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Some Historical Remarks

Rolland Hardy

Professor of Civil and Construction Engineering at Iowa State
University (retired 1989).
Introduced multiquadrics (MQs) in the early 1970s (see, e.g.,
[Hardy (1971)]).
His work was primarily concerned with applications in geodesy
and mapping.
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Some Historical Remarks

Robert L. Harder and Robert N. Desmarais

Aerospace engineers at MacNeal-Schwendler Corporation (MSC
Software), and NASA’s Langley Research Center.
Introduced thin plate splines (TPSs) in 1972 (see, e.g.,
[Harder and Desmarais (1972)]).
Work was concerned mostly with aircraft design.
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Some Historical Remarks

Jean Duchon

Senior researcher in mathematics at the Université Joseph
Fourier in Grenoble, France.
Provided foundation for the variational approach minimizing the
integral of ∇2f in R2 in the mid 1970s (see
[Duchon (1976), Duchon (1977), Duchon (1978), Duchon (1980)]).
This also leads to thin plate splines.
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Some Historical Remarks

Jean Meinguet

Mathematics professor at Université Catholique de Louvain in
Louvain, Belgium (retired 1996).
Introduced surface splines in the late 1970s (see, e.g.,
[Meinguet (1979a), Meinguet (1979b), Meinguet (1979c),
Meinguet (1984)]).
Surface splines and thin plate splines are both considered as
polyharmonic splines.

fasshauer@iit.edu Lecture I Dolomites 2008



Some Historical Remarks

Richard Franke

Mathematician at the Naval Postgraduate School in Monterey,
California (retired 2001).
Compared various scattered data interpolation methods in
[Franke (1982a)], and concluded MQs and TPSs were the best.
Conjectured that the interpolation matrix for MQs is invertible.
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Some Historical Remarks

Wolodymyr (Wally) Madych and Stuart Alan Nelson

Both professors of mathematics. Madych at the University of
Connecticut, and Nelson at Iowa State University (now retired).
Proved Franke’s conjecture (and much more) based on a
variational approach in their 1983 manuscript
[Madych and Nelson (1983)]. Manuscript was never published.
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Some Historical Remarks

Charles Micchelli

Used to be a mathematician at IBM Watson Research Center.
Now a professor at the State University of New York.
Published [Micchelli (1986)] in which he also proved Franke’s
conjecture. His proofs are rooted in the work of
[Bochner (1932), Bochner (1933)] and
[Schoenberg (1937), Schoenberg (1938a), Schoenberg (1938b)]
on positive definite and completely monotone functions.
We will follow his approach throughout much of these lectures.
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Some Historical Remarks

Ed Kansa

Physicist at Lawrence Livermore National Laboratory, California
(retired).
First suggested the use of radial basis functions for the solution of
PDEs [Kansa (1986)].
Later papers [Kansa (1990a), Kansa (1990b)] proposed “Kansa’s
method” (or non-symmetric collocation).
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Some Historical Remarks

Grace Wahba

Professor of statistics at the University of Wisconsin-Madison.
Studied the use of thin plate splines for statistical purposes in the
context of smoothing noisy data and data on spheres.
Introduced ANOVA and cross validation approaches to the radial
basis function setting (see, e.g., [Wahba (1979), Wahba (1981),
Wahba and Wendelberger (1980)]).
One of the first monographs on the subject is [Wahba (1990)].
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Some Historical Remarks

Nira Dyn

Collaborated early with Grace Wahba on connections between
numerical analysis and statistics via radial basis function methods
(see [Dyn et al. (1979), Dyn and Wahba (1982)]).
Professor of applied mathematics at Tel-Aviv University.
Was one of the first proponents of radial basis function methods in
the approximation theory community (see her surveys
[Dyn (1987), Dyn (1989)]).
Has since worked on many issues related to radial basis functions.
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Some Historical Remarks

Robert Schaback

Professor of mathematics at the University of Göttingen, Germany.
Introduced compactly supported radial basis functions (CSRBFs)
in [Schaback (1995a)].
Another popular family of CSRBFs was presented by Holger
Wendland (professor of mathematics at Sussex University, UK) in
his Ph.D. thesis at Göttingen (see also [Wendland (1995)]).
Both have contributed extensively to the field of radial basis
functions. Especially the recent monograph [Wendland (2005)].
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Some Historical Remarks

Meshfree local regression methods have been used independently in
statistics for well over 100 years (see, e.g.,
[Cleveland and Loader (1996)] and the references therein).

