods. The examples shown, as well as numerous other computed examples,
indicate that RRGMRES(`) for `≥ 2 can give iterates that approximate the desired solution x̂ better than iterates determined
by RRGMRES(`) for `≤ 1. Moreover, computation of the norm of differences of iterates determined by different RRGMRES(`)
methods may yield useful information about which iterates provide the most accurate approximations of x̂ .
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