In fact, the basic moving least squares method (local regression) can
be traced back at least to the work of
[Gram (1883), Woolhouse (1870), De Forest (1873), De Forest (1874)].
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Some Historical Remarks

Donald Shepard

Professor at the Schneider Institutes for Health Policy at Brandeis
University.
As an undergraduate student at Harvard University he suggested
the use of what are now called Shepard functions in the late
1960s.
The publication [Shepard (1968)] discusses the basic inverse
distance weighted Shepard method and some modifications
thereof. The method was at the time incorporated into a computer
program, SYMAP, for map making.
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Some Historical Remarks

Peter Lancaster and Kes Šalkauskas

Professors of mathematics at the University of Calgary, Canada
(both retired).
Published [Lancaster and Šalkauskas (1981)] introducing the
moving least squares method (a generalization of Shepard
functions).
An interesting [Interview with Peter Lancaster].
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Scattered Data Interpolation The Scattered Data Interpolation Problem

Problem (Scattered Data Fitting)

Given data (x j , yj), j = 1, . . . ,N, with x j ∈ Rs, yj ∈ R, find a
(continuous) function Pf such that Pf (x j) = yj , j = 1, . . . ,N.
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Scattered Data Interpolation The Scattered Data Interpolation Problem

Standard setup

A convenient and common approach:
Assume Pf is a linear combination of certain basis functions Bk , i.e.,

Pf (x) =
N∑

k=1

ckBk (x), x ∈ Rs. (1)

Solving the interpolation problem under this assumption leads to a
system of linear equations of the form

Ac = y ,

where the entries of the interpolation matrix A are given by
Ajk = Bk (x j), j , k = 1, . . . ,N, c = [c1, . . . , cN ]T , and y = [y1, . . . , yN ]T .
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Scattered Data Interpolation The Scattered Data Interpolation Problem

Standard setup (cont.)

The scattered data fitting problem will be well-posed, i.e., a solution to
the problem will exist and be unique, if and only if the matrix A is
non-singular.

In 1D it is well known that one can interpolate to arbitrary data at N
distinct data sites using a polynomial of degree N − 1.

If the dimension is higher, there is the following negative result (see
[Mairhuber (1956), Curtis (1959)]).

Theorem (Mairhuber-Curtis)

If Ω ⊂ Rs, s ≥ 2, contains an interior point, then there exist no Haar
spaces of continuous functions except for one-dimensional ones.

fasshauer@iit.edu Lecture I Dolomites 2008



Scattered Data Interpolation The Scattered Data Interpolation Problem

Standard setup (cont.)

The scattered data fitting problem will be well-posed, i.e., a solution to
the problem will exist and be unique, if and only if the matrix A is
non-singular.

In 1D it is well known that one can interpolate to arbitrary data at N
distinct data sites using a polynomial of degree N − 1.

If the dimension is higher, there is the following negative result (see
[Mairhuber (1956), Curtis (1959)]).

Theorem (Mairhuber-Curtis)

If Ω ⊂ Rs, s ≥ 2, contains an interior point, then there exist no Haar
spaces of continuous functions except for one-dimensional ones.

fasshauer@iit.edu Lecture I Dolomites 2008
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Scattered Data Interpolation The Scattered Data Interpolation Problem

In order to understand this theorem we need

Definition

Let the finite-dimensional linear function space B ⊆ C(Ω) have a basis
{B1, . . . ,BN}. Then B is a Haar space on Ω if

det A 6= 0

for any set of distinct x1, . . . ,xN in Ω. Here A is the matrix with entries
Ajk = Bk (x j).

Existence of a Haar space guarantees invertibility of the interpolation
matrix A, i.e., existence and uniqueness of an interpolant of the form
(1) to data specified at x1, . . . ,xN from the space B.

Example
Univariate polynomials of degree N − 1 form an N-dimensional Haar
space for data given at x1, . . . , xN .
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Scattered Data Interpolation The Scattered Data Interpolation Problem

Interpretation of Mairhuber-Curtis

The Mairhuber-Curtis theorem tells us that if we want to have a
well-posed multivariate scattered data interpolation problem we can no
longer fix in advance the set of basis functions we plan to use for
interpolation of arbitrary scattered data.

Instead, the basis should depend on the data locations.

Example
It is not possible to perform unique interpolation with (multivariate)
polynomials of degree N to data given at arbitrary locations in R2.
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Scattered Data Interpolation The Scattered Data Interpolation Problem

Proof of Mairhuber-Curtis
Proof of Theorem 2.
Let s ≥ 2 and assume that B is a Haar space with basis {B1, . . . ,BN}
with N ≥ 2.

We need to show that this leads to a contradiction.
By the definition of a Haar space

det
(
Bk (x j)

)
6= 0 (2)

for any distinct x1, . . . ,xN .

Mairhuber-Curtis Maplet

Since the determinant is a continuous function of x1 and x2 we must
have had det = 0 at some point along path. This contradicts (2).
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Distance Matrices

We want to construct a (continuous) function Pf that interpolates
samples obtained from a test function fs data sites x j ∈ [0,1]s, i.e.,
want

Pf (x j) = fs(x j), x j ∈ [0,1]s

Assume for now that s = 1.
For small N one can use univariate polynomials
If N is relatively large it’s better to use splines
Simplest approach: C0 piecewise linear splines (“connect the
dots”)

Basis for space of piecewise linear interpolating splines:

{Bk = | · −xk | : k = 1, . . . ,N}
So

Pf (x) =
N∑

k=1

ck |x − xk |, x ∈ [0,1]

and ck determined by interpolation conditions

Pf (xj) = f1(xj), j = 1, . . . ,N
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Distance Matrices

Clearly, the basis functions Bk = | · −xk | are dependent on the
data sites xk as suggested by Mairhuber-Curtis

Norm Maplet

B(x) = |x | is called basic function
The points xk to which the basic function is shifted to form the
basis functions are usually referred to as centers or knots.
Technically, one could choose these centers different from the
data sites. However, usually centers coincide with the data sites.
This simplifies the analysis of the method, and is sufficient for
many applications.
In fact, relatively little is known about the case when centers and
data sites differ.
Bk are (radially) symmetric about their centers xk
−→ radial basis function
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Distance Matrices

Now the coefficients ck in the scattered data interpolation problem are
found by solving the linear system

|x1 − x1| |x1 − x2| . . . |x1 − xN |
|x2 − x1| |x2 − x2| . . . |x2 − xN |

...
...

. . .
...

|xN − x1| |xN − x2| . . . |xN − xN |




c1
c2
...

cN

 =


f1(x1)
f1(x2)

...
f1(xN)

 (3)

The matrix in (3) is a distance matrix
Distance matrices have been studied in geometry and analysis in
the context of isometric embeddings of metric spaces for a long
time (see, e.g., [Baxter (1991), Blumenthal (1938),
Bochner (1941), Micchelli (1986), Schoenberg (1938a),
Wells and Williams (1975)]).
It is known that the distance matrix based on the Euclidean
distance between a set of distinct points in Rs is always
non-singular (see below).
Therefore, our scattered data interpolation problem is well-posed.
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Distance Matrices

Since distance matrices are non-singular for Euclidean distances in
any space dimension s we have an immediate generalization:

For the scattered data interpolation problem on [0,1]s we can take

Pf (x) =
N∑

k=1

ck‖x − xk‖2, x ∈ [0,1]s, (4)

and find the ck by solving
‖x1 − x1‖2 ‖x1 − x2‖2 . . . ‖x1 − xN‖2
‖x2 − x1‖2 ‖x2 − x2‖2 . . . ‖x2 − xN‖2

...
...

. . .
...

‖xN − x1‖2 ‖xN − x2‖2 . . . ‖xN − xN‖2




c1
c2
...

cN

 =


fs(x1)
fs(x2)

...
fs(xN)

 .
Note that the basis is again data dependent
Piecewise linear splines in higher space dimensions are usually
constructed differently (via a cardinal basis on an underlying
computational mesh)
For s > 1 the space span{‖ · −xk‖2, k = 1, . . . ,N} is not the
same as piecewise linear splines
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Distance Matrices

Norm RBF

A typical basis function for the Euclidean distance matrix fit,
Bk (x) = ‖x − xk‖2 with xk = 0 and s = 2.
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Distance Matrices From linear algebra

In order to show the non-singularity of our distance matrices we use the
Courant-Fischer theorem (see e.g., [Meyer (2000)]):

Theorem

Let A be a real symmetric N × N matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λN ,
then

λk = max
dimV=k

min
x∈V
‖x‖=1

xT Ax and λk = min
dimV=N−k+1

max
x∈V
‖x‖=1

xT Ax .

Definition

A real symmetric matrix A is called conditionally negative definite of order one
(or almost negative definite) if its associated quadratic form is negative, i.e.

N∑
j=1

N∑
k=1

cjck Ajk < 0 (5)

for all c = [c1, . . . , cN ]T 6= 0 ∈ RN that satisfy
N∑

j=1

cj = 0.
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Distance Matrices From linear algebra

Now we have

Theorem

An N × N matrix A which is almost negative definite and has a
non-negative trace possesses one positive and N − 1 negative
eigenvalues.

Proof.
Let λ1 ≥ λ2 ≥ · · · ≥ λN denote the eigenvalues of A. From the
Courant-Fischer theorem we get

λ2 = min
dimV=N−1

max
x∈V
‖x‖=1

xT Ax ≤ max
c:

∑
ck =0

‖c‖=1

cT Ac < 0,

so that A has at least N − 1 negative eigenvalues.
But since tr(A) =

∑N
k=1 λk ≥ 0, A also must have at least one positive

eigenvalue.
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Distance Matrices From linear algebra

Non-singularity of distance matrix

It is known that ϕ(r) = r is a strictly conditionally negative definite
function of order one, i.e., the matrix A with Ajk = ‖x j − xk‖ is almost
negative definite.

Also, since Ajj = ϕ(0) = 0, j = 1, . . . ,N, implies tr(A) = 0.

Therefore, our distance matrix is non-singular by the above theorem.
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Basic MATLAB Routines
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1 function DM = DistanceMatrix(dsites,ctrs)
2 [M,s] = size(dsites); [N,s] = size(ctrs);
3 DM = zeros(M,N);
4 for d=1:s
5 [dr,cc] = ndgrid(dsites(:,d),ctrs(:,d));
6 DM = DM + (dr-cc).^2;
7 end
8 DM = sqrt(DM);

One of our main MATLAB subroutines

Forms the matrix of pairwise Euclidean distances of two (possibly
different) sets of points in Rs (dsites and ctrs).
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Works for any space dimension!

1 function DM = DistanceMatrix(dsites,ctrs)
2 [M,s] = size(dsites); [N,s] = size(ctrs);
3 DM = zeros(M,N);
4 for d=1:s
5 [dr,cc] = ndgrid(dsites(:,d),ctrs(:,d));
6 DM = DM + (dr-cc).^2;
7 end
8 DM = sqrt(DM);

One of our main MATLAB subroutines

Forms the matrix of pairwise Euclidean distances of two (possibly
different) sets of points in Rs (dsites and ctrs).



Basic MATLAB Routines

Alternate forms of DistanceMatrix.m

Program (DistanceMatrixA.m)

1 function DM = DistanceMatrixA(dsites,ctrs)
2 [M,s] = size(dsites); [N,s] = size(ctrs);
3 DM = zeros(M,N);
4 for d=1:s
5a DM = DM + (repmat(dsites(:,d),1,N) - ...
5b repmat(ctrs(:,d)’,M,1)).^2;
6 end
7 DM = sqrt(DM);

Note: uses less memory than the ndgrid-based version

Remark
Both of these subroutines can easily be modified to produce a p-norm
distance matrix by making the obvious changes to the code.
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Basic MATLAB Routines

Alternate forms of DistanceMatrix.m (cont.)

Program (DistanceMatrixB.m)

1 function DM = DistanceMatrixB(dsites,ctrs)
2 M = size(dsites,1); N = size(ctrs,1);
3a DM = repmat(sum(dsites.*dsites,2),1,N) - ...
3b 2*dsites*ctrs’ + ...
3c repmat((sum(ctrs.*ctrs,2))’,M,1);
4 DM = sqrt(DM);

Note: For 2-norm distance only. Basic idea suggested by a former
student – fast and memory efficient since no for-loop used
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Approximation in High Dimensions and using Different Designs Using different designs

Depending on the type of approximation problem we are given, we
may or may not be able to select where the data is collected, i.e., the
location of the data sites or design.
Standard choices in low space dimensions include

tensor products of equally spaced points
tensor products of Chebyshev points
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Approximation in High Dimensions and using Different Designs Using different designs

In higher space dimensions it is important to have space-filling (or
low-discrepancy) quasi-random point sets. Examples include

Halton points more info

Sobol’ points
lattice designs
Latin hypercube designs
and quite a few others (digital nets, Faure, Niederreiter, etc.)
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Approximation in High Dimensions and using Different Designs Using different designs

The difference between the standard (tensor product) designs and the
quasi-random designs shows especially in higher space dimensions:
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Approximation in High Dimensions and using Different Designs Some numerical experiments in high dimensions

Program (DistanceMatrixFit.m)

1 s = 3;
2 k = 2; N = (2^k+1)^s;
3 neval = 10; M = neval^s;
4 dsites = CreatePoints(N,s,’h’);
5 ctrs = dsites;
6 epoints = CreatePoints(M,s,’u’);
7 rhs = testfunctionsD(dsites);
8 IM = DistanceMatrix(dsites,ctrs);
9 EM = DistanceMatrix(epoints,ctrs);

10 Pf = EM * (IM\rhs);
11 exact = testfunctionsD(epoints);
12 maxerr = norm(Pf-exact,inf)
13 rms_err = norm(Pf-exact)/sqrt(M)

Note the simultaneous evaluation of the interpolant at the entire set of
evaluation points on line 10.
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Approximation in High Dimensions and using Different Designs Some numerical experiments in high dimensions

Root-mean-square error:

RMS-error =

√√√√ 1
M

M∑
j=1

[
Pf (ξj)− f (ξj)

]2
=

1√
M
‖Pf − f‖2, (6)

where the ξj , j = 1, . . . ,M are the evaluation points.

Remark
The basic MATLAB code for the solution of any kind of RBF
interpolation problem will be very similar to DistanceMatrixFit.
Moreover, the data used — even for the distance matrix interpolation
considered here — can also be “real” data. Just replace lines 4 and 7
by code that generates the data sites and data values for the
right-hand side.
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Approximation in High Dimensions and using Different Designs Some numerical experiments in high dimensions

Instead of reading points from files as in the book

function [points, N] = CreatePoints(N,s,gridtype)
% Computes a set of N points in [0,1]^s
% Note: could add variable interval later
% Inputs:
% N: number of interpolation points
% s: space dimension
% gridtype: ’c’=Chebyshev, ’f’=fence(rank-1 lattice),
% ’h’=Halton, ’l’=latin hypercube, ’r’=random uniform,
% ’s’=Sobol, ’u’=uniform
% Outputs:
% points: an Nxs matrix (each row contains one s-D point)
% N: might be slightly less than original N for
% Chebyshev and gridded uniform points
% Calls on: chebsamp, lattice, haltonseq, lhsamp, i4_sobol,
% gridsamp
% Also needs: fdnodes,gaussj,i4_bit_hi1,i4_bit_lo0,i4_xor

Credits: Hans Bruun Nielsen [DACE], Toby Driscoll, Fred Hickernell,
Daniel Dougherty, John Burkardt
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Approximation in High Dimensions and using Different Designs Some numerical experiments in high dimensions

Test function

fs(x) = 4s
s∏

d=1

xd (1− xd ), x = (x1, . . . , xs) ∈ [0,1]s

Program

function tf = testfunctionsD(x)
[N,s] = size(x);
tf = 4^s*prod(x.*(1-x),2);
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Approximation in High Dimensions and using Different Designs Some numerical experiments in high dimensions

The tables and figures below show some examples computed with
DistanceMatrixFit.

The number M of evaluation points for s = 1,2, . . . ,6, was 1000, 1600,
1000, 256, 1024, and 4096, respectively (i.e., neval = 1000, 40, 10, 4,
4, and 4, respectively).

Note that, as the space dimension s increases, more and more of the
(uniformly gridded) evaluation points lie on the boundary of the
domain, while the data sites (which are given as Halton points) are
located in the interior of the domain.

The value k listed in the tables is the same as the k in line 2 of
DistanceMatrixFit.
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Approximation in High Dimensions and using Different Designs Some numerical experiments in high dimensions

1D 2D 3D

k N RMS-error N RMS-error N RMS-error

1 3 5.896957e-001 9 1.937341e-001 27 9.721476e-002
2 5 3.638027e-001 25 6.336315e-002 125 6.277141e-002
3 9 1.158328e-001 81 2.349093e-002 729 2.759452e-002
4 17 3.981270e-002 289 1.045010e-002
5 33 1.406188e-002 1089 4.326940e-003
6 65 5.068541e-003 4225 1.797430e-003
7 129 1.877013e-003
8 257 7.264159e-004
9 513 3.016376e-004
10 1025 1.381896e-004
11 2049 6.907386e-005
12 4097 3.453179e-005
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Approximation in High Dimensions and using Different Designs Some numerical experiments in high dimensions

4D 5D 6D

k N RMS-error N RMS-error N RMS-error

1 81 1.339581e-001 243 9.558350e-002 729 5.097600e-002
2 625 6.817424e-002 3125 3.118905e-002
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Approximation in High Dimensions and using Different Designs Some numerical experiments in high dimensions

Left: distance matrix fit for s = 1 with 5 Halton points for f1
Right: corresponding error

Remark
Note the piecewise linear nature of the interpolant. If we use more
points then the fit becomes more accurate (see table) but then we
can’t recognize the piecewise linear nature of the interpolant.
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Approximation in High Dimensions and using Different Designs Some numerical experiments in high dimensions

Left: distance matrix fit for s = 2 with 289 Halton points for f2
Right: corresponding error
Interpolant is false-colored according to absolute error
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Approximation in High Dimensions and using Different Designs Some numerical experiments in high dimensions

Left: distance matrix fit for s = 3 with 729 Halton points for f3 (colors
represent function values)
Right: corresponding error
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Approximation in High Dimensions and using Different Designs Some numerical experiments in high dimensions

Remark
We can see clearly that most of the error is concentrated near the
boundary of the domain.

In fact, the absolute error is about one order of magnitude larger near
the boundary than it is in the interior of the domain.

This is no surprise since the data sites are located in the interior.

Even for uniformly spaced data sites (including points on the
boundary) the main error in radial basis function interpolation is usually
located near the boundary.
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Approximation in High Dimensions and using Different Designs Some numerical experiments in high dimensions

Observations

From this first simple example we can observe a number of other
features. Most of them are characteristic for the radial basis function
interpolants.

The basis functions Bk = ‖ · −xk‖2 are radially symmetric.
As the MATLAB scripts show, the method is extremely simple to
implement for any space dimension s.

No underlying computational mesh is required to compute the
interpolant. The process of mesh generation is a major factor when
working in higher space dimensions with polynomial-based
methods such as splines or finite elements.
All that is required for our method is the pairwise distance between
the data sites. Therefore, we have what is known as a meshfree (or
meshless) method.
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Approximation in High Dimensions and using Different Designs Some numerical experiments in high dimensions

Observations (cont.)

The accuracy of the method improves if we add more data sites.
It seems that the RMS-error in the tables above are reduced by a
factor of about two from one row to the next.
Since we use (2k + 1)s uniformly distributed random data points in
row k this indicates a convergence rate of roughly O(h), where h
can be viewed as something like the average distance or meshsize
of the set X of data sites.

The interpolant used here (as well as many other radial basis
function interpolants used later) requires the solution of a system
of linear equations with a dense N × N matrix. This makes it very
costly to apply the method in its simple form to large data sets.
Moreover, as we will see later, these matrices also tend to be
rather ill-conditioned.
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Approximation in High Dimensions and using Different Designs General RBF Interpolation

General Radial Basis Function Interpolation

Use data-dependent linear function space

Pf (x) =
N∑

j=1

cjϕ(‖x − x j‖), x ∈ Rs

Here ϕ : [0,∞)→ R is strictly positive definite and radial

To find cj solve interpolation equations

Pf (x i) = f (x i), i = 1, . . . ,N

Leads to linear system with matrix

Aij = ϕ(‖x i − x j‖), i , j = 1, . . . ,N
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Approximation in High Dimensions and using Different Designs General RBF Interpolation

Radial Basic Functions

ϕ(r) Name

e−(εr)2
Gaussian

1√
1+(εr)2

inverse MQ√
1 + (εr)2 multiquadric
r2 log r thin plate spline

(1− r)4
+(4r + 1) Wendland CSRBF

r = ‖x − xk‖ (radial distance)
ε (positive shape parameter)
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Approximation in High Dimensions and using Different Designs General RBF Interpolation
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Approximation in High Dimensions and using Different Designs General RBF Interpolation

function rbf_definition
global rbf
%%% CPD0
rbf = @(ep,r) exp(-(ep*r).^2); % Gaussian RBF

% rbf = @(ep,r) 1./sqrt(1+(ep*r).^2); % IMQ RBF
% rbf = @(ep,r) 1./(1+(ep*r).^2).^2; % generalized IMQ
% rbf = @(ep,r) 1./(1+(ep*r).^2); % IQ RBF
% rbf = @(ep,r) exp(-ep*r); % basic Matern
% rbf = @(ep,r) exp(-ep*r).*(1+ep*r); % Matern linear
%%% CPD1
% rbf = @(ep,r) ep*r; % linear
% rbf = @(ep,r) sqrt(1+(ep*r).^2); % MQ RBF
%%% CPD2
% rbf = @tps; % TPS (defined in separate function tps.m)

function rbf = tps(ep,r)
rbf = zeros(size(r));
nz = find(r~=0); % to deal with singularity at origin
rbf(nz) = (ep*r(nz)).^2.*log(ep*r(nz));
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Approximation in High Dimensions and using Different Designs General RBF Interpolation in MATLAB

Program (RBFInterpolation_sD.m)

1 s = 2; N = 289; M = 500;
2 global rbf; rbf_definition; epsilon = 6/s;
3 [dsites, N] = CreatePoints(N,s,’h’);
4 ctrs = dsites;
5 epoints = CreatePoints(M,s,’r’);
6 rhs = testfunctionsD(dsites);
7 DM_data = DistanceMatrix(dsites,ctrs);
8 IM = rbf(epsilon,DM_data);
9 DM_eval = DistanceMatrix(epoints,ctrs);

10 EM = rbf(epsilon,DM_eval);
11 Pf = EM * (IM\rhs);
12 exact = testfunctionsD(epoints);
13 maxerr = norm(Pf-exact,inf)
14 rms_err = norm(Pf-exact)/sqrt(M)
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Approximation in High Dimensions and using Different Designs General RBF Interpolation in MATLAB

Bore-hole test function used in the computer experiments literature
([An and Owen (2001), Morris et al. (1993)]):

f (rw , r ,Tu,Tl ,Hu,Hl ,L,Kw ) =
2πTu(Hu − Hl)

log
(

r
rw

)[
1 + 2LTu

log
(

r
rw

)
r2
w Kw

+ Tu
Tl

]

models flow rate of water from an upper to lower aquifer
Meaning and range of values:

radius of borehole: 0.05 ≤ rw ≤ 0.15 (m)
radius of surrounding basin: 100 ≤ r ≤ 50000 (m)
transmissivities of aquifers: 63070 ≤ Tu ≤ 115600,
63.1 ≤ Tl ≤ 116 (m2/yr)
potentiometric heads: 990 ≤ Hu ≤ 1110, 700 ≤ Hl ≤ 820 (m)
length of borehole: 1120 ≤ L ≤ 1680 (m)
hydraulic conductivity of borehole: 9855 ≤ Kw ≤ 12045 (m/yr)
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Approximation in High Dimensions and using Different Designs Fixed ε = 6/s (non-stationary approximation)
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Approximation in High Dimensions and using Different Designs Convergence across different dimensions (fixed ε)
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Approximation in High Dimensions and using Different Designs Convergence across different dimensions (fixed ε)

In the non-stationary setting the convergence rate deteriorates
with increasing dimension – regardless of the choice of design

We know that the stationary setting is even worse since it’s
saturated

Try an “optimal” non-stationary scheme...
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We know that the stationary setting is even worse since it’s
saturated

Try an “optimal” non-stationary scheme...
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Approximation in High Dimensions and using Different Designs “Optimal” LOOCV ε
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Approximation in High Dimensions and using Different Designs “Optimal” LOOCV ε
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Approximation in High Dimensions and using Different Designs Convergence across different dimensions (“optimal” ε)
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Approximation in High Dimensions and using Different Designs Convergence across different dimensions (“optimal” ε)

Convergence rates seem to hold (dimension-independent?) –
provided we use space-filling design
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Halton Points

Halton Points

Halton points (see [Halton (1960), Wong et al. (1997)]) are created
from van der Corput sequences.

Construction of a van der Corput sequence:
Start with unique decomposition of an arbitrary n ∈ N0 with respect to
a prime base p, i.e.,

n =
k∑

i=0

aipi ,

where each coefficient ai is an integer such that 0 ≤ ai < p.

Example
Let n = 10 and p = 3. Then

10 = 1 · 30 + 0 · 31 + 1 · 32,

so that k = 2 and a0 = a2 = 1 and a1 = 0.
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Halton Points

Next, define hp : N0 → [0,1) via

hp(n) =
k∑

i=0

ai

pi+1

Example

h3(10) =
1
3

+
1
33 =

10
27

hp,N = {hp(n) : n = 0,1,2, . . . ,N} is called van der Corput sequence

Example

h3,10 = {0, 1
3 ,

2
3 ,

1
9 ,

4
9 ,

7
9 ,

2
9 ,

5
9 ,

8
9 ,

1
27 ,

10
27}
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Halton Points

Generation of Halton point set in [0, 1)s:

take s (usually distinct) primes p1, . . . ,ps

determine corresponding van der Corput sequences
hp1,N , . . . ,hps,N

form s-dimensional Halton points by taking van der Corput
sequences as coordinates:

Hs,N = {(hp1(n), . . . ,hps (n)) : n = 0,1, . . . ,N}

set of N + 1 Halton points
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Halton Points

Some properties of Halton points

Halton points are nested point sets, i.e., Hs,M ⊂ Hs,N for M < N
Can even be constructed sequentially
In low space dimensions, the multi-dimensional Halton sequence
quickly “fills up” the unit cube in a well-distributed pattern
For higher dimensions (s ≈ 40) Halton points are well distributed
only if N is large enough
The origin is not part of the point set produced by haltonseq.m

Return
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